
Algebraic Data Types
for

Data Oriented Programming
From Haskell and Scala to Java

Data Oriented Programming in Java

https://www.infoq.com/articles/data-oriented-programming-java/

Inspired by and based on Brian Goetz’s blog post

@BrianGoetz
Java Language Architect

@philip_schwarzslides by https://www.slideshare.net/pjschwarz

https://www.infoq.com/articles/data-oriented-programming-java/
https://www.slideshare.net/pjschwarz/natural-transformations

@philip_schwarz

This slide deck was inspired by Brian Goetz’s great InfoQ blog post
Data Oriented Programming in Java.

I really liked the post and found it very useful. It is great to see Java
finally supporting Data Oriented Programming.

The first three slides of the deck consist of excerpts from the post.

https://www.infoq.com/articles/data-oriented-programming-java/

https://www.infoq.com/articles/data-oriented-programming-java/

@BrianGoetz

Data-oriented programming

Java's strong static typing and class-based modeling can still be tremendously useful for smaller
programs, just in different ways. Where OOP encourages us to use classes to model business
entities and processes, smaller codebases with fewer internal boundaries will often get more
mileage out of using classes to model data. Our services consume requests that come from the
outside world, such as via HTTP requests with untyped JSON/XML/YAML payloads. But only the
most trivial of services would want to work directly with data in this form; we'd like to represent
numbers as int or long rather than as strings of digits, dates as classes like LocalDateTime, and lists
as collections rather than long comma-delimited strings. (And we want to validate that data at the
boundary, before we act on it.)

Data-oriented programming encourages us to model data as data. Records, sealed classes,
and pattern matching, work together to make that easier.

Data-oriented programming encourages us to model data as (immutable) data, and keep the code
that embodies the business logic of how we act on that data separately. As this trend towards
smaller programs has progressed, Java has acquired new tools to make it easier to model data as
data (records), to directly model alternatives (sealed classes), and to flexibly destructure
polymorphic data (pattern matching) patterns.

Programming with data as data doesn't mean giving up static typing. One could do data-oriented
programming with only untyped maps and lists (one often does in languages like Javascript), but
static typing still has a lot to offer in terms of safety, readability, and maintainability, even when we
are only modeling plain data. (Undisciplined data-oriented code is often called "stringly typed",
because it uses strings to model things that shouldn't be modeled as strings, such as numbers,
dates, and lists.)

https://www.infoq.com/articles/java-14-feature-spotlight/
https://www.infoq.com/articles/java-sealed-classes/
https://www.infoq.com/articles/java-pattern-matching/

The combination of records, sealed types, and pattern matching makes it easy to follow these principles,
yielding more concise, readable, and more reliable programs.

While programming with data as data may be a little unfamiliar given Java's OO underpinnings, these
techniques are well worth adding to our toolbox.

It's not either/or
Many of the ideas outlined here may look, at first, to be somewhat "un-Java-like", because most of us have been taught to start by modeling entities and
processes as objects. But in reality, our programs often work with relatively simple data, which often comes from the "outside world" where we can't count
on it fitting cleanly into the Java type system. …

When we're modeling complex entities, or writing rich libraries such as java.util.stream, OO techniques have a lot to offer us. But when we're building
simple services that process plain, ad-hoc data, the techniques of data-oriented programming may offer us a straighter path. Similarly, when exchanging
complex results across an API boundary (such as our match result example), it is often simpler and clearer to define an ad-hoc data schema using ADTs,
than to complect results and behavior in a stateful object (as the Java Matcher API does.)

The techniques of OOP and data-oriented programming are not at odds; they are different tools for different granularities and situations. We can freely
mix and match them as we see fit.

Algebraic data types
This combination of records and sealed types is an example of what are called algebraic data
types (ADTs). Records are a form of "product types", so-called because their state space is the cartesian
product of that of their components. Sealed classes are a form of "sum types", so-called because the set
of possible values is the sum (union) of the value sets of the alternatives. This simple combination of
mechanisms -- aggregation and choice -- is deceptively powerful, and shows up in many programming
languages.@BrianGoetz

Data oriented programming in Java

Records, sealed classes, and pattern matching are designed to work together to support
data-oriented programming.

Records allow us to simply model data using classes; sealed classes let us model choices;
and pattern matching provides us with an easy and type-safe way of acting on polymorphic
data.

Support for pattern matching has come in several increments; the first added only type-test
patterns and only supported them in instanceof; the next supported type-test patterns
in switch as well; and most recently, deconstruction patterns for records were added in Java
19. The examples in this article will make use of all of these features.

