MONAD FACT

a **monad** is an implementation of one of the **minimal** sets satisfying the laws of **associativity** an

Runar Bjarnason @runarorama

We've seen three **minimal sets** of primitive **Monad combinators**, and instances of **Monad** will have to provide implementations of one of these sets:

- **unit** and **flatMap**
- **unit** and **compose**
- **unit**, **map**, and **join**

And we know that there are two **monad laws** to be satisfied, **associativity** and **identity**, that can be formulated in various ways. **So we can state plainly what a monad is**:

A **monad** is an implementation of one of the **minimal sets** of **monadic combinators**, satisfying the laws of **associativity** and **identity**.

That's a perfectly respectable, precise, and terse definition. And **if we're being precise, this is the only correct definition**. A monad is precisely defined by its operations and laws; no more, no less.

Functional Programming in Scala by **Paul Chiusano** and **Runar Bjarnason**

Paul Chiusano

@pchiusano

@philip_schwarz

One of the **minimal sets of primitive Monad combinators** seen on the previous slide consists of a **unit** function and a **compose** function.

The **compose** function in question is **Kleisli composition**.

If you need an introduction to **Kleisli composition** then see MONAD FACT #2.

If you need an introduction to the **unit** function then see MONAD FACT #1.

Another set of **combinators** includes the **join** function. In **Scala** this function is known as **flatten**.

Let's take **the simplest monad**, i.e. the **identity monad**, which **does nothing**, and **let's define it in terms of Kleisli composition and unit**.

The **Id monad wraps** a value of some type A

case class Id[A**](value**: A**)**

Id also acts as the **unit** function. i.e. to **lift** the value **3** into the **Id** monad we use **Id**(**3**).


```
Now we have to come up with a body for the Kleisli composition function (shown below as the infix fish operator >=>):
```

```
implicit class IdFunctionOps[A,B](f: A => Id[B]) {
 def >=>[C](g: B => Id[C]): A => Id[C] = ???
}
```


The body must be a function of type $A \Rightarrow Id[C]$

```
a => ???
```
}

The only way we can get an **Id[**C**]** is by calling **g**, which takes a B as a parameter. But all we have to work with are the **a** parameter, which is of type A, and function **f**. But that is fine because if we call **f** with **a** we get an **Id[**B**]** and if we then ask the latter for the B value that it **wraps**, we have the B that we need to invoke **g**.

 $a \Rightarrow g(f(a)).$ **value**)


```
implicit class IdFunctionOps[A,B](f: A => Id[B]) {
 def >=>[C](g: B => Id[C]): A => Id[C] = 
    a => g(f(a).value)
```


So here is how we define **Kleisli composition South And here is a simple test for the function**

val double: Int => $Id[Int] = n$ => $Id(n * 2)$ **val** square: Int => $Id[Int] = n$ => $Id(n * n)$ assert**((**double **>=>** square**)(**3**)** == **Id(**36**))**

So yes, we have defined the **identity monad** in terms of **Kleisli composition** and **unit**.

```
case class Id[A](value: A)
```

```
object Id {
```

```
implicit class IdFunctionOps[A,B](f: A => Id[B]) {
    def >=[C](g: B \Rightarrow Id[C]) : A \Rightarrow Id[C] =a => g(f(a).value)
  }
```
But we want to be able to use the **monad** in a **for comprehension**, so we now have to define a **flatMap** function and a **map** function. The **flatMap** function can be defined in terms of **Kleisli composition**:

```
case class Id[A](value: A) {
  def flatMap[B](f: A => Id[B]): Id[B] =
    (((_:Unit) => this) >=> f)(())
```
}

}

}

and **map** can then be defined in terms of **flatMap**:

```
case class Id[A](value: A) {
```

```
def flatMap[B](f: A => Id[B]): Id[B] =
  (((_:Unit) => this) >=> f)(())
```

```
def map[B](f: A => B): Id[B] =
  this flatMap \{ a => \text{Id}(f(a)) \}
```


Here is a test for our **map** function

```
val increment: Int => Int = n = n + 1\text{assert}(\text{Id}(3) \text{ map } \text{increment}) == \text{Id}(4)
```


And here is a test for both our **map** and **flatMap** functions

```
val result =
 for {
   six <- double(3)
   thirtySix <- square(six)
 } yield six + thirtySix
assert(result == Id(42))
```


We can also define **join** (aka **flatten**) in terms of the **flatMap** function

def join[A**](**mma: **Id[Id[**A**]])**: **Id[**A**]** = mma **flatMap identity**

