
MONAD FACT #5

@philip_schwarzslides by

https://www.slideshare.net/pjschwarz

A chain of monadic flatMap calls (or an equivalent for-comprehension)
is like an imperative program with statements that assign to variables

and the monad specifies what occurs at statement boundaries

https://www.slideshare.net/pjschwarz/natural-transformations

The title of this slide deck comes straight from Functional Programming in Scala and
the aim of the deck is purely to emphasize a concept that is explained therein.

Hopefully the slides make the concept more vivid for you and reinforce your grasp of it.

Functional Programming in Scala

11.5.1 The identity monad
To distill monads to their essentials, let’s look at the simplest interesting specimen, the identity monad

trait Monad[F[_]] {
def unit[A](a: => A): F[A]
def flatMap[A,B](ma: F[A])(f: A => F[B]): F[B]

}

case class Id[A](value: A) {
def map[B](f: A => B): Id[B] = Id(f(value))
def flatMap[B](f: A => Id[B]): Id[B] = f(value)

}

object Id {
val idMonad = new Monad[Id] {

def unit[A](a: => A): Id[A] = Id(a)
def flatMap[A,B](ma: Id[A])(f: A => Id[B]): Id[B] = ma flatMap f

}
}

Now, Id is just a simple wrapper. It doesn’t really add anything. Applying Id to A is an identity since the
wrapped type and the unwrapped type are totally isomorphic (we can go from one to the other and back again
without any loss of information).

Runar Bjarnason
@runarorama

Paul Chiusano
@pchiusano

Functional Programming in Scala

But what is the meaning of the identity monad? Let’s try using it in the REPL:

scala> Id("Hello, ") flatMap (a =>
| Id("monad!") flatMap (b =>
| Id(a + b)))

res0: Id[String] = Id(Hello, monad!)

When we write the exact same thing with a for-comprehension, it might be clearer:

scala> for {
| a <- Id("Hello, ")
| b <- Id("monad!")
| } yield a + b

res1: Id[String] = Id(Hello, monad!)

So what is the action of flatMap for the identity monad? It’s simply variable substitution. The variables a and b get bound to
"Hello, " and "monad!", respectively, and then substituted into the expression a + b. We could have written the same thing without
the Id wrapper, using just Scala’s own variables:

scala> val a = "Hello, "
a: String = "Hello, "

scala> val b = "monad!"
b: String = monad!

scala> a + b
res2: String = Hello, monad!

Functional Programming in Scala

Besides the Id wrapper, there’s no difference.

So now we have at least a partial answer to the question of what monads
mean. We could say that monads provide a context for introducing and
binding variables, and performing variable substitution.

Let’s see if we can get the rest of the answer.

11.5.2 The State monad and partial type application
Look back at the discussion of the State data type in chapter 6. Recall that we implemented some combinators for State, including map
and flatMap.

case class State[S, A](run: S => (A, S)) {

def map[B](f: A => B): State[S, B] =
State(s => {
val (a, s1) = run(s)
(f(a), s1)

})

def flatMap[B](f:A => State[S, B]): State[S, B] =
State(s => {
val (a, s1) = run(s)
f(a).run(s1)

})
}

It looks like State definitely fits the profile for being a monad. But its type constructor takes two type arguments, and Monad requires a
type constructor of one argument, so we can’t just say Monad[State]. But if we choose some particular S, then we have something like
State[S, _], which is the kind of thing expected by Monad. So State doesn’t just have one monad instance but a whole family of them,
one for each choice of S. We’d like to be able to partially apply State to where the S type argument is fixed to be some concrete type. This
is much like how we might partially apply a function, except at the type level.

Functional Programming in Scala

FPiS then goes on to find a solution to the problem of partially applying State[S,A] so that the S type
argument is fixed to be some concrete type, whereas the A argument remains variable.

The solution consists of using a type lambda that looks like this

({type f[x] = State[S,x]})#f

Explaining type lambdas is out of scope for this slide deck, but as FPiS says, their syntax can be jarring
when you first see it, so here is the Scala 3 equivalent (dotty 0.22.0-RC1) of the above lambda, which is
much easier on the eye:

[A] =>> State[S,A]

In the next slide I have replaced the Scala 2 type lambda with the Scala 3 equivalent.

