
MONAD FACT #1
Scala for comprehensions require a monad to be defined in terms of

unit, map and flatMap rather than simply in terms of unit and flatMap

@philip_schwarzslides by

https://www.slideshare.net/pjschwarz

https://www.slideshare.net/pjschwarz/natural-transformations

sealed trait Option[+A]
case object None extends Option[Nothing]
case class Some[+A](get: A) extends Option[A]

trait Monad[F[_]] {
def flatMap[A,B](ma: F[A])(f: A => F[B]): F[B]
def unit[A](a: => A): F[A]

}

val optionMonad = new Monad[Option] {

def unit[A](a: => A): Option[A] = Some(a)

def flatMap[A, B](ma: Option[A])(f: A => Option[B]): Option[B] = {
ma match {

case Some(a) => f(a)
case None => None

}
}

}

One way to define a monad is with the following trait

@philip_schwarz

If we define a data structure, e.g. an Option

we can then create a monad instance for Option by providing implementations for unit and flatMap

def greeting(maybeGreeting: Option[String],
maybeName: Option[String],
maybeSurname: Option[String]): Option[String] =

optionMonad.flatMap(maybeGreeting) { greeting =>
optionMonad.flatMap(maybeName) { name =>

optionMonad.flatMap(maybeSurname) { surname =>
optionMonad.unit(s"$greeting $name $surname!")

}
}

}

assert(
greeting(maybeGreeting = Some("Hello"), maybeName = Some("Fred"), maybeSurname = Some("Smith"))
== Some("Hello Fred Smith!"))

assert(
greeting(maybeGreeting = Some("Hello"), maybeName = None, maybeSurname = Some("Smith"))
== None)

Here is an example of using the Option monad instance

We just saw how to define the Option monad by defining unit and
flatMap functions that operate on Option.

Another way of defining the Option monad is by adding map and
flatMap functions to Option.

@philip_schwarz

If we do that, then we can take advantage of a
great Scala feature that allows code that uses the
monad to be much easier to understand than
woud otherwise be the case. Here is how the
greeting example looks like using this feature.

sealed trait Option[+A] {

def map[B](f: A => B): Option[B] =
this match {

case None => None
case Some(a) => Some(f(a))

}

def flatMap[B](f: A => Option[B]): Option[B] =
this match {

case None => None
case Some(a) => f(a)

}
}
case object None extends Option[Nothing]
case class Some[+A](get: A) extends Option[A]

def greeting(maybeGreeting: Option[String],
maybeName: Option[String],
maybeSurname: Option[String]): Option[String] =

for {
greeting <- maybeGreeting
name <- maybeName
surname <- maybeSurname

} yield s"$greeting $name $surname!"

assert(greeting(maybeGreeting = Some("Hello"), maybeName = Some("Fred"), maybeSurname = Some("Smith"))
== Some("Hello Fred Smith!"))

assert(greeting(maybeGreeting = Some("Hello"), maybeName = None, maybeSurname = Some("Smith"))
== None)

The feature in question is the ability to write an easy-to-understand for comprehension,
whose syntactic sugar is translated by the Scala compiler into a harder-to-understand
desugared chain of calls to map and flatMap

maybeGreeting flatMap { greeting =>
maybeName flatMap { name =>

maybeSurname map { surname =>
s"$greeting $name $surname!"

}
}

}

for {
greeting <- maybeGreeting
name <- maybeName
surname <- maybeSurname

} yield s"$greeting $name $surname!” desugars to

So why is it that in the first approach we can simply define a monad in terms of unit and flatMap

whereas in the second approach we have to define a monad in terms of unit, map and flatMap?

def map[B](f: A => B): Option[B] =
def flatMap[B](f: A => Option[B]): Option[B] =
case class Some[+A](get: A) extends Option[A] // Some acts as unit function

def flatMap[A,B](ma: F[A])(f: A => F[B]): F[B]
def unit[A](a: => A): F[A]

On the first slide we defined a monad simply in terms of unit and flatMap.

Later on, in order to take advantage of for comprehensions, we redefined a monad in terms of unit, map and
flatMap. “We did not define a unit function!”, I hear you say. Well, although it is not called unit, we did define it:
it is called Some, because creating a ‘defined’ Option, e.g. one with a value of 5, is done by evaluating Some(5)
(to get hold of the ‘undefined’ Option we use None).

@philip_schwarz

The answer to that question is that is that in Scala there is no Monad trait that monads can implement and that the compiler is
aware of, so the compiler does not know what the unit function of a monad is because for one thing, the function can have an
arbitrary name. In this case the unit function is called Some, in the case of the Either monad it is called Right, in the case of the List
monad it is called List, etc.

If there were some convention by which the compiler could figure out what the unit function of a monad is, then rather than
desugaring a for comprehension as follows:

It could desugar it to something like this:

maybeGreeting flatMap { greeting =>
maybeName flatMap { name =>

maybeSurname map { surname =>
s"$greeting $name $surname!"

}
}

}

for {
greeting <- maybeGreeting
name <- maybeName
surname <- maybeSurname

} yield s"$greeting $name $surname!” desugars to

maybeGreeting flatMap { greeting =>
maybeName flatMap { name =>

maybeSurname flatMap { surname =>
monadInstance.unit(s"$greeting $name $surname!")

}
}

}

maybeGreeting flatMap { greeting =>
maybeName flatMap { name =>

maybeSurname flatMap { surname =>
Some(s"$greeting $name $surname!")

}
}

}

See the following for the list of all available slide decks in the MONAD FACT series

https://www.slideshare.net/pjschwarz/the-monad-fact-slide-deck-series

https://www.slideshare.net/pjschwarz/the-monad-fact-slide-deck-series

