
MONAD FACT #6
a monad is an overloading of the semicolon

@philip_schwarzslides by

https://www.slideshare.net/pjschwarz

https://www.slideshare.net/pjschwarz/natural-transformations

Alejandro Serrano Mena
@trupill

Bartosz Milewski
@BartoszMilewski

@stevenproctor
Steven Proctor

20 Monads: Programmer’s Definition

Programmers have developed a whole mythology around monads. It’s supposed to be one of the
most abstract and difficult concepts in programming. There are people who “get it” and those who don’t.
For many, the moment when they understand the concept of the monad is like a mystical
experience. The monad abstracts the essence of so many diverse constructions that we simply
don’t have a good analogy for it in everyday life. We are reduced to groping in the dark, like those
blind men touching different parts of the elephant end exclaiming triumphantly: “It’s a rope,” “It’s a tree
trunk,” or “It’s a burrito!”

Let me set the record straight: The whole mysticism around the monad is the result of a
misunderstanding. The monad is a very simple concept. It’s the diversity of applications of the
monad that causes the confusion.

As part of research for this post I looked up duct tape (a.k.a., duck tape) and its applications. Here’s a
little sample of things that you can do with it:

• sealing ducts
• fixing CO2 scrubbers on board Apollo 13
• wart treatment
• fixing Apple’s iPhone 4 dropped call issue
• making a prom dress
• building a suspension bridge

Now imagine that you didn’t know what duct tape was and you were trying to figure it out based on this
list. Good luck! So I’d like to add one more item to the collection of “the monad is like…” clichés: The
monad is like duct tape. Its applications are widely diverse, but its principle is very simple: it
glues things together. More precisely, it composes things.

Essentially you have just one category that we use in programming, that’s the
category of types and functions.

And that’s the starting point. And you have to start thinking about a program and
when you use FP it is much easier to think of it this way, but in general this is sort
of hidden under a lot of noise, is that a program really consists of functions and
you build larger programs or larger functions from smaller functions by
composing them.

So the basic way of structuring your program is, I am calling a function with an
argument, I am getting a result, and I am passing this result to another function
as an argument and this function produces a result, and so on. So it is just the
chaining of functions, and that is called composition and composition of
functions or in category theory they are more general things than functions, they
are called morphisms, but in our case, in programming, these morphisms are just
functions.

The composition of functions, the composition is the essence of a category and
this is just one example, when you just take straightforward functions and you
compose them, you build larger functions and so on, so this is how we
programmers work with functions.

Functional Geekery Episode 69
Bartosz Milewski

@BartoszMilewski

But then where does the monad come in? When you have functions that have
side effects. Functions that do something. They are not mathematical functions.
Most functions that you use in C++ for instance, they have side effects. You call
them multiple times and they might give you different results every time you call
them. Or they modify some external state. They are not pure functions.

So this was the biggest problem in FP, how to describe these side effects, how to
describe things that are not really pure functions, and the answer is, if you have
all these different kinds of impurity that you can have, and they are very
different you know, like you have functions that throw exceptions, you have
functions that take input from the user, you have functions that produce output
to the screen and so on, there are so many different ones, you have functions
that have hidden state, and so on. All these very different ways of being non-
pure, can actually be translated into pure functions with some additional
structure.

And the question is, if normal programming means just composing functions to
create bigger functions, how do you compose these special functions, the
functions that have side effects or modify state, and so on? How can you
compose them, because they are not your traditional functions, and the answer
is, for all these very complex ways of encoding side effects, for all of them the
answer is ‘use a monad’.

Functional Geekery Episode 69
Bartosz Milewski

@BartoszMilewski

A monad is a way of composing functions that have side effects, essentially.

And because there is such a huge variety of side effects that you can describe
this way, people have problems understanding what a monabd is, because they
say, OK, a monad is about exceptions. No, a monad is about state. No, a monad
is about IO. No, amonad is about this and that.

No, a monad is just about how compose these things. It is about composition.
Once you understand this, it is just a pattern for composing things and that’s
easy.

There is a lot of confusion because of this and the word became sort of like a
cuss word, like people try to avoid it.

I don’t know why people have no problems with the word object in OO
programming, because it is a common word. Try defining an object in OO
programming and you’ll get into much bigger trouble than trying to define a
monad in FP. It is just that it is a word that is used more often than the word
monad. But whatever you call it, the idea is not that hard.