Here is a simple test for **join**

assert(join(Id(Id(3**)))** == **Id(**3**))**


```
case class Id[A](value: A) {
```

```
def flatMap[B](f: A => Id[B]): Id[B] =
  (((_:Unit) => this) >=> f)(())
def map[B](f: A => B): Id[B] =
```

```
this flatMap \{ a = > Id(f(a)) \}
```

```
object Id {
```
}

}

```
implicit class IdFunctionOps[A,B](f: A => Id[B]) {
  def > \geq [C](g: B \Rightarrow Id[C]): A \Rightarrow Id[C] =a => g(f(a).value)
}
```

```
def join[A](mma: Id[Id[A]]): Id[A] =
 mma flatMap identity
```

```
val double: Int => Id[Int] = n => Id(n * 2)val square: Int => Id[Int] = n => Id(n * n)assert( (double >=> square)(3) == Id(36))
val increment: Int => Int = n => n + 1\text{assert}(\text{Id}(3) \text{map} \text{increment}) = \text{Id}(4)assert( join(Id(Id(3))) == Id(3) )
val result =
  for {
    six <- double(3)
    thirtySix <- square(six)
  } yield six + thirtySix
assert(result == Id(42))
```


In this slide deck we are going to compare the **identity monad** with the **Option monad** and the **List monad**.

How do the functions of the above **identity monad**, which is defined in terms of **Kleisli composition**, relate to the equivalent **Option monad** functions?

See the next slide for the differences.

First of all we see that apart from the obvious swapping of **Id** for **Option** in their signatures, the **flatMap** and **join** functions of the two **monads** are identical.

The only difference between the **map** functions of the two **monads** are the **unit** functions that they use: one uses **Id** and the other uses **Some**.

So **the only real difference between the two monads is the logic in the fish operator**. That makes sense, since the **monads** are defined in terms of **unit** and **Kleisli composition**, and since **unit** is a very simple function.

The same is true of the differences between the functions of the **Id monad** and those of the **List monad**: the differences are in the **fish operator**;

The apparent additional difference between the **map** functions is only due to the fact that we are using **Cons**(x,**Nil**) as a **unit** function rather **List**(x), i.e. some singleton list constructor that we could define.

Let's now turn to the function that differentiates the **monads**, i.e. **Kleisli composition** (the **fish operator**)

```
implicit class IdFunctionOps[A,B](f: A => Id[B]) {
 def >=>[C](g: B => Id[C]): A => Id[C] =a => ???
}
```
The **composite function** that it returns (the **composition** of **f** and **g**) has the following **responsibilities** (let's call them **compositional responsibilities**):

- 1) use **f** to compute a **first value wrapped** in a **functional effect**
- 2) dig underneath the **wrapper** to access the **first value**, discarding the **wrapper**
- 3) Use **g** to compute, using the **first value**, a **second value** also **wrapped** in a **functional effect**
- 4) return a **third value wrapped** in a **functional effect** that represents the **composition** (**combination**) of the **first two functional effects**

As a slight variation on that, we can replace '**wrapped** in' with 'in the **context** of'

- 1) use **f** to compute a **first value** in the **context** of a **functional effect**
- 2) dig inside the **context** to access the **first value**, discarding the **context**
- 3) Use **g** to compute, using the **first value**, a **second value** also in the **context** of a **functional effect**
- 4) return a **third value** in the **context** of a **functional effect** that represents the **composition** (**combination**) of the **first two functional effects**

Here are the **Kleisli composition** functions of the three **monads** (their **fish operators**).

Notice how different they are. The one in the **identity monad** seems to do almost nothing, the one in the **Option monad** seems to do a bit more work, and the one in the **List monad** does quite a bit more.