While records are syntactically concise, their main strength is that they let us cleanly and
simply model aggregates.

Just as with all data modeling, there are creative decisions to make, and some modelings are
better than others.

Using the combination of records and sealed classes also makes it easier to make illegal
states unrepresentable, further improving safety and maintainability.

@BrianGoetz

https://openjdk.java.net/jeps/405

Among Haskell, Scala and Java, Haskell was the first to include features
enabling Data Oriented programming. When Scala was born, it also supported
the paradigm. In Java, support for the paradigm is being retrofitted.

In the next three slides we look at how, since its inception, Scala
included features enabling Data Oriented programming: case classes,
sealed abstract classes (or sealed traits), and pattern matching.

Chapter 15 Case Classes and Pattern Matching

This chapter introduces case classes and pattern matching, twin constructs that support you when writing regular, non-
encapsulated data structures. These two constructs are particularly helpful for tree-like recursive data. If you have
programmed in a functional language before, then you will probably recognize pattern matching. Case classes will be
new to you, though. Case classes are Scala’s way to allow pattern matching on objects without requiring a large amount
of boilerplate. In the common case, all you need to do is add a single case keyword to each class that you want to be
pattern matchable. This chapter starts with a simple example of case classes and pattern matching. It then goes through
all of the kinds of patterns that are supported, talks about the role of sealed classes, discusses the Option type, and
shows some non-obvious places in the language where pattern matching is used. Finally, a larger, more realistic example
of pattern matching is shown.

15.1 A simple example

Before delving into all the rules and nuances of pattern matching, it is worth looking at a simple example to get the
general idea. Let’s say you need to write a library that manipulates arithmetic expressions, perhaps as part of a domain-
specific language you are designing. A first step to tackle this problem is the definition of the input data. To keep things
simple, we’ll concentrate on arithmetic expressions consisting of variables, numbers, and unary and binary operations.
This is expressed by the hierarchy of Scala classes shown in Listing 15.1.

The hierarchy includes an abstract base class Expr with four subclasses, one for each kind of expression being
considered. The bodies of all five classes are empty. As mentioned previously, in Scala you can leave out the braces
around an empty class body if you wish, so class C is the same as class C {}.

2007

Case classes
The other noteworthy thing
about the declarations of Listing
15.1 is that each subclass has a
case modifier. Classes with such
a modifier are called case
classes. Using the modifier
makes the Scala compiler add
some syntactic conveniences to
your class.

abstract class Expr
case class Var(name: String) extends Expr
case class Number(num: Double) extends Expr
case class UnOp(operator: String, arg: Expr) extends Expr
case class BinOp(operator: String, left: Expr, right: Expr) extends Expr

Listing 15.1 · Defining case classes.

15.5 Sealed classes

Whenever you write a pattern match, you need to make sure you have covered all of the possible cases. Sometimes
you can do this by adding a default case at the end of the match, but that only applies if there is a sensible default
behavior. What do you do if there is no default? How can you ever feel safe that you covered all the cases?

In fact, you can enlist the help of the Scala compiler in detecting missing combinations of patterns in a match
expression. To be able to do this, the compiler needs to be able to tell which are the possible cases. In general, this is
impossible in Scala, because new case classes can be defined at any time and in arbitrary compilation units. For
instance, nothing would prevent you from adding a fifth case class to the Expr class hierarchy in a different
compilation unit from the one where the other four cases are defined.

The alternative is to make the superclass of your case classes sealed. A sealed class cannot have any new subclasses
added except the ones in the same file. This is very useful for pattern matching, because it means you only need to
worry about the subclasses you already know about. What’s more, you get better compiler support as well. If you
match against case classes that inherit from a sealed class, the compiler will flag missing combinations of patterns with
a warning message.

Therefore, if you write a hierarchy of classes intended to be pattern matched, you should consider sealing them. Simply
put the sealed keyword in front of the class at the top of the hierarchy. Programmers using your class hierarchy will
then feel confident in pattern matching against it. The sealed keyword, therefore, is often a license to pattern match.
Listing 15.16 shows an example in which Expr is turned into a sealed class.

sealed abstract class Expr
case class Var(name: String) extends Expr
case class Number(num: Double) extends Expr
case class UnOp(operator: String, arg: Expr) extends Expr
case class BinOp(operator: String, left: Expr, right: Expr) extends Expr

Listing 15.16 · A sealed hierarchy of case classes.