Functional Geekery Episode 69
Bartosz Milewski

@BartoszMilewski

I think the complexity comes in because we are so used to the imperative style
of programming, where we actually split things into very small steps, so for
instance for an imperative programmer this idea of composing functions is not
immediately obvious. Function composition in an imperative language looks
more like this:

int x = f(y)

… <something, something, something> …

string s = g(x)

and you already forgot that x was obtained by calling the function f previously, so
you don’t really see this composition of two functions since it was obscured by
creating these temporary variables to begin with, I mean you created a variable
x just to hold the result of one function and then you pass this x to another
function. This process of naming these variables is just a side effect of the way
we do imperative programming. So this idea that we are composing functions,
that we are passing results of one function as argument to another function,
that’s so deeply hidden that it is almost invisible and there is a lot of glue code
in between function calls that do little things. This glue code can also be
abstracted into functions and then you end up with just composing functions.

Functional Geekery Episode 69
Bartosz Milewski

@BartoszMilewski

The problem is that we are not used to thinking of programming in terms of function
composition. This is understandable.

We often give names to intermediate values rather than pass them directly from function to
function. We also inline short segments of glue code rather than abstract them into
helper functions.

Here’s an imperative-style implementation of the vector-length function in C:

double vlen(double * v) {
double d = 0.0;
int n;
for (n = 0; n < 3; ++n)
d += v[n] * v[n];

return sqrt(d);
}

Compare this with the (stylized) Haskell version that makes function composition explicit:

vlen = sqrt . sum . fmap (flip (^) 2)

(Here, to make things even more cryptic, I partially applied the exponentiation operator (^)
by setting its second argument to 2.)

I’m not arguing that Haskell’s point-free style is always better, just that function
composition is at the bottom of everything we do in programming. And even though
we are effectively composing functions, Haskell does go to great lengths to provide
imperative-style syntax called the do notation for monadic composition.

And I am not saying that code written as a composition of functions is the most
readable code, sometimes it’s not.

So sometimes it’s really better to give names to your temporary variables. It’s
good because you can give them meaningful names and they sort of serve as
comments in your code because they have additional names, they specify what is
the semantics of what I am doing, but once you know FP, you start looking at
imperative code differently and you see that it is really about function
composition and it could be that composing functions in this imperative style
that is much more verbose is actually easier to understand, as long as you don’t
lose this idea that you are actually composing functions.

So if you take imperative code you can translate it into functional code by just
doing function composition, and function composition, you now, like in C++
there isn’t even a library function called compose. There is no higher-order
function that takes two functions and produces a new function that is the
composition of these two. There isn’t even a function like this.

So this just shows you how far away imperative programming is from this idea
of composing functions. Whereas in Haskell, if you want to compose two
functions you just put a period, a dot in between functions. That’s a
composition operator.

Functional Geekery Episode 69
Bartosz Milewski

@BartoszMilewski

So you see composition in Haskell code. You won’t see it in C++ code. And in
Haskell code if you say now I want my functions to actually do some additional
stuff, for instance exceptions, ot state, or so on, I will replace this dot, with
something else, and in fact replacement for the dot when you go into a
monadic composition is called the fish operator, it is like >=> and that replaces
the dot. So once you understand that you are doing function composition, you
have two things.

You have functions and you have composition. And you can modify your
functions or you can modify the way you compose them, and this tweaking of
the way functions are composed is done through a monad, or through
applicative, that’s an even simpler way of doing this, but the tweaking of
composition, this is why people sometimes say that

a monad is an overloading of the semicolon

If you want to explain it to an imperative programmer, a semicolon is
something that’s between functions, and composition is also something that’s
between functions, you just overload it, you say ‘after you call this function and
before you call the next function, do this additional stuff’, and that is what a
monad is.

Functional Geekery Episode 69
Bartosz Milewski

For the fish operator >=> see MONAD FACT #2 and #3

20.3 The do Notation

One way of writing code using monads is to work with Kleisli arrows — composing them
using the fish operator. This mode of programming is the generalization of the point-free style.
Point-free code is compact and often quite elegant. In general, though, it can be hard to
understand, bordering on cryptic. That’s why most programmers prefer to give names to
function arguments and intermediate values.

When dealing with monads it means favoring the bind operator over the fish operator. Bind
takes a monadic value and returns a monadic value. The programmer may chose to give names
to those values. But that’s hardly an improvement. What we really want is to pretend that we are
dealing with regular values, not the monadic containers that encapsulate them. That’s how
imperative code works — side effects, such as updating a global log, are mostly hidden
from view. And that’s what the do notation emulates in Haskell.

