
Scala Left Fold Parallelisation
Three Approaches

Standard
Library

Parallel
Collections

LibraryCats Effect

Cats
+

Aleksandar Prokopec
 @alexprokopec

@philip_schwarz

slides by

http://fpilluminated.com/ Adam Rosien
 @arosien

foldLeft fold

http://fpilluminated.com/

@philip_schwarz

Let’s begin by looking at a contrived example of a left fold over a relatively large collection.

It is an adaptation of an example from the following book by Aleksandar Prokopec: Learning Concurrent Programming in Scala.

The original example downloaded a text file containing the whole HTML specification, searched its lines for the keyword ‘TEXTAREA’, and then
printed the lines containing the keyword.

We are going to search for a word supplied by the user, and the text that we are going to search is going to be that of a relatively large book
downloaded from https://gutenberg.org/.

Initially I picked War and Peace, which is 66,036 lines long, but for reasons that will become clear later, I then decided to look for a book of about
100,000 lines, and the closest that I could find was The King James Version of the Bible, which is only 25 lines short of the desired number.

case class Book(name: String, numberOfLines: Int, numberOfBytes: Int, url: URL)

val theBible = Book(
name = "The King James Version of the Bible",
numberOfLines = 99_975,
numberOfBytes = 4_456_041,
url = URL("https://gutenberg.org/cache/epub/10/pg10.txt")

)

https://gutenberg.org/

Here is a method that tries to get hold of the lines of text of a book…

@main def run(word: String): Unit =
getText(book = theBible)
.fold(
error => handleErrorGettingText(error),
lines =>
announceSuccessGettingText(lines)
val matches = find(word, lines)
announceMatchingLines(matches))

def getText(book: Book): Try[Vector[String]] =
Using(Source.fromURL(book.url)): source =>
source.getLines.toVector

…and here is the first part of a program which, given a search word, uses the
above method to find occurrences of the word in the lines of our chosen book.

If getting the text lines fails then we handle that, otherwise we
announce that getting the text was successful, invoke a function to
find occurrences of the search word, and then announce the results.

def find(word: String, lines: Vector[String]): String =
lines.foldLeft("")(accumulateLinesContaining(word))

def accumulateLinesContaining(word: String): (String, String) => String =
(acc, line) => if line.matches(s".*$word.*") then s"$acc\n'$line'" else acc

As you can see below, the way that we search the book’s text lines for the search word is by
doing a left fold of function accumulateLinesContaining over the lines, so that the fold
returns a single string with all the lines containing the search word, separated by newlines.

By the way, to simplify exposition, the error handling that you see in
the run method is the only one in the whole slide deck. This is
obviously not production-grade code!

def handleErrorGettingText[A](error: Throwable): A =
throw IllegalStateException(s"Failed to obtain the text lines to be searched.", error)

def announceSuccessGettingText(lines: Vector[String]): Unit =
println(f"Successfully obtained ${lines.length}%,d lines of text to search.")

def announceMatchingLines(lines: String): Unit =
println(f"Found the word in the following ${lines.count(_ == '\n')}%,d lines of text: $lines")

Before we run the program,
here are its remaining methods

$ sbt "run joyous"
…
[info] running run joyous
Successfully obtained 99,975 lines of text to search.
Found the word in the following 4 lines of text:
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but'
[success] Total time: 4 s, completed 5 Nov 2023, 07:54:12

Let’s search for the word ‘joyous’

That took four seconds, with much of the time taken
up by downloading the book (between 1.5s and 2.5s).

Let’s see how long the program takes to execute if we increase the number of lines to be searched.

Once the getText function has downloaded the book and obtained its lines of text, it now makes as many copies of the lines as required.

Let’s make a thousand copies of the lines.

Since the book is about 100,000 lines long, we’ll now be searching about 1,000 x
100,000 lines, i.e about 100 million lines.

While it makes little sense to search multiple copies of the book, we are doing this
purely to set the scene for the subject of this slide deck.

@philip_schwarz

$ sbt "run joyous"
…
[info] running run joyous
Successfully obtained 99,975,000 lines of text to search.
Found the word in the following 4,000 lines of text:
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but'
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but'
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but’
…
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but’
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but'
[success] Total time: 66 s (01:06), completed 5 Nov 2023, 11:11:14

Searching through a thousand copies of the book takes a little bit over one minute.

When we searched one copy of the book, we found four matching lines, so it makes sense
that now that we are searching a thousand copies, we are finding 4,000 matching lines.

