
MONAD FACT #4

@philip_schwarzslides by

https://www.slideshare.net/pjschwarz

a monad is an implementation of one of the minimal sets of monadic combinators,
satisfying the laws of associativity and identity

see how compositional responsibilities are distributed in each combinator set

https://www.slideshare.net/pjschwarz/natural-transformations

We’ve seen three minimal sets of primitive Monad combinators, and instances of Monad will
have to provide implementations of one of these sets:

• unit and flatMap
• unit and compose
• unit, map, and join

And we know that there are two monad laws to be satisfied, associativity and identity, that can be
formulated in various ways. So we can state plainly what a monad is:

A monad is an implementation of one of the minimal sets of monadic combinators,
satisfying the laws of associativity and identity.

That’s a perfectly respectable, precise, and terse definition. And if we’re being precise, this is the
only correct definition. A monad is precisely defined by its operations and laws; no more, no less.

Runar Bjarnason
@runarorama

Paul Chiusano
@pchiusano

Functional Programming in Scala
by Paul Chiusano and Runar Bjarnason

One of the minimal sets of primitive Monad combinators seen on the previous slide consists of
a unit function and a compose function.

The compose function in question is Kleisli composition.

If you need an introduction to Kleisli composition then see MONAD FACT #2.

If you need an introduction to the unit function then see MONAD FACT #1.

Another set of combinators includes the join function. In Scala this function is known as flatten.

@philip_schwarz

Let’s take the simplest monad, i.e. the identity monad, which does nothing, and let’s define it in terms of Kleisli composition and unit.

The Id monad wraps a value of some type A

Id also acts as the unit function. i.e. to lift the value 3 into the Id monad we use Id(3).

case class Id[A](value: A)

Now we have to come up with a body for the Kleisli composition function (shown below as the infix fish operator >=>):

The body must be a function of type A => Id[C]

a => ???

The only way we can get an Id[C] is by calling g, which takes a B as a parameter. But all we have to work with are the a parameter,
which is of type A, and function f. But that is fine because if we call f with a we get an Id[B] and if we then ask the latter for the B
value that it wraps, we have the B that we need to invoke g.

a => g(f(a).value)

And here is a simple test for the functionSo here is how we define Kleisli composition

implicit class IdFunctionOps[A,B](f: A => Id[B]) {
def >=>[C](g: B => Id[C]): A => Id[C] = ???

}

implicit class IdFunctionOps[A,B](f: A => Id[B]) {
def >=>[C](g: B => Id[C]): A => Id[C] =

a => g(f(a).value)
}

val double: Int => Id[Int] = n => Id(n * 2)
val square: Int => Id[Int] = n => Id(n * n)
assert((double >=> square)(3) == Id(36))

Here is a simple test for join

Here is a test for our map function
So yes, we have defined the identity monad in terms of Kleisli
composition and unit.

But we want to be able to use the monad in a for comprehension, so
we now have to define a flatMap function and a map function. The
flatMap function can be defined in terms of Kleisli composition:

and map can then be defined in terms of flatMap:

case class Id[A](value: A)

object Id {

implicit class IdFunctionOps[A,B](f: A => Id[B]) {
def >=>[C](g: B => Id[C]): A => Id[C] =

a => g(f(a).value)
}

}

case class Id[A](value: A) {

def flatMap[B](f: A => Id[B]): Id[B] =
(((_:Unit) => this) >=> f)(())

}

case class Id[A](value: A) {

def flatMap[B](f: A => Id[B]): Id[B] =
(((_:Unit) => this) >=> f)(())

def map[B](f: A => B): Id[B] =
this flatMap { a => Id(f(a)) }

}

val increment: Int => Int = n => n + 1
assert((Id(3) map increment) == Id(4))

And here is a test for both our map and
flatMap functions
val result =

for {
six <- double(3)
thirtySix <- square(six)

} yield six + thirtySix
assert(result == Id(42))

We can also define join (aka flatten) in terms of
the flatMap function

def join[A](mma: Id[Id[A]]): Id[A] =
mma flatMap identity

assert(join(Id(Id(3))) == Id(3))

Here is the whole code for the identity monad

In this slide deck we are going to compare the identity monad with the Option monad and the List monad.

How do the functions of the above identity monad, which is defined in terms of Kleisli composition, relate
to the equivalent Option monad functions?