You might be wondering then, why use monads at all? If we want to make side effects
invisible, why not stick to an imperative language?

The answer is that the monad gives us much better control over side effects. For instance,
the log in the Writer monad is passed from function to function and is never exposed globally.
There is no possibility of garbling the log or creating a data race. Also, monadic code is clearly
demarcated and cordoned off from the rest of the program.

The do notation is just syntactic sugar for monadic composition. On the surface, it looks a
lot like imperative code, but it translates directly to a sequence of binds and lambda
expressions.

For the fish operator >=> see MONAD FACT #2 and #3

validatePerson name age =
validateName name >>= \name' ->
validateAge age >>= \age' ->
return (Person name' age’)

type Name = String
case class Person(name: Name, age: Int)

def validateName(s: String): Option[Name] = ???
def validateAge(n: Int): Option[Int] = ???

trait Monad[M[_]] {
def point[A](x: A): M[A]
def bind[A, B](x: M[A]) (f: A => M[B]): M[B]

}

type Name = String
data Person = Person { name :: Name, age :: Int }

validateName :: String -> Maybe Name = ???
validateAge :: Int -> Maybe Int = ???

Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

def validatePerson(s: String, n: Int) =
validateName(s) bind { name =>

validateAge(n) bind { age =>
point(Person(name, age))

}
}

In the Book of Monads, Alejandro Serrano looks at
both Haskell’s do notation and Scala’s equivalent, i.e.
the for comprehension.

He refers to both as block notation. He looks first at the
problems that arise when we use monadic operators
directly and then at how block notation solves those
problems.

Even in these simple examples, we can see the usual pattern of monads. We have a bunch of
monadic operations — functions with a return type of the form m a or M[A] for the
corresponding monad — and after each of them, we apply a bind function in order to do
something with the value the monad contains in subsequent computations. Eventually, we
use return or point to construct the final value, which is wrapped in — or “returned into”
— the monadic context. Note that this use of “return” is different from the keyword of the
same name that often appears in imperative languages. In Haskell, return is just another
function, and it does not imply that control flow escapes from its monadic context in any
way.

Given the pervasiveness of this pattern, many programming languages have dedicated
syntactic sugar to describe monadic computations.@trupill

>>= is the bind function, known in Scala as flatMap

bind is another name for flatMap, and point is another
name for unit and pure

def validatePerson(s: String, n: Int)(implicit M: Monad[Option]): Option[Person] =
M.bind(validateName(s)) { name =>

M.bind(validateAge(n)) { age =>
M.point(Person(name, age))

}
}

assert(validatePerson("Fred", 35) == Some(Person("Fred", 35)))
assert(validatePerson("F", 35) == None)
assert(validatePerson("Fred", 200) == None)

trait Monad[M[_]] {
def point[A](x: A): M[A]
def bind[A, B](x: M[A]) (f: A => M[B]): M[B]

}

type Name = String

case class Person(name: Name, age: Int)

def validateName(s: String): Option[Name] =
if (s.length > 1 && s.length < 15)

Some(s)
else None

def validateAge(n: Int): Option[Int] =
if (n > 0 && n <= 110)

Some(n)
else None

sealed abstract class Option[+A]{

def then[B](f: A => Option[B]): Option[B] =
this match {

case None => None
case Some(x) => f(x)

}
}
case object None extends Option[Nothing]
case class Some[+A](value: A) extends Option[A]

object Option {

implicit val optionMonad: Monad[Option] = new Monad[Option] {

def point[A](x: A): Option[A] =
Some(x)

def bind[A, B](x: Option[A])(f: A => Option[B]): Option[B] =
x then f

}
}

Here is the full Scala code for the example on the previous slide. Note the following:
1. In the previous slide, bind and point are in infix position. I wasn’t able to quickly get that to compile,

so here I don’t use infix notation.
2. For didactic reasons, Alejandro Serrano chose to give Option’s implementation of bind the name then

(which, by the way, is a reserved word in Scala, though it only leads to a warning).@philip_schwarz

The Book of Monads: Master the theory and practice of
monads, applied to solve real world problems

Alejandro Serrano Mena
@trupill

Block Notation

There are three main problems with writing code using monadic operators directly:

1. We need to repeat the name of the bind function over and over. Haskell tries to “hide” it
under a symbolic name, (>>=), but you still need to write it on every line. And sometimes
Haskell’s solution does not work very well: beginners may feel intimidated by so many
strange symbols on their screens!