See the next slide for some test code for the **Option monad** and the **List monad**.

```
object Option {
   implicit class OptionFunctionOps[A, B](f: A => Option[B]) {
     def >=>[C](g: B => Option[C]): A => Option[C] =
       a => f(a) match {
         case Some(b) \Rightarrow g(b)
         case None => None
       }
   }
 }
 object Id {
   implicit class IdFunctionOps[A,B](f: A => Id[B]) {
     def >=>[C](g: B => Id[C]): A => Id[C] =
       a => g(f(a).value)
   }
 }
                                                                      sealed trait List[+A] {
                                                                        def foldRight[B](b: B, f: (A,B) => B): B =
                                                                          this match {
                                                                            case Nil => b
                                                                            case Cons(a, tail) =>
                                                                              f(a, tail.foldRight(zero, f))
                                                                          }
                                                                      }
                                                                      object List {
                                                                        implicit class ListFunctionOps[A,B](f: A => List[B]) {
                                                                          def >=>[C](g: B => List[C]): A => List[C] =
                                                                            a => f(a).foldRight(Nil, 
                                                                                                (b:B, cs:List[C]) => concatenate(g(b), cs))
                                                                        }
                                                                        def concatenate[A](left: List[A], right: List[A]): List[A] =
                                                                          left match {
                                                                            case Nil => right
                                                                            case Cons(head, tail) => Cons(head, concatenate(tail, right))
                                                                          }
                                                                      }
```

```
// Tests for Option monad
assert( join(Some(Some(3))) == Some(3) )
val increment: Int => Int = n = n + 1assert( (Some(3) map increment) == Some(4) )
val double: Int => Option[Int] =
 n => if (n % 2 == 1) Some(n * 2) else None
val square: Int => Option[Int] =
 n => if (n < 100) Some(n * n) else None
assert( (double >=> square)(3) == Some(36))
val result =
 for {
   six <- double(3)
   thirtySix <- square(six)
 } yield six + thirtySix
assert(result == Some(42))
```

```
// Tests for List monad
assert( join(Cons(
               Cons(1, Cons(2, Nil)),
               Cons(
                 Cons(3, Cons(4, Nil)),
                Nil))
        ) == Cons(1, Cons(2, Cons(3, Cons(4, Nil))) ) )
val increment: Int => Int = n = n + 1assert( (Cons(1, Cons(2, Cons(3, Cons(4, Nil))) ) map increment)
        == Cons(2, Cons(3, Cons(4, Cons(5, Nil))) ) )
val double: Int => List[Int] = n => Cons(n, Cons(n * 2, Nil))val square: Int => List[Int] = n => Cons(n, Cons(n * n, Nil))assert( (double >=> square)(3) == Cons(3,Cons(9,Cons(6,Cons(36, Nil)))))
val result =
  for {
   x <- double(3)
    y <- square(x)
  } yield Cons(x, Cons(y, Nil))
assert(result == Cons(
                   Cons(3,Cons(3,Nil)),
                   Cons(
                     Cons(3,Cons(9,Nil)),
                     Cons(
                       Cons(6,Cons(6,Nil)),
                       Cons(
                         Cons(6,Cons(36,Nil)),
                         Nil)))))
```


Next, we are going to look at the **Kleisli composition** functions of **Id**, **Option** and **List** to see how each of them discharges its **compositional responsibilities**.

@philip_schwarz

In the special case of the **Identity monad**, which does nothing, the **compositional responsibilities** are discharged in a degenerate and curious way:

```
implicit class IdFunctionOps[A,B](f: A => Id[B]) {
   \text{def } \text{>=}\text{>=}\text{[C]}(g: B \text{ =}> \text{Id}[C]): A \text{ =}> \text{Id}[C] =a \Rightarrow g(f(a).value)}
```


1) use **f** to compute a **first value wrapped** in a **functional effect**

```
just call f
f(a)
```
2) dig underneath the **wrapper** to access the **first value**, discarding the **wrapper**

digging under the wrapper simply amounts to asking the resulting **Id[**B**]** for the B that it is wrapping f(a).**value**

3) use **g** to compute, using the **first value**, a **second value** also **wrapped** in a **functional effect**

```
just call g with the first value
g(f(a).value)
```
4) return a **third value wrapped** in a **functional effect** that represents the **composition** (**combination**) of the **first two functional effects**

because the effect of the **Id monad** is nonexistent, there simply is nothing to combine, so just return the **second value** g(f(a).**value**)

```
Next, let's look at how the compositional responsibilities are discharged in the Option monad:
```

```
implicit class OptionFunctionOps[A, B](f: A => Option[B]) {
  def >=>[C](g: B => Option[C]): A => Option[C] =
    a => f(a) match {
      case Some(b) \Rightarrow g(b)
      case None => None
    }
```
1) use **f** to compute a **first value wrapped** in a **functional effect**

```
just call f
f(a)
```
}

2) dig underneath the **wrapper** to access the **first value**, discarding the **wrapper**

digging under the **wrapper** and discarding it is done by pattern matching, destructuring **Option[**B**]** to get the **wrapped** B value **Some(**b**)**

3) use **g** to compute, using the **first value**, a **second value** also **wrapped** in a **functional effect**

```
just call g with the first value
g(b)
```
4) return a **third value wrapped** in a **functional effect** that represents the **composition** (**combination**) of the **first two functional effects**