I ran the program four times, and its
execution times were 66s, 65s, 65s and 66s.

By the way, when I first tried to run the
program, I got some warnings suggesting
that I increase the heap space, so I added
the following to file .sbtopts: -J-Xmx5G

In this deck we are going to look at three ways of parallelising the program’s
search for matching lines, which is carried out by the following left fold

def find(word: String, lines: Vector[String]): String =
lines.foldLeft("")(accumulateLinesContaining(word))

def accumulateLinesContaining(word: String): (String, String) => String =
(acc, line) => if line.matches(s".*$word.*") then s"$acc\n'$line'" else acc

The fold is working its way sequentially through 100 million lines of text.

Instead of processing all of the lines sequentially, can we get the program to partition the
lines into a number of batches, search the batches in parallel, and then combine the results
of all the searches?

Trick question: will the foldLeft function automatically do that for us, behind the scenes, if
instead of invoking the function on a sequential collection, we first convert it to a parallel
collection?

I ask because, as you can see on the next slide, there is a Scala parallel collections library
that can be used to convert a sequential collection to a parallel one.

https://docs.scala-lang.org/overviews/parallel-collections/overview.html

https://github.com/scala/scala-parallel-collections

https://docs.scala-lang.org/overviews/parallel-collections/overview.html
https://github.com/scala/scala-parallel-collections

Let’s add the Scala parallel collections library to the build…

libraryDependencies += "org.scala-lang.modules" %% "scala-parallel-collections" % "1.0.4"

…and get the find function to convert the sequential collection of text lines to a parallel one…

$ sbt "run joyous"
…
[info] running run joyous
Successfully obtained 99,975,000 lines of text to search.
Found the word in the following 4,000 lines of text:
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but'
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but'
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but’
…
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but’
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but'
[success] Total time: 68 s (01:08), completed 5 Nov 2023, 16:44:21

Now let’s run the program again and see if converting the sequential collection of
lines into a parallel collection has any effect on the program’s execution time.

No difference: the execution time
is pretty much the same as before.

@philip_schwarz

Earlier, when I asked the following, I did mention that is was a trick question:

will the foldLeft function automatically do that for us, behind the scenes, if instead of invoking the function on a
sequential collection, we first convert it to a parallel collection?

To see why it is a trick question, consider the signature of the foldLeft function:

The fodLeft function cannot avoid processing a collection’s elements sequentially: even if it did break the collection of As
down into multiple smaller collections of As, and then sequentially folded (using the op function) each of those smaller
collections at the same time, in parallel, it would not know what to do with the resulting Bs, because it doesn’t have a
function that it can use to combine two B results, and so it is unable to combine all the B results into a single overall B result.

As we can see in the next slide, in EPFL’s Scala Parallel Programming course, Aleksandar Prokopec uses some really effective
Lego diagrams to help visualise the situation.

def foldLeft[B](z: B)(op: (B, A) => B): B

Even if foldLeft could break a collection of As down into
multiple smaller collections, and fold each of those
collections into a B, in parallel, it doesn’t have a function
for combining the resulting Bs into a single overall B.

Aleksandar Prokopec
 @alexprokopec

The Scala parallel collections library
does have a solution for this problem
though, and we’ll come back to it later.

Since converting the sequential vector of lines to a parallel collection doesn’t have any
effect, let’s revert our last change, and rename the main method to runWithoutParallelism.

As a recap, before moving on, the next slide
shows the whole code for the current program.

@philip_schwarz

@main def runWithoutParallelism(word: String): Unit =
getText(book = theBible, copies = 1_000)
.fold(
error => handleErrorGettingText(error),
lines =>
announceSuccessGettingText(lines)
val matches = find(word, lines)
announceMatchingLines(matches))

def getText(book: Book, copies: Int = 1): Try[Vector[String]] =
Using(Source.fromURL(book.url)): source =>
val lines = source.getLines.toVector
Vector.fill(copies)(lines).flatten

def find(word: String, lines: Vector[String]): String =
lines.foldLeft("")(accumulateLinesContaining(word))

def accumulateLinesContaining(word: String): (String, String) => String =
(acc, line) => if line.matches(s".*$word.*") then s"$acc\n'$line'" else acc

def handleErrorGettingText[A](error: Throwable): A =
throw IllegalStateException(s"Failed to obtain the text lines to be searched.", error)

def announceSuccessGettingText(lines: Vector[String]): Unit =
println(f"Successfully obtained ${lines.length}%,d lines of text to search.")