A type constructor declared inline like this is often called a type lambda in Scala. We can use this trick to partially apply the State type
constructor and declare a StateMonad trait. An instance of StateMonad[S] is then a monad instance for the given state type S:

def stateMonad[S] = new Monad[[A] =>> State[S,A]] {

def unit[A](a: => A): State[S,A] =
State(s => (a, s))

def flatMap[A,B](st: State[S,A])(f: A => State[S,B]): State[S,B] =
st flatMap f

}

Again, just by giving implementations of unit and flatMap, we get implementations of all the other monadic combinators for free.

Let’s now look at the difference between the Id monad and the State monad. Remember that the primitive operations on State
(besides the monadic operations unit and flatMap) are that we can read the current state with getState and we can set a new state
with setState:

def getState[S]: State[S, S]
def setState[S](s: => S): State[S, Unit]

Remember that we also discovered that these combinators constitute a minimal set of primitive operations for State. So together with
the monadic primitives (unit and flatMap) they completely specify everything that we can do with the State data type. This is
true in general for monads—they all have unit and flatMap, and each monad brings its own set of additional primitive operations
that are specific to it.

Functional
Programming

in Scala

What does this tell us about the meaning of the State monad? Let’s study a simple example. The details of this code aren’t too important,
but notice the use of getState and setState in the for block.

val F = stateMonad[Int]

def zipWithIndex[A](as: List[A]): List[(Int,A)] =
as.foldLeft(F.unit(List[(Int, A)]()))((acc,a) => for {
xs <- acc
n <- getState
_ <- setState(n + 1)

} yield (n, a) :: xs).run(0)._1.reverse

This function numbers all the elements in a list using a State action. It keeps a state that’s an Int, which is incremented at each step. We
run the whole composite State action starting from 0. We then reverse the result since we constructed it in reverse order.

Note what’s going on with getState and setState in the for-comprehension. We’re obviously getting variable binding just like in
the Id monad—we’re binding the value of each successive state action (getState, currentStateAction, and then setState) to
variables. But there’s more going on, literally between the lines. At each line in the for-comprehension, the implementation of flatMap is
making sure that the current state is available to getState, and that the new state gets propagated to all actions that follow a setState.

If you are not very familiar with the State monad then you might like some help to fully understand how the code on this slide works.
While FPiS says that the details of the code aren’t too important, I think this is a really useful example of the State monad and so in order to
aid its comprehension
1) the next slide is the equivalent of this one but with the FPiS code replaced with a more verbose version in which I have a go at additional

naming plus alternative or more explicit naming
2) the slide after that consists of the verbose version of the code plus all the State code that it depends on

Functional
Programming

in Scala

What does this tell us about the meaning of the State monad? Let’s study a simple example. The details of this code aren’t too important,
but notice the use of getState and setState in the for block.

def zipWithIndex[A](as: List[A]): List[(Int,A)] =
val emptyIndexedList = List[(Int, A)]()
val initialStateAction = stateMonad[Int].unit(emptyIndexedList)
val finalStateAction =
as.foldLeft(initialStateAction)(
(currentStateAction, currentElement) => {
val nextStateAction =

for {
currentIndexedList <- currentStateAction
currentIndex <- getState
_ <- setState(currentIndex + 1)
nextIndexedList = (currentIndex, currentElement) :: currentIndexedList

} yield nextIndexedList
nextStateAction

}
)

val firstIndex = 0
val (indexedList,_) = finalStateAction.run(firstIndex)
indexedList.reverse

Note what’s going on with getState and setState in the for-comprehension. We’re obviously getting variable binding just like in the
Id monad—we’re binding the value of each successive state action (getState, currentStateAction, and then setState) to
variables. But there’s more going on, literally between the lines. At each line in the for-comprehension, the implementation of flatMap is
making sure that the current state is available to getState, and that the new state gets propagated to all actions that follow a setState.