2007

Pattern matching

Say you want to simplify arithmetic expressions of the kinds just presented. There is a multitude of possible
simplification rules. The following three rules just serve as an illustration:

UnOp("-", UnOp("-", e)) => e // Double negation
BinOp("+", e, Number(0)) => e // Adding zero
BinOp("*", e, Number(1)) => e // Multiplying by one

Using pattern matching, these rules can be taken almost as they are to form the core of a simplification function in
Scala, as shown in Listing 15.2. The function, simplifyTop, can be used like this:

scala> simplifyTop(UnOp("-", UnOp("-", Var("x"))))
res4: Expr = Var(x)

def simplifyTop(expr: Expr): Expr = expr match {
case UnOp("-", UnOp("-", e)) => e // Double negation
case BinOp("+", e, Number(0)) => e // Adding zero
case BinOp("*", e, Number(1)) => e // Multiplying by one
case _ => expr

}

Listing 15.2 · The simplifyTop function, which does a pattern match.

2007

In the next two slides we go back to Brian Goetz’s blog
post to see how ADTs for ad-hoc instances of data
structures like Option and Tree can be written in Java 19.

Application: Ad-hoc data structures

Algebraic data types are also useful for modeling ad-hoc versions of general purpose data structures.
The popular class Optional could be modeled as an algebraic data type:

sealed interface Opt<T> {
record Some<T>(T value) implements Opt<T> { }
record None<T>() implements Opt<T> { }

}

(This is actually how Optional is defined in most functional languages.)

Common operations on Opt can be implemented with pattern matching:

static<T, U> Opt<U> map(Opt<T> opt, Function<T, U> mapper) {
return switch (opt) {
case Some<T>(var v) -> new Some<>(mapper.apply(v));
case None<T>() -> new None<>();

}
}

Similarly, a binary tree can be implemented as:

sealed interface Tree<T> {
record Nil<T>() implements Tree<T> { }
record Node<T>(Tree<T> left, T val, Tree<T> right) implements Tree<T> { }

}

@BrianGoetz

and we can implement the usual operations with pattern matching:

static<T> boolean contains(Tree<T> tree, T target) {
return switch (tree) {
case Nil() -> false;
case Node(var left, var val, var right) ->
target.equals(val) || left.contains(target) || right.contains(target);

};
}

static<T> void inorder(Tree<T> t, Consumer<T> c) {
switch (tree) {
case Nil(): break;
case Node(var left, var val, var right):
inorder(left, c);
c.accept(val);
inorder(right, c);

};
}

It may seem odd to see this behavior written as static methods, when common behaviors like traversal
should "obviously" be implemented as abstract methods on the base interface. And certainly, some
methods may well make sense to put into the interface. But the combination of records, sealed classes, and
pattern matching offers us alternatives that we didn't have before; we could implement them the old
fashioned way (with an abstract method in the base class and concrete methods in each subclass); as default
methods in the abstract class implemented in one place with pattern matching; as static methods; or (when
recursion is not needed), as ad-hoc traversals inline at the point of use.

Because the data carrier is purpose-built for the situation, we get to choose whether we want the behavior
to travel with the data or not. This approach is not at odds with object orientation; it is a useful addition to
our toolbox that can be used alongside OO, as the situation demands.

@BrianGoetz

@philip_schwarz

While in Programming in Scala (first edition) we saw the three features that enable Data
Oriented programming, we did not come across any references to the term Algebraic
Data Type, so let us turn to later Scala books that do define the term.

By the way, if you are interested in a more comprehensive introduction to Algebraic Data
Types, then take a look at the following deck, where the next four slides originate from:

Defining functional data structures

A functional data structure is (not surprisingly) operated on using only pure functions. Remember, a pure function must not
change data in place or perform other side effects. Therefore, functional data structures are by definition immutable.
…
let’s examine what’s probably the most ubiquitous functional data structure, the singly linked list. The definition here is
identical in spirit to (though simpler than) the List data type defined in Scala’s standard library.
…
Let’s look first at the definition of the data type, which begins with the keywords sealed trait.

In general, we introduce a data type with the trait keyword.

A trait is an abstract interface that may optionally contain implementations of some methods.

Here we’re declaring a trait, called List, with no methods on it.

Adding sealed in front means that all implementations of the trait must be declared in this file.1

There are two such implementations, or data constructors, of List (each introduced with the keyword case) declared next, to
represent the two possible forms a List can take.

As the figure…shows, a List can be empty, denoted by the data constructor Nil, or it can be nonempty, denoted by the data
constructor Cons (traditionally short for construct). A nonempty list consists of an initial element, head, followed by a List
(possibly empty) of remaining elements (the tail).