def announceMatchingLines(lines: String): Unit
println(f"Found the word in the following ${lines.count(_ == '\n')}%,d lines of text: $lines")

import java.net.URL
import scala.io.Source
import scala.util.{Try, Using}

val theBible = Book(
name = "The King James Version of the Bible",
numberOfLines = 99_975,
numberOfBytes = 4_456_041,
url = URL("https://gutenberg.org/cache/epub/10/pg10.txt")

)

case class Book(
name: String,
numberOfLines: Int,
numberOfBytes: Int,
url: URL

)

If we want to parallelise the left fold, but all we can use is Scala‘s standard library, how can we do it?

One way is to use the Future monad and its traverse function.

Let’s write a new main method called runUsingFutureTraverse. While its body is identical to that of runWithoutParallelism…

…the find function that it invokes cannot be the one invoked by runWithoutParallelism …

def find(word: String, lines: Vector[String]): String =
lines.foldLeft("")(accumulateLinesContaining(word))

…it needs to be rewritten, which we do on the next slide.

Here are some imports that we are going to need

import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.duration.Duration
import scala.concurrent.{Await, Future}

https://speakerdeck.com/philipschwarz/collections/sequence-and-traverse

If you could do with an introduction to the traverse function, one option you have is taking a look at part 1 of the collection shown below.

If you would like an introduction to the function in the context of Scala’s Future type, then part 2 will help with that.

https://speakerdeck.com/philipschwarz/collections/sequence-and-traverse

def find(word: String, lines: Vector[String]): String =
val batchSize = lines.size / (numberOfCores / 2)
val groupsOfLines = lines.grouped(batchSize).toVector
Await
.result(
Future.traverse(groupsOfLines)(searchFor(word))

.map(_.foldLeft("")(_++_)),
Duration.Inf

)

def find(word: String, lines: Vector[String]): String =
lines.foldLeft("")(accumulateLinesContaining(word))

def searchFor(word: String)(lines: Vector[String]): Future[String] =
Future(lines.foldLeft("")(accumulateLinesContaining(word)))

def accumulateLinesContaining(word: String): (String, String) => String =
(acc, line) => if line.matches(s".*$word.*") then s"$acc\n'$line'" else acc

We use the grouped function to break the collection of text lines
into multiple smaller collections, one for each of the number of CPU
cores that we want to use for parallelising the search.

We have decided to use half of the available cores for this purpose.

We then traverse the smaller collections of lines with a searchFor function that is
used to fold each collection, and which is essentially the find function that we have
been using up to now (on the right), except that it does the folding in a Future.

Compare the new find function (above on the left), with
the one which we have been using up to now (below).

traverse first creates a collection of futures, each of which does a left fold of the As in a
smaller collection, and then turns that collection inside out, i.e. it turns the collection of
future Bs into a future collection of Bs.

The futures execute in parallel, each one on a separate core, and when they complete,
each of them yields the result of the left fold of a smaller collection.

When the future collection returned by traverse completes, the find function has a
collection of Bs, which it then folds into a single overall B.

Now that the program partitions the collection of text lines into multiple smaller collections, and
folds each of those smaller collections on a separate core, let’s get the program to print on the
console the name of the thread that does the folding on each such core.

To do that, let’s first extend Future with the following method that turns a Future into a Future which,
the last thing it does as part of its execution, is print the thread name on which it is being executed

extension [A](fa: Future[A])
def printThreadName(): Future[A] =
for
a <- fa
_ = println(s"[${Thread.currentThread().getName}]")

yield a

Now all we have to do is invoke the new method.

That worked: the collection of lines was split into six smaller
collections which got folded in parallel, each in a separate thread,
with the names of the threads visible in the console output.

When the whole collection was processed sequentially, the
processing took a bit over one minute, but now that different
parts of the collection are being processed in parallel, the
processing took 25 seconds, almost a third of the time.

$ sbt "run joyous"
…
Multiple main classes detected. Select one to run:
[1] runUsingFutureTraverse
[2] runWithoutParallelism

Enter number: 1
[info] running runUsingFutureTraverse joyous
Successfully obtained 99,975,000 lines of text to search.
[scala-execution-context-global-167]
[scala-execution-context-global-169]
[scala-execution-context-global-170]
[scala-execution-context-global-165]
[scala-execution-context-global-168]
[scala-execution-context-global-166]
Found the word in the following 4,000 lines of text:
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but'
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but'
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but’
…
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but’
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but’
[success] Total time: 25 s, completed 12 Nov 2023, 11:56:55

Let’s run the new program and search for the word ‘joyous’ again.

