
The Expression Problem
learn about the expression problem by looking at
both the strengths/weaknesses of basic OOP/FP
and the role of different types of polymorphism

Part 1

Dean Wampler
@deanwampler Li Haoyi

@lihaoyi

Robert Martin
@unclebobmartin Ryan Lemmer

Sandi Metz
@sandimetz

@philip_schwarzslides by https://www.slideshare.net/pjschwarz

HaskellScalaJava

through the work of

https://www.slideshare.net/pjschwarz/natural-transformations

We begin by looking at how Robert Martin explains
what he calls the Data/Object anti-symmetry.

@philip_schwarz

Data/Object Anti-Symmetry

…the difference between objects and data structures.

Objects hide their data behind abstractions and expose functions that operate on that data.

Data structures expose their data and have no meaningful functions.

Go back and read that again. Notice the complementary nature of the two definitions. They are virtual opposites. This
difference may seem trivial, but it has far-reaching implications.

Consider, for example, the procedural shape example in Listing 6-5. The Geometry class operates on the three shape classes. The
shape classes are simple data structures without any behavior. All the behavior is in the Geometry class.

Robert Martin
@unclebobmartin

public class Geometry {
public final double PI = 3.141592653589793;
public double area(Object shape) throws NoSuchShapeException {

if (shape instanceof Square) {
Square s = (Square)shape;
return s.side * s.side;

}
else if (shape instanceof Rectangle) {

Rectangle r = (Rectangle)shape;
return r.height * r.width;

}
else if (shape instanceof Circle) {

Circle c = (Circle)shape;
return PI * c.radius * c.radius;

}
throw new NoSuchShapeException();

}

public class Square {
public Point topLeft;
public double side;

}

public class Rectangle {
public Point topLeft;
public double height;
public double width;

}

public class Circle {
public Point center;
public double radius;

}

https://learning.oreilly.com/library/view/clean-code-a/9780136083238/chapter06.html

public class Geometry {

public final double PI = 3.141592653589793;

public double area(Object shape) throws NoSuchShapeException {

if (shape instanceof Square) {
Square s = (Square)shape;
return s.side * s.side;

}
else if (shape instanceof Rectangle) {

Rectangle r = (Rectangle)shape;
return r.height * r.width;

}
else if (shape instanceof Circle) {

Circle c = (Circle)shape;
return PI * c.radius * c.radius;

}
throw new NoSuchShapeException();

}

public class Square {
public Point topLeft;
public double side;

}

public class Rectangle {
public Point topLeft;
public double height;
public double width;

}

public class Circle {
public Point center;
public double radius;

}

Object-oriented programmers might wrinkle their noses at this and complain that it is procedural—and they’d be right. But the
sneer may not be warranted.

Consider what would happen if a perimeter() function were added to Geometry.

The shape classes would be unaffected! Any other classes that depended upon the shapes would also be unaffected!

On the other hand, if I add a new shape, I must change all the functions in Geometry to deal with it.

Again, read that over. Notice that the two conditions are diametrically opposed.

Robert Martin
@unclebobmartin

public static void main(String[] args) {

var geometry = new Geometry();

var origin = new Point(0,0);

var square = new Square();
square.topLeft = origin;
square.side = 5;

var rectangle = new Rectangle();
rectangle.topLeft = origin;
rectangle.width = 2;
rectangle.height = 3;

var circle = new Circle();
circle.center = origin;
circle.radius = 1;

try {

if (geometry.area(square) != 25)
throw new AssertionError("square assertion failed");

if (geometry.area(rectangle) != 6)
throw new AssertionError("rectangle assertion failed");

if (geometry.area(circle) != geometry.PI)
throw new AssertionError("circle assertion failed");

} catch (NoSuchShapeException e) {
e.printStackTrace();

}
}

Here is one way
to exercise that
code.

By the way, for
our current
purposes, we
can just use the
java.awt Point.

public class Geometry {

public final double PI = 3.141592653589793;

public double area(Shape shape) {
return switch(shape) {

case Square s -> s.side() * s.side();
case Rectangle r -> r.height() * r.width();
case Circle c -> PI * c.radius() * c.radius();

};
}

}

sealed interface Shape { }
record Square(Point topLeft, double side) implements Shape { }
record Rectangle (Point topLeft, double height, double width) implements Shape { }
record Circle (Point center, double radius) implements Shape { }

Let’s modernise the procedural program by using a sealed interface and records.

As we’ll see later, when we look at excerpts from Haskell Design Patterns, this
approach in which the area function is dispatched over the alternations
(alternatives?) of the Shape type, is called alternation-based ad-hoc polymorphism.

public class Geometry {

public final double PI = 3.141592653589793;

public double area(Object shape) throws NoSuchShapeException {
if (shape instanceof Square) {

Square s = (Square)shape;
return s.side * s.side;

}
else if (shape instanceof Rectangle) {

Rectangle r = (Rectangle)shape;
return r.height * r.width;

}
else if (shape instanceof Circle) {

Circle c = (Circle)shape;
return PI * c.radius * c.radius;

}
throw new NoSuchShapeException();

}

public class Square {
public Point topLeft;
public double side;

}

public class Rectangle {
public Point topLeft;
public double height;
public double width;

}

public class Circle {
public Point center;
public double radius;

}

public static void main(String[] args) {

var geometry = new Geometry();

var origin = new Point(0,0);

var square = new Square();
square.topLeft = origin;
square.side = 5;

var rectangle = new Rectangle();
rectangle.topLeft = origin;
rectangle.width = 2;
rectangle.height = 3;

var circle = new Circle();
circle.center = origin;
circle.radius = 1;

try {

if (geometry.area(square) != 25)
throw new AssertionError("square assertion failed");

if (geometry.area(rectangle) != 6)
throw new AssertionError("rectangle assertion failed");

if (geometry.area(circle) != geometry.PI)
throw new AssertionError("circle assertion failed");