2. In most programming languages, giving a name to a value takes the form name = value,
maybe with a slightly different equality or assignment symbol. Monadic code breaks this
pattern, since the name we give to the element in the monad — for example, name or age
in the preceding code — is written after the expression that produces it.

3. In those languages where anonymous functions are delineated by parentheses or braces,
such as Scala, we need to keep track of how many to close at the end of the expression.
This seems like a small annoyance, but it makes it harder to refactor monadic code. In this
respect, the Haskell syntax works a bit better, because anonymous functions always extend
until the end of the expression. In practice, this is a good default for monadic code.

In order to combat these problems, several functional programming languages natively
support the notion of monadic blocks. In a monadic block, code may be written in a more
pleasing way and is transformed by the compiler into nested calls to the bind operation.
Unfortunately, there is no consensus about the extent to which monadic operations should be
hidden with syntax, which has led to many different variations of monadic blocks.

Do Notation

Haskell introduced do blocks in one of the first revisions of its specification, and it has
become a flagship feature of the language. Nowadays, do notation is also available in other
Haskell-inspired languages, such as PureScript and Idris.

The key idea of do notation is simple:
• fix problem (1) by automatically inserting calls to (>>=)
• fix problem (2) by providing specialized syntax for naming in a monadic context

The two code blocks at the beginning of this chapter could be written as follows:

validatePerson name age =
do name' <- validateName name

age’ <- validateAge age
return (Person name' age’)

def validatePerson(s: String, n: Int) =
for {
name <- validateName(s)
age <- validateAge(n)

} yield Person(name, age)
Alejandro Serrano Mena

@trupill The Book of Monads: Master the theory and practice of
monads, applied to solve real world problems

def validatePerson(s: String, n: Int): Option[Person] =
for {

name <- validateName(s)
age <- validateAge(n)

} yield Person(name, age)

assert(validatePerson("Fred", 35) == Some(Person("Fred", 35)))
assert(validatePerson("F", 35) == None)
assert(validatePerson("Fred", 200) == None)

trait Monad[M[_]] {
def point[A](x: A): M[A]
def bind[A, B](x: M[A]) (f: A => M[B]): M[B]

}

type Name = String
case class Person(name: Name, age: Int)

def validateName(s: String): Option[Name] =
if (s.length > 1 && s.length < 15)

Some(s)
else None

def validateAge(n: Int): Option[Int] =
if (n > 0 && n <= 110)

Some(n)
else None

sealed abstract class Option[+A]{
def map[B](f: A => B): Option[B] =

this match {
case None => None
case Some(x) => Some(f(x))

}
def flatMap[B](f: A => Option[B]): Option[B] =

this match {
case None => None
case Some(x) => f(x)

}
}
case object None extends Option[Nothing]
case class Some[+A](value: A) extends Option[A]

object Option {

implicit val optionMonad: Monad[Option] = new Monad[Option] {
def point[A](x: A): Option[A] =

Some(x)
def bind[A, B](x: Option[A])(f: A => Option[B]): Option[B] =

x flatMap f
}

}

Here is the full Scala code again, but this time, rather than using bind and point functions, the validatePerson
function uses the syntactic sugar of a for comprehension.

Also, note the following:
1. I added a map function to Option, since it is needed in order to permit desugaring of the for comprehension
2. I renamed Option’s then function to flatMap for the same reason

for desugaring of a for comprehension, see MONAD FACT #1

In general, do blocks consist of lines (or sub-blocks) that either use the left
arrow to introduce new names that are then available in the rest of the code,
or are executed purely for side-effects.

Bind operators are implicit between the lines of code. Incidentally, it is
possible, in Haskell, to replace the formatting in the do blocks with braces
and semicolons.

This provides the justification for describing the monad
as a way of overloading the semicolon.

Notice that the nesting of lambdas and bind operators when desugaring the do
notation has the effect of influencing the execution of the rest of the do block
based on the result of each line. This property can be used to introduce complex
control structures, for instance to simulate exceptions.

See the following slide deck for
the list of all available decks in
the MONAD FACT series

https://www.slideshare.net/pjschwarz

https://www.slideshare.net/pjschwarz/natural-transformations