1 We could also say abstract class here instead of trait. The distinction between the two is not at all significant for our
purposes right now. …

sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]

Functional Programming in Scala
(by Paul Chiusano and Runar Bjarnason)

@pchiusano@runarorama

3.5 Trees
List is just one example of what’s called an algebraic data type (ADT). (Somewhat confusingly, ADT is sometimes used
elsewhere to stand for abstract data type.) An ADT is just a data type defined by one or more data constructors, each of
which may contain zero or more arguments. We say that the data type is the sum or union of its data constructors, and
each data constructor is the product of its arguments, hence the name algebraic data type.14

14 The naming is not coincidental. There’s a deep connection, beyond the scope of this book, between the
“addition” and “multiplication” of types to form an ADT and addition and multiplication of numbers.

Tuple types in Scala
Pairs and tuples of other arities are also algebraic data types. They work just like the ADTs we’ve been writing here, but have
special syntax…

Algebraic data types can be used to define other data structures. Let’s define a simple binary tree data structure:

sealed trait Tree[+A]
case class Leaf[A](value: A) extends Tree[A]
case class Branch[A](left: Tree[A], right: Tree[A]) extends Tree[A]
…

Functional Programming in Scala
(by Paul Chiusano and Runar Bjarnason)

@pchiusano@runarorama

sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]

• The List algebraic data type is the sum of its data constructors, Nil and Cons.
• The Nil constructor has no arguments.
• The Cons constructor is the product of its arguments head: A and tail: List[A].

sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]

• The Tree algebraic data type is the sum of its data constructors, Leaf and Branch.
• The Leaf constructor has a single argument.
• The Branch constructor is the product of its arguments left: Tree[A] and right: Tree[A]

sealed trait Tree[+A]
case class Leaf[A](value: A) extends Tree[A]
case class Branch[A](left: Tree[A], right: Tree[A]) extends Tree[A]

Let’s recap (informally) what we just saw in FPiS.

SUM

SUM

PRODUCT

PRODUCT

Algebraic Type Systems
Now we can define what we mean by an “algebraic type system.” It’s not as scary as it
sounds—an algebraic type system is simply one where every compound type is
composed from smaller types by AND-ing or OR-ing them together. F#, like most
functional languages (but unlike OO languages), has a built-in algebraic type
system.

Using AND and OR to build new data types should feel familiar—we used the same kind
of AND and OR to document our domain. We’ll see shortly that an algebraic type
system is indeed an excellent tool for domain modeling. @ScottWlaschin

Jargon Alert: “Product Types” and “Sum Types”

The types that are built using AND are called product types.

The types that are built using OR are called sum types or tagged unions or, in F#
terminology, discriminated unions. In this book I will often call them choice types,
because I think that best describes their role in domain modeling.

In the next slide we see that sum types, as opposed
to product types, are also known as coproducts.

4.1 Data
The fundamental building blocks of data types are

• final case class also known as products
• sealed abstract class also known as coproducts
• case object and Int, Double, String (etc) values

with no methods or fields other than the constructor parameters. We prefer abstract class to trait in order to get
better binary compatibility and to discourage trait mixing. The collective name for products, coproducts and values is
Algebraic Data Type (ADT).

We compose data types from the AND and XOR (exclusive OR) Boolean algebra: a product contains
every type that it is composed of, but a coproduct can be only one. For example

• product: ABC = a AND b AND c
• coproduct: XYZ = x XOR y XOR z

written in Scala

// values
case object A
type B = String
type C = Int

// product
final case class ABC(a: A.type, b: B, c: C)

// coproduct
sealed abstract class XYZ
case object X extends XYZ
case object Y extends XYZ

4.1.1 Recursive ADTs
When an ADT refers to itself, we call it a Recursive Algebraic Data Type.

The standard library List is recursive because :: (the cons cell) contains a reference
to List. The following is a simplification of the actual implementation:

sealed abstract class List[+A]
case object Nil extends List[Nothing]
final case class ::[+A](head: A, tail: List[A]) extends List[A]

@philip_schwarz

In the next three slides, we’ll see what Brian Goetz meant when he said, “that’s how
Optional is defined in most functional languages”.

If you are not familiar with Monads then feel free to simply skim the third of those slides.