This function numbers all the elements in a list using a
State action. It keeps a state that’s an Int, which is
incremented at each step. We run the whole composite
State action starting from 0. We then reverse the result
since we constructed it in reverse order.

def zipWithIndex[A](as: List[A]): List[(Int,A)] =
val emptyIndexedList = List[(Int, A)]()
val initialStateAction = stateMonad[Int].unit(emptyIndexedList)
val finalStateAction =

as.foldLeft(initialStateAction)(
(currentStateAction, currentElement) => {

val nextStateAction =
for {

currentIndexedList <- currentStateAction
currentIndex <- getState
_ <- setState(currentIndex + 1)
nextIndexedList =

(currentIndex, currentElement) :: currentIndexedList
} yield nextIndexedList

nextStateAction
}

)
val firstIndex = 0
val (indexedList,_) = finalStateAction.run(firstIndex)
indexedList.reverse

case class State[S, A](run: S => (A, S)) {

def map[B](f: A => B): State[S, B] =
State(s => {

val (a, s1) = run(s)
(f(a), s1)

})

def flatMap[B](f:A => State[S, B]): State[S, B] =
State(s => {

val (a, s1) = run(s)
f(a).run(s1)

})
}

object State {

def getState[S]: State[S, S] =
State(s => (s, s))

def setState[S](s: => S): State[S, Unit] =
State(_ => ((), s))

}

assert(zipWithIndex(List("a", "b", "c"))
== List((0,"a"), (1,"b"), (2,"c")))

trait Monad[F[_]] {
def unit[A](a: => A): F[A]
def flatMap[A,B](ma: F[A])(f: A => F[B]): F[B]

}

def stateMonad[S] = new Monad[[A] =>> State[S,A]] {

def unit[A](a: => A): State[S,A] =
State(s => (a, s))

def flatMap[A,B](st: State[S,A])(f: A => State[S,B]): State[S,B] =
st flatMap f

}

Note that while FPiS tends to use monads via the
Monad trait, in this particular example we are only
using the trait’s unit function: the for
comprehension desugars to invocations of the
map and flatMap functions of the State class.

There turns out to be a startling number of operations that can be defined in
the most general possible way in terms of sequence and/or traverse

What does the difference between the action of Id and the action of State tell us about monads in general?

We can see that a chain of flatMap calls (or an equivalent for-comprehension) is like an imperative program with statements that
assign to variables, and the monad specifies what occurs at statement_boundaries.

For example, with Id, nothing at all occurs except unwrapping and rewrapping in the Id constructor.

With State, the most current state gets passed from one statement to the next.

With the Option monad, a statement may return None and terminate the program.

With the List monad, a statement may return many results, which causes statements that follow it to potentially run multiple
times, once for each result.

The Monad contract doesn’t specify what is happening between the lines, only that whatever is happening satisfies the laws of
associativity and identity.

@runarorama @pchiusano

Functional
Programming

in Scala

// the Identity Monad – does absolutely nothing
case class Id[A](a: A) {

def map[B](f: A => B): Id[B] =
this flatMap { a => Id(f(a)) }

def flatMap[B](f: A => Id[B]): Id[B] =
f(a)

}

val result: Id[String] =
for {

hello <- Id("Hello, ")
monad <- Id("monad!")

} yield hello + monad

assert(result == Id("Hello, monad!"))

“An imperative program with statements
that assign to variables“

“with Id, nothing at all occurs except
unwrapping and rewrapping in the Id
constructor”

A chain of flatMap calls (or an equivalent for-comprehension) is
like an imperative program with statements that assign to variables,
and the monad specifies what occurs at statement boundaries.

Functional
Programming

in Scala

For example, with Id, nothing at
all occurs except unwrapping and
rewrapping in the Id constructor.

“the monad specifies what
occurs at statement boundaries“

// the Option Monad
sealed trait Option[+A] {

def map[B](f: A => B): Option[B] =
this flatMap { a => Some(f(a)) }

def flatMap[B](f: A => Option[B]): Option[B] =
this match {

case None => None
case Some(a) => f(a)

}

}
case object None extends Option[Nothing] {

def apply[A] = None.asInstanceOf[Option[A]]
}
case class Some[+A](get: A) extends Option[A]

A chain of flatMap calls (or an equivalent for-comprehension) is
like an imperative program with statements that assign to variables,
and the monad specifies what occurs at statement boundaries.