See the next slide for the differences.

case class Id[A](value: A) {

def flatMap[B](f: A => Id[B]): Id[B] =
(((_:Unit) => this) >=> f)(())

def map[B](f: A => B): Id[B] =
this flatMap { a => Id(f(a)) }

}

object Id {

implicit class IdFunctionOps[A,B](f: A => Id[B]) {
def >=>[C](g: B => Id[C]): A => Id[C] =

a => g(f(a).value)
}

def join[A](mma: Id[Id[A]]): Id[A] =
mma flatMap identity

}

val double: Int => Id[Int] = n => Id(n * 2)
val square: Int => Id[Int] = n => Id(n * n)

assert((double >=> square)(3) == Id(36))

val increment: Int => Int = n => n + 1

assert((Id(3) map increment) == Id(4))

assert(join(Id(Id(3))) == Id(3))

val result =
for {

six <- double(3)
thirtySix <- square(six)

} yield six + thirtySix

assert(result == Id(42))

First of all we see that apart from the obvious swapping of Id for Option in their signatures, the flatMap and join functions of
the two monads are identical.

The only difference between the map functions of the two monads are the unit functions that they use: one uses Id and the other
uses Some.

So the only real difference between the two monads is the logic in the fish operator. That makes sense, since the monads are
defined in terms of unit and Kleisli composition, and since unit is a very simple function.

@philip_schwarz

The same is true of the differences between the functions of the Id monad and those of the List monad: the differences are in
the fish operator;

The apparent additional difference between the map functions is only due to the fact that we are using Cons(x,Nil) as a unit
function rather List(x), i.e. some singleton list constructor that we could define.

Let’s now turn to the function that differentiates the monads, i.e. Kleisli composition (the fish operator)

The composite function that it returns (the composition of f and g) has the following responsibilities (let’s call them
compositional responsibilities):

1) use f to compute a first value wrapped in a functional effect
2) dig underneath the wrapper to access the first value, discarding the wrapper
3) Use g to compute, using the first value, a second value also wrapped in a functional effect
4) return a third value wrapped in a functional effect that represents the composition (combination) of the first two

functional effects

As a slight variation on that, we can replace ‘wrapped in’ with ‘in the context of’

1) use f to compute a first value in the context of a functional effect
2) dig inside the context to access the first value, discarding the context
3) Use g to compute, using the first value, a second value also in the context of a functional effect
4) return a third value in the context of a functional effect that represents the composition (combination) of the first two

functional effects

implicit class IdFunctionOps[A,B](f: A => Id[B]) {
def >=>[C](g: B => Id[C]): A => Id[C] =

a => ???
}

Here are the Kleisli composition functions of the three monads (their fish operators).

Notice how different they are. The one in the identity monad seems to do almost nothing, the one in the Option monad seems to do a bit more
work, and the one in the List monad does quite a bit more.

See the next slide for some test code for the Option monad and the List monad.

object Option {

implicit class OptionFunctionOps[A, B](f: A => Option[B]) {
def >=>[C](g: B => Option[C]): A => Option[C] =

a => f(a) match {
case Some(b) => g(b)
case None => None

}
}

}

object Id {

implicit class IdFunctionOps[A,B](f: A => Id[B]) {
def >=>[C](g: B => Id[C]): A => Id[C] =

a => g(f(a).value)
}

}

sealed trait List[+A] {

def foldRight[B](b: B, f: (A,B) => B): B =
this match {

case Nil => b
case Cons(a, tail) =>

f(a, tail.foldRight(zero, f))
}

}

object List {

implicit class ListFunctionOps[A,B](f: A => List[B]) {
def >=>[C](g: B => List[C]): A => List[C] =

a => f(a).foldRight(Nil,
(b:B, cs:List[C]) => concatenate(g(b), cs))

}

def concatenate[A](left: List[A], right: List[A]): List[A] =
left match {

case Nil => right
case Cons(head, tail) => Cons(head, concatenate(tail, right))

}
}

// Tests for Option monad

assert(join(Some(Some(3))) == Some(3))

val increment: Int => Int = n => n + 1

assert((Some(3) map increment) == Some(4))

val double: Int => Option[Int] =
n => if (n % 2 == 1) Some(n * 2) else None

val square: Int => Option[Int] =
n => if (n < 100) Some(n * n) else None

assert((double >=> square)(3) == Some(36))

val result =
for {

six <- double(3)
thirtySix <- square(six)