I ran the program another three times, and
its execution times were 28s, 28s and 26s.

@philip_schwarz

That was the first of the three approaches that we
are going to explore for parallelising our left fold.

As a recap, before moving on, the next slide shows the
whole code for the new program.

New/changed code is highlighted with a yellow background.

def handleErrorGettingText[A](error: Throwable): A =
throw IllegalStateException(s"Failed to obtain the text lines to be searched.", error)

def announceSuccessGettingText(lines: Vector[String]): Unit =
println(f"Successfully obtained ${lines.length}%,d lines of text to search.")

def announceMatchingLines(lines: String): Unit
println(f"Found the word in the following ${lines.count(_ == '\n')}%,d lines of text: $lines")

def getText(book: Book, copies: Int = 1): Try[Vector[String]] =
Using(Source.fromURL(book.url)): source =>
val lines = source.getLines.toVector
Vector.fill(copies)(lines).flatten

def accumulateLinesContaining(word: String): (String, String) => String =
(acc, line) => if line.matches(s".*$word.*") then s"$acc\n'$line'" else acc

import java.net.URL
import scala.io.Source
import scala.util.{Try, Using}

val theBible = Book(
name = "The King James Version of the Bible",
numberOfLines = 99_975,
numberOfBytes = 4_456_041,
url = URL("https://gutenberg.org/cache/epub/10/pg10.txt")

)

case class Book(
name: String,
numberOfLines: Int,
numberOfBytes: Int,
url: URL

)

def find(word: String, lines: Vector[String]): String =
val batchSize = lines.size / (numberOfCores / 2)
val groupsOfLines = lines.grouped(batchSize).toVector
Await.result(
Future.traverse(groupsOfLines)(searchFor(word))

.map(_.foldLeft("")(_++_)),
Duration.Inf)

def searchFor(word: String)(lines: Vector[String]): Future[String] =
Future(lines.foldLeft("")(accumulateLinesContaining(word))).printThreadName() extension [A](fa: Future[A])

def printThreadName(): Future[A] =
for
a <- fa
_ = println(s"[${Thread.currentThread().getName}]")

yield a

import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.duration.Duration
import scala.concurrent.{Await, Future}

@main def runUsingFutureTraverse(word: String): Unit =
getText(book = theBible, copies = 1_000)
.fold(

error => handleErrorGettingText(error),
lines =>
announceSuccessGettingText(lines)
val matches = find(word, lines)
announceMatchingLines(matches))

val numberOfCores = Runtime.getRuntime().availableProcessors()

If we want to parallelise the left fold, and we are allowed to use external libraries, how can we do it?

One way is to do something similar to what we did using the Future monad and its traverse function, but using the Cats Effect IO
monad and Cats Core’s parTraverse function.

Because this approach is very similar to the previous one, I am going to explain it by revisiting the explanation of the latter, so if
you get a sense of déjà vu, that’s intentional, because I reckon it will make things easier to digest.

Let’s write a new method called runUsingCatsParTraverse. While its body is very similar to that of runWithoutParallelism…

…the find function that it invokes cannot be the one invoked by runWithoutParallelism …

def find(word: String, lines: Vector[String]): String =
lines.foldLeft("")(accumulateLinesContaining(word))

…it needs to be rewritten, which we’ll be doing next.

If you are familiar with Cats’ parTraverse then please skip the next two slides.

If you are not, there is an amazingly helpful, clear, detailed, and hands-on explanation of parMapN and
parTraverse (and much more) in Adam Rosien’s great book: Essential Effects.

While there is no substitute for reading Chapter 3, Parallel execution, the following two slides are my humble
attempt to capture some of the information imparted by that chapter, by cherry picking some of its sentences,
passages, and diagrams, and stitching them together in an order of my own devising, in the hope that it serves as
a very brief, high-level introduction to concepts that are fully explained in the book.

Adam Rosien
 @arosien

IO does not support parallel operations itself, because it is a Monad.

The Parallel typeclass specifies the translation between a pair of effect types: one that is a Monad and the other that is “only” an Applicative.

The Parallel typeclass encodes transformations between a sequential type S and a parallel type P.