If you want to know more about the Option Monad, then see the following slide deck:

We introduce a new type, Option. As we mentioned earlier, this type also exists in the
Scala standard library, but we’re re-creating it here for pedagogical purposes:

sealed trait Option[+A]
case class Some[+A](get: A) extends Option[A]
case object None extends Option[Nothing]

Option is mandatory! Do not use null to denote that an optional value is absent. Let’s have a
look at how Option is defined:

sealed abstract class Option[+A] extends IterableOnce[A]
final case class Some[+A](value: A) extends Option[A]
case object None extends Option[Nothing]

Since creating new data types is so cheap, and it is possible to work with them
polymorphically, most functional languages define some notion of an optional value. In
Haskell it is called Maybe, in Scala it is Option, … Regardless of the language, the
structure of the data type is similar:

data Maybe a = Nothing –- no value
| Just a -- holds a value

sealed abstract class Option[+A] // optional value
case object None extends Option[Nothing] // no value
case class Some[A](value: A) extends Option[A] // holds a value

We have already encountered scalaz’s improvement over scala.Option, called Maybe. It is
an improvement because it does not have any unsafe methods like Option.get, which can
throw an exception, and is invariant.

It is typically used to represent when a thing may be present or not without giving any extra
context as to why it may be missing.

sealed abstract class Maybe[A] { ... }
object Maybe {

final case class Empty[A]() extends Maybe[A]
final case class Just[A](a: A) extends Maybe[A]

Over the years we have all got very used to
the definition of the Option monad’s
Algebraic Data Type (ADT).

With the arrival of Scala 3 however, the definition of the
Option ADT becomes much terser thanks to the fact that it
can be implemented using the new enum concept .

enum Option[+A]:
case Some(a: A)
case None

def map[B](f: A => B): Option[B] =
this match
case Some(a) => Some(f(a))
case None => None

def flatMap[B](f: A => Option[B]): Option[B] =
this match
case Some(a) => f(a)
case None => None

def fold[B](ifEmpty: => B)(f: A => B) =
this match
case Some(a) => f(a)
case None => ifEmpty

def filter(p: A => Boolean): Option[A] =
this match
case Some(a) if p(a) => Some(a)
case _ => None

def withFilter(p: A => Boolean): Option[A] =
filter(p)

object Option :
def pure[A](a: A): Option[A] = Some(a)
def none: Option[Nothing] = None

extension[A](a: A):
def some: Option[A] = Some(a)

Option is a monad, so we have given it a
flatMap method and a pure method. In Scala
the latter is not strictly needed, but we’ll make
use of it later.

Every monad is also a functor, and this is
reflected in the fact that we have given Option a
map method.

We gave Option a fold method, to allow us to
interpret/execute the Option effect, i.e. to
escape from the Option container, or as John a
De Goes puts it, to translate away from
optionality by providing a default value.

We want our Option to integrate with for
comprehensions sufficiently well for our current
purposes, so in addition to map and flatMap
methods, we have given it a simplistic withFilter
method that is just implemented in terms of
filter, another pretty essential method.

There are of course many many other methods
that we would normally want to add to Option.

The some and none methods
are just there to provide the
convenience of Cats-like syntax
for lifting a pure value into an
Option and for referring to the
empty Option instance.

What about Algebraic Data Types in Haskell?

Let’s turn to that in the next four slides.

Algebraic types and pattern matching

Algebraic data types can express a combination of types, for example:

type Name = String
type Age = Int
data Person = P String Int -- combination

They can also express a composite of alternatives:

data MaybeInt = NoInt | JustInt Int

Here, each alternative represents a valid constructor of the algebraic type:

maybeInts = [JustInt 2, JustInt 3, JustInt 5, NoInt]

Type combination is also known as “product of types” and the type alternation as “sum of types”. In this way, we
can create an “algebra of types”, with sum and product as operators, hence the name Algebraic data types.

By parametrizing algebraic types, we can create generic types:

data Maybe' a = Nothing' | Just’ a

Algebraic data type constructors also serve as “deconstructors“ in pattern matching:

fMaybe f (Just' x) = Just' (f x)
fMaybe f Nothing' = Nothing’

fMaybes = map (fMaybe (* 2)) [Just’ 2, Just’ 3, Nothing]

On the left of the = sign we deconstruct; on the right we construct. In this sense, pattern matching is the
complement of algebraic data types: they are two sides of the same coin.

16.1 Product types—combining types with “and”
Product types are created by combining two or more existing types with and. Here are some common examples:

• A fraction can be defined as a numerator (Integer) and denominator (another Integer).
• A street address might be a number (Int) and a street name (String).
• A mailing address might be a street address and a city (String) and a state (String) and a zip code (Int).