} yield six + thirtySix

assert(result == Some(42))

// Tests for List monad

assert(join(Cons(
Cons(1, Cons(2, Nil)),
Cons(

Cons(3, Cons(4, Nil)),
Nil))

) == Cons(1, Cons(2, Cons(3, Cons(4, Nil)))))

val increment: Int => Int = n => n + 1

assert((Cons(1, Cons(2, Cons(3, Cons(4, Nil)))) map increment)
== Cons(2, Cons(3, Cons(4, Cons(5, Nil)))))

val double: Int => List[Int] = n => Cons(n, Cons(n * 2, Nil))
val square: Int => List[Int] = n => Cons(n, Cons(n * n, Nil))

assert((double >=> square)(3) == Cons(3,Cons(9,Cons(6,Cons(36, Nil)))))

val result =
for {

x <- double(3)
y <- square(x)

} yield Cons(x, Cons(y, Nil))

assert(result == Cons(
Cons(3,Cons(3,Nil)),
Cons(

Cons(3,Cons(9,Nil)),
Cons(

Cons(6,Cons(6,Nil)),
Cons(

Cons(6,Cons(36,Nil)),
Nil)))))

Next, we are going to look at the Kleisli composition functions of Id, Option
and List to see how each of them discharges its compositional responsibilities.

@philip_schwarz

In the special case of the Identity monad, which does nothing, the compositional responsibilities are discharged in a degenerate and
curious way:

1) use f to compute a first value wrapped in a functional effect

just call f
f(a)

2) dig underneath the wrapper to access the first value, discarding the wrapper

digging under the wrapper simply amounts to asking the resulting Id[B] for the B that it is wrapping
f(a).value

3) use g to compute, using the first value, a second value also wrapped in a functional effect

just call g with the first value
g(f(a).value)

4) return a third value wrapped in a functional effect that represents the composition (combination) of the first two functional effects

because the effect of the Id monad is nonexistent, there simply is nothing to combine, so just return the second value
g(f(a).value)

implicit class IdFunctionOps[A,B](f: A => Id[B]) {
def >=>[C](g: B => Id[C]): A => Id[C] =

a => g(f(a).value)
}

Next, let’s look at how the compositional responsibilities are discharged in the Option monad:

1) use f to compute a first value wrapped in a functional effect

just call f
f(a)

2) dig underneath the wrapper to access the first value, discarding the wrapper

digging under the wrapper and discarding it is done by pattern matching, destructuring Option[B] to get the wrapped B value
Some(b)

3) use g to compute, using the first value, a second value also wrapped in a functional effect

just call g with the first value
g(b)

4) return a third value wrapped in a functional effect that represents the composition (combination) of the first two functional effects

If the 1st effect is that a value is defined then the 3rd value is just the 2nd value and composition of the 1st effect with the 2nd effect is
just the 2nd effect
case Some(b) => g(b)
If the 1st effect is that no value is defined then there is no 3rd value as the composition of the 1st and 2nd effects is just the 1st effect
case None => None

implicit class OptionFunctionOps[A, B](f: A => Option[B]) {
def >=>[C](g: B => Option[C]): A => Option[C] =

a => f(a) match {
case Some(b) => g(b)
case None => None

}
}

Let’s now look at how the compositional responsibilities are discharged in the List monad:

1) use f to compute a first value wrapped in a functional effect

just call f – the first value consists of the B items in the resulting List[B]
f(a)

2) dig underneath the wrapper to access the first value, discarding the wrapper

digging under the wrapper and discarding it is done by foldRight, which calls its callback function with each B item in the first value
f(a).foldRight(Nil, (b:B, cs:List[C]) => concatenate(g(b), cs))

3) use g to compute, using the first value, a second value also wrapped in a functional effect

callback function g is called with each B item in the first value, so the second value consists of all List[C] results returned by g
(b:B, …) => …(g(b), …))

4) return a third value wrapped in a functional effect that represents the composition (combination) of the first two functional effects