If the 1st effect is that a value is defined then the 3rd value is just the 2nd value and composition of the 1st effect with the 2nd effect is just the **2nd effect case Some(**b**)** => g**(**b**)** If the 1st effect is that no value is defined then there is no 3rd value as the composition of the 1st and 2nd effects is just the 1st effect

case None => **None**


```
Let's now look at how the compositional responsibilities are discharged in the List monad:
1) use f to compute a first value wrapped in a functional effect 
     just call f – the first value consists of the B items in the resulting List[B]
     f(a)2) dig underneath the wrapper to access the first value, discarding the wrapper
     digging under the wrapper and discarding it is done by foldRight, which calls its callback function with each B item in the first value
     f(a).foldRight(Nil, (b:B, cs:List[C]) \Rightarrow concatenate(g(b), cs))implicit class ListFunctionOps[A,B](f: A => List[B]) {
     def >=>[C](g: B => List[C]): A => List[C] =
        a => f(a).foldRight(Nil, (b:B, cs:List[C]) => concatenate(g(b), cs))
   }
                                                                                            def foldRight[B](b: B,
                                                                                                             f:(A, B) \Rightarrow B): B =
                                                                                              this match {
                                                                                                case Nil => b
                                                                                                case Cons(a, tail) =>
                                                                                                  f(a, tail.foldRight(b, f))
                                                                                              }
                                                                                            def concatenate[A](left: List[A],
                                                                                                               right: List[A]): List[A] =
                                                                                              left match {
                                                                                                case Nil => 
                                                                                                  right
                                                                                                case Cons(head, tail) => 
                                                                                                  Cons(head, concatenate(tail, right))
                                                                                              }
```

```
3) use g to compute, using the first value, a second value also wrapped in a functional effect
```
callback function **g** is called with each B item in the **first value**, so the **second value** consists of all **List[**C**]** results returned by **g (**b:B, …**)** => …**(**g**(**b**)**, …**))**

4) return a **third value wrapped** in a **functional effect** that represents the **composition** (**combination**) of the **first two functional effects**

If the **1st effect** is that there are no B items then there are no **2nd** and **3rd values** and the **composition** of **1st** and **2nd effect** is also that there are no items

f(a) is **Nil** so f(a).**foldright**(…) is also **Nil**

otherwise the **1st effect** is the multiplicity of items in the **1st value**, the **2nd effect** is the multiplicity of items in the **2nd value**, the **3rd value** is the concatenation of all the **List[**C**]** results returned by **g**, and the **composition** of the **1st** and **2nd effects** is the multiplicity of items in the concatenation

 $f(a)$. $foldRight(Nil, (b:B, cs:List[C]) \Rightarrow concatenate(g(b), cs))$

What we have done so far is take three **monads** and define them in terms of **Kleisli composition** and **unit**.

In the next three slides we are going to **refactor the three monads so that they are defined in terms of @philip_schwarz flatMap** and **unit** and **see how the compositional responsibilities get redistributed**.

COMPOSITIONAL RESPONSIBILITY 1. use **f** to compute a **first value wrapped** in a **functional effect** 2. dig underneath the **wrapper** to access the **first value**, discarding the **wrapper** 3. use **g** to compute, using the **first value**, a **second value** also **wrapped** in a **functional effect** 4. return a **third value wrapped** in a **functional effect** that represents the **composition (combination)** of the **first two functional effects LOCATION CHANGE** remains in **>=>** moves from **>=>** to **flatMap** moves from **>=>** to **flatMap** moves from **>=>** to **flatMap**