Although the name product type might make this method of combining types sound sophisticated, this is the
most common way in all programming languages to define types. Nearly all programming languages support
product types. The simplest example is a struct from C. Here’s an example in C of a struct for a book and an
author.

Listing 16.1 C structs are product types—an example with a book and author

struct author_name {
char *first_name;
char *last_name;

};

struct book {
author_name author;
char *isbn;
char *title;
int year_published;
double price;

};

In this example, you can see that the author_name type is made by combining two Strings (for those unfamiliar,
char * in C represents an array of characters). The book type is made by combining an author_name, two Strings,
an Int, and a Double. Both author_name and book are made by combining other types with an and. C’s structs are
the predecessor to similar types in nearly every language, including classes and JSON.

Listing 16.2 C’s author_name and book structs translated to Haskell

data AuthorName = AuthorName String String
data Book = Author String String Int

16.2 Sum types—combining types with “or ”
Sum types are a surprisingly powerful tool, given that they provide only the capability to combine two types
with or. Here are examples of combining types with or:

• A die is either a 6-sided die or a 20-sided die or
• A paper is authored by either a person (String) or a group of people ([String]).
• A list is either an empty list ([]) or an item consed with another list (a:[a]).

The most straightforward sum type is Bool.

Listing 16.8 A common sum type: Bool

data Bool = False | True

An instance of Bool is either the False data constructor or the True data constructor. This can give the mistaken
impression that sum types are just Haskell’s way of creating enu- merative types that exist in many other
programming languages. But you’ve already seen a case in which sum types can be used for something more
powerful, in lesson 12 when you defined two types of names.

Listing 16.9 Using a sum type to model names with and without middle names

type FirstName = String
type LastName = String
type MiddleName = String

data Name = Name FirstName LastName | NameWithMiddle FirstName MiddleName LastName

In this example, you can use two type constructors that can either be a FirstName consisting of two Strings or a
NameWithMiddle consisting of three Strings. Here, using or between two types allows you to be expressive about
what types mean. Adding or to the tools you can use to combine types opens up worlds of possibility in
Haskell that aren’t available in any other programming language without sum types.

Data
Haskell has a very clean syntax for ADTs. This is a linked list structure:

data List a = Nil | Cons a (List a)

List is a type constructor, a is the type parameter, | separates the data constructors, which are: Nil the empty list and
a Cons cell. Cons takes two parameters, which are separated by whitespace: no commas and no parameter brackets.

There is no subtyping in Haskell, so there is no such thing as the Nil type or the Cons type: both construct a List.

In his blog post, Brian Goetz first looked at the following sample applications of Data Oriented programming:

• Complex return types (we skipped this)
• Ad-hoc data structures (we covered this)

He then turned to more complex domains and chose as an example the evaluation of simple arithmetic expressions.

This is a classic example of using ADTs.

We got a first hint of the expression ADT (albeit a slightly more complex version) in the first edition of Programming in Scala:

See the next two slides for when I first came across examples of the expression ADT in Haskell and Scala.

sealed abstract class Expr
case class Var(name: String) extends Expr
case class Number(num: Double) extends Expr
case class UnOp(operator: String, arg: Expr) extends Expr
case class BinOp(operator: String, left: Expr, right: Expr) extends Expr

8.7 Abstract machine

For our second extended example, consider a type of simple arithmetic expressions built up from integers using an
addition operator, together with a function that evaluates such an expression to an integer value:

data Expr = Val Int | Add Expr Expr

value :: Expr -> Int
value (Val n) = n
value (Add x y) = value x + value y

For example, the expression (2 + 3) + 4 is evaluated as follows:

value (Add (Add (Val 2) (Val 3)) (Val 4))
= { applying value }

value (Add (Val 2) (Val 3)) + value (Val 4)
= { applying the first value }

(value (Val 2) + value (Val 3)) + value (Val 4)
= { applying the first value }

(2 + value (Val 3)) + value (Val 4)
= { applying the first value }

(2 + 3) + value (Val 4)
= { applying the first + }

5 + value (Val 4)
= { applying value }

5 + 4
= { applying + }

9

2007

4.7 Pattern Matching

Martin Odersky

In did this course in 2013 (the second edition more
recently). The lectures for the first edition are freely
available on YouTube.

@philip_schwarz

Next, let’s see Brian Goetz
present his expression ADT.