If the 1st effect is that there are no B items then there are no 2nd and 3rd values and the composition of 1st and 2nd effect is also that
there are no items
f(a) is Nil so f(a).foldright(…) is also Nil

otherwise the 1st effect is the multiplicity of items in the 1st value, the 2nd effect is the multiplicity of items in the 2nd value, the 3rd

value is the concatenation of all the List[C] results returned by g, and the composition of the 1st and 2nd effects is the multiplicity
of items in the concatenation
f(a).foldRight(Nil, (b:B, cs:List[C]) => concatenate(g(b), cs))

implicit class ListFunctionOps[A,B](f: A => List[B]) {
def >=>[C](g: B => List[C]): A => List[C] =

a => f(a).foldRight(Nil, (b:B, cs:List[C]) => concatenate(g(b), cs))
}

def foldRight[B](b: B,
f:(A, B) => B): B =

this match {
case Nil => b
case Cons(a, tail) =>
f(a, tail.foldRight(b, f))

}

def concatenate[A](left: List[A],
right: List[A]): List[A] =

left match {
case Nil =>
right

case Cons(head, tail) =>
Cons(head, concatenate(tail, right))

}

What we have done so far is take three monads and define them in terms of Kleisli composition and unit.

In the next three slides we are going to refactor the three monads so that they are defined in terms of
flatMap and unit and see how the compositional responsibilities get redistributed.@philip_schwarz

COMPOSITIONAL RESPONSIBILITY
1. use f to compute a first value wrapped in a functional effect
2. dig underneath the wrapper to access the first value, discarding the wrapper
3. use g to compute, using the first value, a second value also wrapped in a functional effect
4. return a third value wrapped in a functional effect that represents the composition (combination) of the first two functional effects

LOCATION CHANGE
remains in >=>
moves from >=> to flatMap
moves from >=> to flatMap
moves from >=> to flatMap

Id monad defined in terms of Kleisli composition and unit Id monad defined in terms of flatMap and unit

dig underneath wrapper

invoke 2nd function

discard wrapper

invoke 1st function

compose effects

dig underneath wrapper

invoke 2nd function

discard wrapper

compose effects

invoke 1st function

Option monad defined in terms of Kleisli composition and unit Option monad defined in terms of flatMap and unit

dig underneath wrapper

invoke 2nd function

discard wrapper

invoke 1st function

compose effects

dig underneath wrapper

invoke 2nd function discard wrapper

invoke 1st function

compose effects

List monad defined in terms of Kleisli composition and unit List monad defined in terms of flatMap and unit

invoke 2nd function

invoke 1st function dig underneath wrapper discard wrappercompose effects

dig underneath wrapper

invoke 2nd function

discard wrapper

invoke 1st function

compose effects

And finally, we are going to refactor the three monads so that they are defined in terms of map,
join and unit and again see how the compositional responsibilities get redistributed.

@philip_schwarz

COMPOSITIONAL RESPONSIBILITY
1. use f to compute a first value wrapped in a functional effect
2. dig underneath the wrapper to access the first value, discarding the wrapper
3. use g to compute, using the first value, a second value also wrapped in a functional effect
4. return a third value wrapped in a functional effect that represents the composition (combination) of the first two functional effects

LOCATION CHANGE
remains in >=>
moves from flatMap to map/join
moves from flatMap to map
moves from flatMap to join

Id monad defined in terms of flatMap and unit Id monad defined in terms of map, join and unit

dig underneath wrapper

invoke 2nd function

discard wrapper

compose effects

invoke 1st function

discard wrapper

compose effects

invoke 2nd function

invoke 1st function

dig underneath wrapper

Option monad defined in terms of flatMap and unit Option monad defined in terms of map, join and unit

c

discard wrapper

compose effects

dig underneath wrapper

invoke 2nd function

discard wrapper

compose effects

invoke 1st function

invoke 2nd function

dig underneath wrapper

invoke 1st function

c

List monad defined in terms of flatMap and unit List monad defined in terms of map, join and unit

dig underneath wrapper

invoke 2nd function

discard wrapper

compose effects

invoke 1st function

invoke 2nd function

dig underneath wrapper

invoke 1st function discard wrapper

compose effects

See the following slide deck for
the list of all available decks in
the MONAD FACT series

https://www.slideshare.net/pjschwarz

https://www.slideshare.net/pjschwarz/natural-transformations