Parallel[IO] connects the IO effect to its parallel counterpart, IO.Par.

parMapN is the parallel version of the applicative mapN method. It lets us combine multiple effects into one, in parallel, by specifying how to
combine the outputs of the effects

The parMapN extension method is implemented as (1) translating the sequential effect types into parallel representations, (2) performing the
alternative mapN, and (3) translating the parallel representation back to the sequential form.

Adam Rosien
 @arosien

Adam Rosien
 @arosien

3.5. parTraverse

parTraverse is the parallel version of traverse; both have the type signature:

F[A] => (A => G[B]) => G[F[B]]

For example, if F is List and G is IO, then (par)traverse would be a function from a List[A] to an IO[List[B]] when given a function A ⇒ IO[B].

List[A] => (A => IO[B]) => IO[List[B]]

The most common use case of (par)traverse is when you have a collection of work to be done, and a function which handles one unit of work.
Then you get a collection of results combined into one effect:

val work: List[WorkUnit] = ???
def doWork(workUnit: WorkUnit): IO[Result] = ??? ①
val results: IO[List[Result]] = work.parTraverse(doWork)

① Note that processing one unit of work is an effect, in this case, IO.

import cats.effect.{ExitCode, IO, IOApp}
import cats.syntax.foldable.*
import cats.syntax.parallel.*

and let’s import the following…

Let’s add Cats Core and Cats Effect to the build…

libraryDependencies += "org.typelevel" %% "cats-core" % "2.9.0"
libraryDependencies += "org.typelevel" %% "cats-effect" % "3.5.2"

def searchFor(word: String)(lines: Vector[String]): IO[String] =
IO(lines.foldLeft("")(accumulateLinesContaining(word)))

def find(word: String, lines: Vector[String]): String =
lines.foldLeft("")(accumulateLinesContaining(word))

def accumulateLinesContaining(word: String): (String, String) => String =
(acc, line) => if line.matches(s".*$word.*") then s"$acc\n'$line'" else acc

We use the grouped function to break the collection of text lines
into multiple smaller collections, one for each of the number of CPU
cores that we want to use for parallelising the search.

We have decided to use half of the available cores for this purpose.

We then parTaverse the smaller collections of lines with a searchFor function that
is used to fold each collection, and which is essentially the find function that we
have been using up to now (on the right), except that it does the folding in an IO.

Compare the new find function (above on the left), with
the one used by runWithoutParallelism (below).

parTaverse first creates a collection of IOs, each of which does a left fold of the As in a
smaller collection, and then turns that collection inside out, i.e. it turns the collection of
IOs of B into an IO of a collection of Bs.

The IOs execute in parallel, each one on a separate core, and when they complete, each of
them yields the result of the left fold of a smaller collection.

When the IO of a collection of Bs returned by parTaverse completes, the find function has
a collection of Bs, which it then folds into a single overall B.

def find(word: String, lines: Vector[String]): IO[String] =
val batchSize = lines.size / (numberOfCores / 2)
val groupsOfLines = lines.grouped(batchSize).toVector
groupsOfLines
.parTraverse(searchFor(word))
.map(_.combineAll)

Now that the program partitions the collection of text lines into multiple smaller collections, and folds each of
those smaller collections on a separate core, let’s get the program to print on the console the name of the thread
that does the folding on each such core.

To do that, let’s adapt the printThreadName extension method that we wrote earlier, so that it also works for IO

Now all we have to do is invoke the new method.

The next slide shows the whole code for the new program.

New/changed code is again highlighted with a yellow background.

@philip_schwarz

import cats.syntax.functor.*
extension [A, F[_]: Functor](fa: F[A])
def printThreadName(): F[A] =
for
a <- fa
_ = println(s"[${Thread.currentThread().getName}]")

yield a

def getText(book: Book, copies: Int = 1): Try[Vector[String]] =
Using(Source.fromURL(book.url)): source =>
val lines = source.getLines.toVector
Vector.fill(copies)(lines).flatten

def accumulateLinesContaining(word: String): (String, String) => String =
(acc, line) => if line.matches(s".*$word.*") then s"$acc\n'$line'" else acc

def handleErrorGettingText[A](error: Throwable): A =
throw IllegalStateException(s"Failed to obtain the text lines to be searched.", error)

def announceSuccessGettingText(lines: Vector[String]): Unit =
println(f"Successfully obtained ${lines.length}%,d lines of text to search.")