More complex domains

The domains we've looked at so far have either been "throwaways" (return values used across a call
boundary) or modeling general domains like lists and trees. But the same approach is also useful for
more complex application-specific domains. If we wanted to model an arithmetic expression, we
could do so with:

sealed interface Node { }
sealed interface BinaryNode extends Node {
Node left(); Node right();

}

record AddNode(Node left, Node right) implements BinaryNode { }
record MulNode(Node left, Node right) implements BinaryNode { }
record ExpNode(Node left, int exp) implements Node { }
record NegNode(Node node) implements Node { }
record ConstNode(double val) implements Node { }
record VarNode(String name) implements Node { }

Having the intermediate sealed interface BinaryNode which abstracts over addition and
multiplication gives us the choice when matching over a Node; we could handle both addition and
multiplication together by matching on BinaryNode, or handle them individually, as the situation
requires. The language will still make sure we covered all the cases.

@BrianGoetz

Writing an evaluator for these expressions is trivial. Since we have variables in our expressions, we'll need a store for
those, which we pass into the evaluator:

double eval(Node n, Function<String, Double> vars) {
return switch (n) {
case AddNode(var left, var right) -> eval(left, vars) + eval(right, vars);
case MulNode(var left, var right) -> eval(left, vars) * eval(right, vars);
case ExpNode(var node, int exp) -> Math.exp(eval(node, vars), exp);
case NegNode(var node) -> -eval(node, vars);
case ConstNode(double val) -> val;
case VarNode(String name) -> vars.apply(name);

}
}

The records which define the terminal nodes have reasonable toString implementations, but the output is probably more
verbose than we'd like. We can easily write a formatter to produce output that looks more like a mathematical
expression:

String format(Node n) {
return switch (n) {
case AddNode(var left, var right) -> String.format("("%s + %s)", format(left), format(right));
case MulNode(var left, var right) -> String.format("("%s * %s)", format(left), format(right));
case ExpNode(var node, int exp) -> String.format("%s^%d", format(node), exp);
case NegNode(var node) -> String.format("-%s", format(node));
case ConstNode(double val) -> Double.toString(val);
case VarNode(String name) -> name;

}
}

@BrianGoetz

In order to run that code, I downloaded
the Java 19 early access build.

When I tried to compile the code, I got the following error, so I replaced the
call to Math.exp with a call to Math.pow and renamed ExpNode to PowNode.

For the sake of consistency with the classic expression ADT, I also did the following:
• renamed Node to Expr
• renamed AddNode, MulNode, etc. to Add, Mul, etc.
• dropped the BinaryNode interface

See next slide for the resulting code.

import java.util.Map;
import java.util.function.Function;

public class Main {

static double eval(Expr e, Function<String, Double> vars) {
return switch (e) {

case Add(var left, var right) -> eval(left, vars) + eval(right, vars);
case Mul(var left, var right) -> eval(left, vars) * eval(right, vars);
case Pow(var expr, int exp) -> Math.pow(eval(expr, vars), exp);
case Neg(var expr) -> -eval(expr, vars);
case Const(double val) -> val;
case Var(String name) -> vars.apply(name);

};
}

static String format(Expr e) {
return switch (e) {

case Add(var left, var right) -> String.format("(%s + %s)", format(left), format(right));
case Mul(var left, var right) -> String.format("(%s * %s)", format(left), format(right));
case Pow(var expr, int exp) -> String.format("%s^%d", format(expr), exp);
case Neg(var expr) -> String.format("-%s", format(expr));
case Const(double val) -> Double.toString(val);
case Var(String name) -> name;

};
}

static Map<String,Double> bindings = Map.of("x",4.0,"y", 2.0);

static Function<String,Double> vars = v -> bindings.getOrDefault(v, 0.0);

public static void main(String[] args) { … }

}

public static void main(String[] args) {

var expr =
new Add(

new Mul(
new Pow(new Const(3.0),2),
new Var("x")),

new Neg(new Const(5.0)));

System.out.println(”expr=” + format(expr));
System.out.println("vars=” + bindings);
System.out.println(”value=” + eval(expr,vars));

}

public sealed interface Expr { }
record Add(Expr left, Expr right) implements Expr { }
record Mul(Expr left, Expr right) implements Expr { }
record Pow(Expr left, int exp) implements Expr { }
record Neg(Expr expr) implements Expr { }
record Const(double val) implements Expr { }
record Var(String name) implements Expr { }

Let’s run that code:

Now let’s translate
that code into Scala.