Id monad defined in terms of **Kleisli composition** and **unit Id monad** defined in terms of **flatMap** and **unit** case class Id[A] (value: A) { case class Id[A](value: A) { invoke 2nd function def flatMap[B](f: A => $Id[B]$): $Id[B]$ = def f [latMap][B] $(f: A \Rightarrow Id[B])$: $Id[B] =$ $f(value)$ $((($:Unit) => this) >=> f)(()) dig underneath wrapper compose effects discard wrapper def map[B] $(f: A \Rightarrow B)$: Id[B] = def map[B] $(f: A \Rightarrow B)$: Id[B] = this flatMap { $a \Rightarrow Id(f(a))$ } this flatMap { $a \Rightarrow Id(f(a))$ } $\}$ object $Id \{$ object Id { implicit class IdFunctionOps[A, B](f: A => Id[B]) { implicit class IdFunctionOps[A, B](f: A => Id[B]) { def (\ge) [C] (g: B => Id[C]): A => Id[C] = def $(\geq)=\{[c] (g: B \Rightarrow Id[C]) : A \Rightarrow Id[C] =$ $a \Rightarrow g(f(a)).$ value) invoke 1st function $a \Rightarrow f(a)$ flatMap g \int invoke 1st function invoke 2nd function \rightarrow dig underneath wrapper compose effects def join[A](mma: Id[Id[A]]): Id[A] = def join[A](mma: Id[Id[A]]): Id[A] = discard wrapper mma flatMap identity mma flatMap identity $\}$


```
sealed trait List[+A] {
                                                                                         sealed trait List[+A] {
                                                                                                                                                   dig underneath wrapper 
  def flatMap[B](f: A => List[B]): List[B] =
                                                                                           def (flatMap)B] (f: A => List[B]): List[B] =
    (((\n \cdot \text{Unit}) \Rightarrow \text{this}) \Rightarrow f)(())this \overline{\text{foldRight}}(Nil, (a:A, bs:List[B]) \implies \text{concatenate}(f(a), bs))invoke 2nd function
  def map[B] (f: A \Rightarrow B): List[B] =
                                                                                           def map[B] (f: A \Rightarrow B): List[B] =
    this flatMap { a \Rightarrow Cons(f(a), Nil) }
                                                                                             this flatMap { a \Rightarrow Cons(f(a), Nil) }
                                                                                                                                                      compose effectsdef foldRight[B](b: B, f: (A, B) => B): B =
                                                                                           def foldRight[B](b: B, f: (A, B) => B): B =
                                                                                                                                                      discard wrapper
    this match \{this match \{case Nil \Rightarrow bcase Nil \Rightarrow bcase Cons(a, tail) \Rightarrowcase Cons(a, tail) \Rightarrowf(a, tail.foldRight(zero, f))
                                                                                                  f(a, tail.foldRight(zero, f))
₹
case object Nil extends List[Nothing]
                                                                                         case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]
                                                                                         case class Cons[+A](head: A, tail: List[A]) extends List[A]
object List {
                                                                                         object List {
  implicit class ListFunctionOps[A,B](f: A => List[B]) {
                                                                                            implicit class ListFunctionOps[A,B](f: A => List[B]) {
                                                                    invoke 2nd function
    def (\geq)=\sum C] (g: B => List[C]): A => List[C] =
                                                                                             def (\geq)=\sum C] (g: B => List[C]): A => List[C] =
                                                                                                a \Rightarrow f(a) flatMap g
      a \equiv f(a).foldRight(Nil, (b:B, cs:List[C]) => concatenate(g(b), cs))
                                                                                                                            invoke 1st function
                                                                                           \}invoke 1st function dig underneath wrapper compose effects discard wrapper
  def join[A] (mma: List[List[A]]): List[A] =
                                                                                           def join[A] (mma: List[List[A]]): List[A] =
    mma flatMap identity
                                                                                             mma flatMap identity
                                                                                           def concatenate[A](left: List[A], right: List[A]): List[A] =
  def concatenate[A](left: List[A], right: List[A]): List[A] =
                                                                                             left match {
    left match {
                                                                                                case Nil \Rightarrow rightcase Nil \Rightarrow rightcase Cons(head, tail) => Cons(head, concatenate(tail, right))
                                                                                                case Cons(head, tail) => Cons(head, concatenate(tail, right))
                                                                                             \rightarrow\mathcal{F}
```


And finally, we are going to **refactor the three monads so that they are defined in terms of map**, **join** and **unit** and again **see how the compositional responsibilities get redistributed.**

COMPOSITIONAL RESPONSIBILITY

- 1. use **f** to compute a **first value wrapped** in a **functional effect**
- 2. dig underneath the **wrapper** to access the **first value**, discarding the **wrapper**
- 3. use **g** to compute, using the **first value**, a **second value** also **wrapped** in a **functional effect**
- 4. return a **third value wrapped** in a **functional effect** that represents the **composition (combination)** of the **first two functional effects**

LOCATION CHANGE remains in **>=>** moves from **flatMap** to **map/join** moves from **flatMap** to **map** moves from **flatMap** to **join**

Option monad defined in terms of **flatMap** and **unit Option monad** defined in terms of **map**, **join** and **unit**

List monad defined in terms of **flatMap** and **unit List monad** defined in terms of **map**, **join** and **unit**

See the foll the list of a the **MONA**

The **MONAD FAC'I Slide Deck Series**

a very simple rationale for the series plus a list of currently available slide decks