def announceMatchingLines(lines: String): Unit
println(f"Found the word in the following ${lines.count(_ == '\n')}%,d lines of text: $lines")

import java.net.URL
import scala.io.Source
import scala.util.{Try, Using}

val theBible = Book(
name = "The King James Version of the Bible",
numberOfLines = 99_975,
numberOfBytes = 4_456_041,
url = URL("https://gutenberg.org/cache/epub/10/pg10.txt")

)

case class Book(
name: String,
numberOfLines: Int,
numberOfBytes: Int,
url: URL

)

def find(word: String, lines: Vector[String]): String =
val batchSize = lines.size / (numberOfCores / 2)
val groupsOfLines = lines.grouped(batchSize).toVector
groupsOfLines
.parTraverse(searchFor(word))
.map(_.combineAll)

def searchFor(word: String)(lines: Vector[String]): IO[String] =
IO(lines.foldLeft("")(accumulateLinesContaining(word))).printThreadName()

import cats.effect.{ExitCode, IO, IOApp}
import cats.syntax.foldable.*
import cats.syntax.parallel.*

def runUsingCatsParTraverse(word: String): Unit =
getText(book = theBible, copies = 1_000)
.fold(

error => handleErrorGettingText(error),
lines =>
announceSuccessGettingText(lines)
val matches = find(word, lines)
announceMatchingLines(matches))

object CatsParTraverse extends IOApp:
override def run(args: List[String]): IO[ExitCode] =
val word = args.headOption.getOrElse("joyous")
runUsingCatsParTraverse(word).as(ExitCode.Success)

val numberOfCores = Runtime.getRuntime().availableProcessors()

Note the following similarities and differences between the code for the parallelisation
approach using Future + traverse and that for the approach using IO + parTraverse.

def find(word: String, lines: Vector[String]): String =
val batchSize = lines.size / (numberOfCores / 2)
val groupsOfLines = lines.grouped(batchSize).toVector
Await.result(
Future.traverse(groupsOfLines)(searchFor(word))

.map(_.foldLeft("")(_++_)),
Duration.Inf)

def searchFor(word: String)(lines: Vector[String]): Future[String] =
Future(lines.foldLeft("")(accumulateLinesContaining(word))).printThreadName()

@main def runUsingFutureTraverse(word: String): Unit =
getText(book = theBible, copies = 1_000)
.fold(
error => handleErrorGettingText(error),
lines =>
announceSuccessGettingText(lines)
val matches = find(word, lines)
announceMatchingLines(matches))

def find(word: String, lines: Vector[String]): String =
val batchSize = lines.size / (numberOfCores / 2)
val groupsOfLines = lines.grouped(batchSize).toVector
groupsOfLines
.parTraverse(searchFor(word))
.map(_.combineAll)

def searchFor(word: String)(lines: Vector[String]): IO[String] =
IO(lines.foldLeft("")(accumulateLinesContaining(word))).printThreadName()

def runUsingCatsParTraverse(word: String): Unit =
getText(book = theBible, copies = 1_000)
.fold(

error => handleErrorGettingText(error),
lines =>
announceSuccessGettingText(lines)
val matches = find(word, lines)
announceMatchingLines(matches))

That worked: the collection of lines was split into six smaller
collections which got folded in parallel, each in a separate thread,
with the names of the threads visible in the console output.

When the whole collection was processed sequentially, the
processing took a bit over one minute, but now that different
parts of the collection are being processed in parallel, the
processing took 28 seconds, almost a third of the time.

$ sbt "run joyous"
…
Multiple main classes detected. Select one to run:
[1] CatsParTraverse
[2] runUsingFutureTraverse
[3] runWithoutParallelism

Enter number: 1
[info] running CatsParTraverse joyous
Successfully obtained 99,975,000 lines of text to search.
[io-compute-3]
[io-compute-5]
[io-compute-11]
[io-compute-6]
[io-compute-10]
[io-compute-8]
Found the word in the following 4,000 lines of text:
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but'
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but'
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but’
…
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but’
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but’
[success] Total time: 28 s, completed 12 Nov 2023, 11:56:55

Let’s run the new program and search for the word ‘joyous’ again.

I ran the program another three times, and
its execution times were 30s, 37s and 28s.

That was the second of the three approaches that
we are going to explore for parallelising our left fold.

For our third and final approach to parallelising the left fold, let’s go back to using the scala parallel collections library.

What we are going to do is use the library’s aggregate function.