def eval(e: Expr, vars: String => Double): Double =
e match

case Add(left, right) => eval(left, vars) + eval(right, vars)
case Mul(left, right) => eval(left, vars) * eval(right, vars)
case Pow(expr, exp) => Math.pow(eval(expr, vars), exp)
case Neg(expr) => - eval(expr, vars)
case Const(value) => value
case Var(name) => vars(name)

def format(e: Expr): String =
e match

case Add(left, right) => s"(${format(left)} + ${format(right)})"
case Mul(left, right) => s"(${format(left)} * ${format(right)})"
case Pow(expr, exp) => s"${format(expr)}^$exp"
case Neg(expr) => s"-${format(expr)}"
case Const(value) => value.toString
case Var(name) => name

val bindings = Map("x" -> 4.0, "y" -> 2.0)

def vars(v: String): Double = bindings.getOrElse(v, 0.0)

@main def main(): Unit =
val expr = Add(

Mul(
Pow(Const(3.0),2),
Var("x")),

Neg(Const(5.0)))

println(s"expr=${format(expr)}")
println(s"vars=$bindings")
println(s"result=${eval(expr,vars)}")

enum Expr:
case Add(left: Expr, right: Expr)
case Mul(left: Expr, right: Expr)
case Pow(left: Expr, exp: Int)
case Neg(node: Expr)
case Const(value: Double)
case Var(name: String)

expr=((3.0^2 * x) + -5.0)
vars=Map(x -> 4.0, y -> 2.0)
result=31.0

sealed trait Expr
case class Add(left: Expr, right: Expr) extends Expr
case class Mul(left: Expr, right: Expr) extends Expr
case class Pow(expr: Expr, exp: Int) extends Expr
case class Neg(expr: Expr) extends Expr
case class Const(value: Double) extends Expr
case class Var(name: String) extends Expr

def eval(e: Expr, vars: String => Double): Double =
e match

case Add(left, right) => eval(left, vars) + eval(right, vars)
case Mul(left, right) => eval(left, vars) * eval(right, vars)
case Pow(expr, exp) => Math.pow(eval(expr, vars), exp)
case Neg(expr) => - eval(expr, vars)
case Const(value) => value
case Var(name) => vars(name)

def format(e: Expr): String =
e match

case Add(left, right) => s"(${format(left)} + ${format(right)})"
case Mul(left, right) => s"(${format(left)} * ${format(right)})"
case Pow(expr, exp) => s"${format(expr)}^$exp"
case Neg(expr) => s"-${format(expr)}"
case Const(value) => value.toString
case Var(name) => name

val bindings = Map("x" -> 4.0, "y" -> 2.0)

def vars(v: String): Double = bindings.getOrElse(v, 0.0)

@main def main(): Unit =
val expr = Add(

Mul(
Pow(Const(3.0),2),
Var("x")),

Neg(Const(5.0)))

println(s"expr=${format(expr)}")
println(s"vars=$bindings")
println(s"result=${eval(expr,vars)}")

Same code as on the previous slide, except
that for the ADT, instead of using the
syntactic sugar afforded by enum, we use the
more verbose sealed trait plus case classes.

And now, to conclude this slide deck,
let’s translate the code into Haskell.

data Expr = Add Expr Expr |
Mul Expr Expr |
Pow Expr Int |
Neg Expr |
Const Double |
Var String

eval :: Expr -> (String -> Double) -> Double
eval (Add l r) vars = eval l vars + eval r vars
eval (Mul l r) vars = eval l vars * eval r vars
eval (Pow e n) vars = eval e vars ^ n
eval (Neg e) vars = - eval e vars
eval (Const i) _ = i
eval (Var v) vars = vars v

format :: Expr -> String
format (Add l r) = "(" ++ format l ++ " + " ++ format r ++ ")"
format (Mul l r) = "(" ++ format l ++ " * " ++ format r ++ ")"
format (Pow e n) = format e ++ " ^ " ++ show n
format (Neg e) = "-" ++ format e
format (Const i) = show i
format (Var v) = v

bindings = [("x", 4.0), ("y", 2.0)]

vars :: String -> Double
vars v = maybe undefined id (lookup v bindings)

main :: IO ()
main = let expression = (Add

(Mul
(Pow (Const 3.0) 2)
(Var "x")

)
(Neg (Const 5.0))

)
in do putStrLn ("expr=" ++ format expression)

putStr "vars="
print bindings
putStrLn ("value=" ++ show (eval expression vars))

expr=((3.0 ^ 2 * x) + -5.0)
vars=[("x",4.0),("y",2.0)]
value=31.0

https://twitter.com/BrianGoetz/status/1539319234915880961

https://twitter.com/BrianGoetz/status/1539319234915880961

That’s all. I hope you enjoyed that.

@philip_schwarz