Functional
Programming

in Scala

“With the Option monad, a
statement may return None and
terminate the program”

val result =
for {

firstNumber <- Some(333)
secondNumber <- Some(666)

} yield firstNumber + secondNumber

assert(result == Some(999))

val result =
for {

firstNumber <- Some("333")
secondNumber <- Some("666")

} yield firstNumber + secondNumber

assert(result == Some("333666"))

val result =
for {

firstNumber <- Some(333)
secondNumber <- None[Int]

} yield firstNumber + secondNumber

assert(result == None)

val result =
for {

firstNumber <- None[String]
secondNumber <- Some("333")

} yield firstNumber + secondNumber

assert(result == None)

“An imperative program with statements
that assign to variables“

“With the Option
monad, a statement may
return None and
terminate the program”

“the monad specifies what
occurs at statement boundaries”

// The List Monad
sealed trait List[+A] {

def map[B](f: A => B): List[B] =
this flatMap { a => Cons(f(a), Nil) }

def flatMap[B](f: A => List[B]): List[B] =
this match {

case Nil =>
Nil

case Cons(a, tail) =>
concatenate(f(a), (tail flatMap f))

}
}
case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]

object List {
def concatenate[A](left:List[A], right:List[A]):List[A] =

left match {
case Nil =>

right
case Cons(head, tail) =>

Cons(head, concatenate(tail, right))
}

}

val result =
for {

letter <- Cons("A", Cons("B", Nil))
number <- Cons(1, Cons(2, Nil))

} yield letter + number

assert(
result
== Cons("A1",Cons("A2",Cons("B1",Cons("B2",Nil))))

)

A chain of flatMap calls (or an equivalent for-comprehension) is
like an imperative program with statements that assign to variables,
and the monad specifies what occurs at statement boundaries.

Functional Programming in Scala

With the List monad, a
statement may return many
results, which causes statements
that follow it to potentially run
multiple times, once for each
result.

“An imperative program with statements
that assign to variables“

“With the List monad, a statement may return
many results, which causes statements that follow it to
potentially run multiple times, once for each result.”

“the monad specifies what
occurs at statement boundaries”

val F = stateMonad[Int]

def zipWithIndex[A](as: List[A]): List[(Int,A)] =
as.foldLeft(F.unit(List[(Int, A)]()))((acc,a) =>

for {
xs <- acc
n <- getState
_ <- setState(n + 1)

} yield (n, a) :: xs).run(0)._1.reverse

// The State Monad
case class State[S, A](run: S => (A, S)) {

def map[B](f: A => B): State[S, B] =
this flatMap { a => State { s => (f(a), s) } }

def flatMap[B](f:A => State[S, B]): State[S, B] =
State(s => {

val (a, s1) = run(s)
f(a).run(s1)

})
}

assert(zipWithIndex(List("a", "b", "c"))
== List((0,"a"), (1,"b"), (2,"c")))

object State {
def getState[S]: State[S, S] =

State(s => (s, s))

def setState[S](s: => S): State[S, Unit] =
State(_ => ((), s))

}

A chain of flatMap calls (or an equivalent for-comprehension) is
like an imperative program with statements that assign to variables,
and the monad specifies what occurs at statement boundaries.

Functional
Programming

in Scala

With State, the most current
state gets passed from one
statement to the next.

“An imperative program with statements that assign to
variables“

“With State, the most current state gets passed from
one statement to the next. “

“the monad specifies what
occurs at statement boundaries“

If you are interested in an introduction to the State monad then see
the following slide deck at https://www.slideshare.net/pjschwarz

@philip_schwarz

https://www.slideshare.net/pjschwarz

See the following slide deck for
the list of all available decks in
the MONAD FACT series

https://www.slideshare.net/pjschwarz

https://www.slideshare.net/pjschwarz/natural-transformations