Let’s write a new method called runUsingParallelAggregation, whose body is identical to that of runWithoutParallelism.

The function first converts the sequential vector of lines to a parallel collection, and then invokes the aggregate function on the latter.

For an explanation of the aggregate function, on the next two slides we are going to turn to Aleksandar Prokopec’s book: Learning
Concurrent Programming in Scala.

On the first slide, as a recap, is his explanation of why foldLeft cannot be parallelised, and on the second slide, his explanation of how the
aggregate function allows a left fold to be parallelised.

We are also going to throw in his diagrams from EPFL’s Scala Parallel Programming course.

As for the find function that it invokes, here is how it needs to change

def find(word: String, lines: Vector[String]): String =
lines.par.aggregate("")(seqop = accumulateLinesContaining(word), combop = _++_)

Non-parallelizable operations

While most parallel collection operations achieve superior performance by executing on several processors, some operations are inherently
sequential, and their semantics do not allow them to execute in parallel. Consider the foldLeft method from the Scala collections API:

 def foldLeft[S](z: S)(f: (S, T) => S): S

This method visits elements of the collection going from left to right …

The crucial property of the foldLeft operation is that it traverses the elements of the list by going from left to right. This is reflected in the type
of the function f; it accepts an accumulator of type S and a list value of type T. The function f cannot take two values of the accumulator
type S and merge them into a new accumulator of type S. As a consequence, computing the accumulator cannot be implemented in parallel;
the foldLeft method cannot merge two accumulators from two different processors.
…

Aleksandar Prokopec
 @alexprokopec

To specify how the accumulators produced by different processors should be merged together, we need to use the aggregate method.

The aggregate method is similar to the foldLeft operation, but it does not specify that the elements are traversed from left to right. Instead, it
only specifies that subsets of elements are visited going from left to right; each of these subsets can produce a separate accumulator.
The aggregate method takes an additional function of type (S, S) => S, which is used to merge multiple accumulators.

 d.aggregate("")
 ((acc, line) => if (line.matches(".*TEXTAREA.*")) s"$acc\n$line" else acc,
 (acc1, acc2) => acc1 + acc2)

…

When doing these kinds of reduction operation in parallel, we can alternatively use the reduce or fold methods, which do not guarantee going
from left to right. The aggregate method is more expressive, as it allows the accumulator type to be different from the type of the elements in
the collection.
…

def aggregate[S](z: => S)(seqop: (S, T) => S, combop: (S, S) => S): S

Aleksandar Prokopec
 @alexprokopec

seqop seqop

combop

aggregate

$ sbt "run joyous"
…
Multiple main classes detected. Select one to run:
[1] CatsParTraverse
[2] runUsingFutureTraverse
[3] runUsingParallelAggregation
[4] runWithoutParallelism

Enter number: 3
[info] running runUsingParallelAggregation joyous
Successfully obtained 99,975,000 lines of text to search.
Found the word in the following 4,000 lines of text:
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but'
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but'
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but’
…
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but’
'stirs, a tumultuous city, joyous city: thy slain men are not slain'
'23:7 Is this your joyous city, whose antiquity is of ancient days? her'
'upon all the houses of joy in the joyous city: 32:14 Because the'
'12:11 Now no chastening for the present seemeth to be joyous, but’
[success] Total time: 24 s, completed 12 Nov 2023, 11:56:55

That worked: the collection of lines was split into six smaller
collections which got folded in parallel, each in a separate thread,
with the names of the threads visible in the console output.

When the whole collection was processed sequentially, the
processing took a bit over one minute, but now that different
parts of the collection are being processed in parallel, the
processing took 24 seconds, almost a third of the time.

Let’s run the new program and search for the word ‘joyous’ again.

I ran the program another three times, and
its execution times were 28s, 25s and 26s.

@philip_schwarz

@main def runUsingParallelAggregation(word: String): Unit =
getText(book = theBible, copies = 1_000)
.fold(
error => handleErrorGettingText(error),
lines =>
announceSuccessGettingText(lines)
val matches = find(word, lines)
announceMatchingLines(matches))

def getText(book: Book, copies: Int = 1): Try[Vector[String]] =
Using(Source.fromURL(book.url)): source =>
val lines = source.getLines.toVector
Vector.fill(copies)(lines).flatten

def find(word: String, lines: Vector[String]): String =
lines.par.aggregate("")(seqop = accumulateLinesContaining(word), combop = _++_)

def accumulateLinesContaining(word: String): (String, String) => String =
(acc, line) => if line.matches(s".*$word.*") then s"$acc\n'$line'" else acc

def handleErrorGettingText[A](error: Throwable): A =
throw IllegalStateException(s"Failed to obtain the text lines to be searched.", error)

def announceSuccessGettingText(lines: Vector[String]): Unit =
println(f"Successfully obtained ${lines.length}%,d lines of text to search.")

def announceMatchingLines(lines: String): Unit
println(f"Found the word in the following ${lines.count(_ == '\n')}%,d lines of text: $lines")

import java.net.URL
import scala.io.Source
import scala.util.{Try, Using}

val theBible = Book(
name = "The King James Version of the Bible",
numberOfLines = 99_975,
numberOfBytes = 4_456_041,
url = URL("https://gutenberg.org/cache/epub/10/pg10.txt")

)

case class Book(
name: String,
numberOfLines: Int,
numberOfBytes: Int,
url: URL

)

import scala.collection.parallel.CollectionConverters.*

That was the third and final of the three approaches
that we explored for parallelising our left fold.

In conclusion, the next slide compares and contrasts four versions of the
find function, the one in the original sequential code, and the ones in the
three different approaches to parallelisation that we have explored.

The slide after that is the same but without any highlighting

import scala.collection.parallel.CollectionConverters.*

def find(word: String, lines: Vector[String]): String =
lines.par.aggregate("")(seqop = accumulateLinesContaining(word), combop = _++_)

def find(word: String, lines: Vector[String]): String =
val batchSize = lines.size / (numberOfCores / 2)
val groupsOfLines = lines.grouped(batchSize).toVector
Await.result(

Future.traverse(groupsOfLines)(searchFor(word))
.map(_.foldLeft("")(_++_)),

Duration.Inf)

def searchFor(word: String)(lines: Vector[String]): Future[String] =
Future(lines.foldLeft("")(accumulateLinesContaining(word)))

def find(word: String, lines: Vector[String]): IO[String] =
val batchSize = lines.size / (numberOfCores / 2)
val groupsOfLines = lines.grouped(batchSize).toVector
groupsOfLines

.parTraverse(searchFor(word))

.map(_.combineAll)

def searchFor(word: String)(lines: Vector[String]): IO[String] =
IO(lines.foldLeft("")(accumulateLinesContaining(word)))

Future
.traverse

.par.aggregate

Parallel
.parTraverse

def find(word: String, lines: Vector[String]): String =
lines.foldLeft("")(accumulateLinesContaining(word))No Parallelism

Cats EffectCats

+

Parallel
Collections

Library

Standard
Library

import scala.collection.parallel.CollectionConverters.*

def find(word: String, lines: Vector[String]): String =
lines.par.aggregate("")(seqop = accumulateLinesContaining(word), combop = _++_)

def find(word: String, lines: Vector[String]): String =
val batchSize = lines.size / (numberOfCores / 2)
val groupsOfLines = lines.grouped(batchSize).toVector
Await.result(

Future.traverse(groupsOfLines)(searchFor(word))
.map(_.foldLeft("")(_++_)),

Duration.Inf)

def searchFor(word: String)(lines: Vector[String]): Future[String] =
Future(lines.foldLeft("")(accumulateLinesContaining(word)))

def find(word: String, lines: Vector[String]): IO[String] =
val batchSize = lines.size / (numberOfCores / 2)
val groupsOfLines = lines.grouped(batchSize).toVector
groupsOfLines

.parTraverse(searchFor(word))

.map(_.combineAll)

def searchFor(word: String)(lines: Vector[String]): IO[String] =
IO(lines.foldLeft("")(accumulateLinesContaining(word)))

Future
.traverse

.par.aggregate

Parallel
.parTraverse

def find(word: String, lines: Vector[String]): String =
lines.foldLeft("")(accumulateLinesContaining(word))No Parallelism

Cats EffectCats

+

Parallel
Collections

Library

Standard
Library

Future
.traverse

III
𝐏𝐚𝐫𝐚𝐥𝐥𝐞𝐥𝐢𝐬𝐚𝐭𝐢𝐨𝐧
Approaches

Parallel
Collections

Library

Cats EffectCats

+

Standard
Library

That’s all.

I hope you found it useful.

If you ejoyed it, you can find more like it at http://fpilluminated.com/
@philip_schwarz

http://fpilluminated.com/