} catch (NoSuchShapeException e) {
e.printStackTrace();

}
}

public static void main(String[] args) {

var geometry = new Geometry();

var origin = new Point(0,0);

var square = new Square(origin,5);

var rectangle = new Rectangle(origin,2,3);

var circle = new Circle(origin,1);

if (geometry.area(square) != 25)
throw new AssertionError("square assertion failed");

if (geometry.area(rectangle) != 6)
throw new AssertionError("rectangle assertion failed");

if (geometry.area(circle) != geometry.PI)
throw new AssertionError("circle assertion failed");

}

As Robert Martin said earlier, object-oriented programmers might wrinkle their noses at the
original procedural program.

Now that we have switched from using instanceof to using pattern-matching, object-oriented
programmers might wrinkle their noses at the use of pattern matching.

Because we now have a Shape interface implemented by Circle, Rectangle and Square, an OO
programmer could object that by pattern-matching on the subtype of Shape, we are violating
the Liskof Substitution Principle (see the next three slides for a refresher on this principle).

public class Geometry {

public final double PI = 3.141592653589793;

public double area(Shape shape) {
return switch(shape) {

case Square s -> s.side() * s.side();
case Rectangle r -> r.height() * r.width();
case Circle c -> PI * c.radius() * c.radius();

};
}

}

@philip_schwarz

Let q(x) be a property provable about objects x of type T.

Then q(y) should be provable for objects y of type S
where S is a subtype of T.

[in a Type hierarchy] the supertype’s behavior must be supported
by the subtypes: subtype objects can be substituted for supertype
objects without affecting the behavior of the using code.

Behaviour of ---->

supported
by ---->

2000
The Liskov Substitution Principle (LSP) - 1988 Barbara Liskov

S
O
LISKOV
I
D

Substitutability

[the LSP] allows using code to be written in terms of the supertype
specification, yet work correctly when using objects of the subtype.

For example, code can be written in terms of the Reader type, yet work correctly
when using a BufferedReader.

private void foo(BufferedReader bufferedReader) throws IOException
{

…
bar(bufferedReader);
…

}

private void bar(Reader reader) throws IOException
{

…
System.out.println(reader.read());
…

}

Barbara
Liskov

if (bicycle instanceof MountainBike)
{
// special treatment

}

trust

IS-A

Subclasses agree to a contract

they promise to be substitutable
for their superclasses.

Subclasses are not permitted to do anything that forces others to check
their type in order to know how to treat them or what to expect of them.

Subclasses that fail to honor their contract are difficult to use. They’re
“special”and cannot be freely substituted for their superclasses.

These subclasses are declaring that they are not really a
kind-of their superclass and cast doubt on the
correctness of the entire hierarchy.

http://www.poodr.com/

Sandi Metz
@sandimetz

When you honor the contract, you are following the Liskov
Substitution Principle, which is named for its creator, Barbara
Liskov, and supplies the “L” in the SOLID design principles.

The LSP principle’s notion of being able to substitute a subtype shape object for a supertype
shape object, safe in the knowledge that the behaviour of subtype shape objects does not
affect the behaviour of clients of the supertype shape object, is not relevant here because we
are not using OO programming: the subtype shape objects have no behaviour, they are just
anaemic data structures – we are using functional programming-style pattern-matching.

sealed interface Shape { }
record Square(Point topLeft, double side) implements Shape { }
record Rectangle (Point topLeft, double height, double width) implements Shape { }
record Circle (Point center, double radius) implements Shape { }

public double area(Shape shape) {
return switch(shape) {

case Square s -> s.side() * s.side();
case Rectangle r -> r.height() * r.width();
case Circle c -> PI * c.radius() * c.radius();

};
}

Now consider the object-oriented solution in Listing 6-6.

Here the area() method is polymorphic. No Geometry class is necessary.

So if I add a new shape, none of the existing functions are affected, but if I add a new function all of the shapes must be
changed!1

1. There are ways around this that are well known to experienced object-oriented designers: VISITOR, or dual-dispatch, for
example. But these techniques carry costs of their own and generally return the structure to that of a procedural program.

public class Square implements Shape {

private Point topLeft;
private double side;

public double area() {
return side*side;

}
}

public class Rectangle implements Shape {

private Point topLeft;
private double height;
private double width;

public double area() {
return height * width;

}
}

public class Circle implements Shape {

private Point center;
private double radius;

public static final double PI = 3.141592653589793;
public double area() {

return PI * radius * radius;
}

}
Robert Martin

@unclebobmartin

https://learning.oreilly.com/library/view/clean-code-a/9780136083238/chapter06.html

Again, we see the complementary nature of these two definitions; they are virtual opposites! This exposes the fundamental dichotomy
between objects and data structures:

Procedural code (code using data structures) makes it easy to add new functions without changing the existing data structures. OO
code, on the other hand, makes it easy to add new classes without changing existing functions.

The complement is also true:

Procedural code makes it hard to add new data structures because all the functions must change. OO code makes it hard to add
new functions because all the classes must change.

So, the things that are hard for OO are easy for procedures, and the things that are hard for procedures are easy for OO!
In any complex system there are going to be times when we want to add new data types rather than new functions. For these cases
objects and OO are most appropriate.

On the other hand, there will also be times when we’ll want to add new functions as opposed to data types. In that case procedural code
and data structures will be more appropriate.

Mature programmers know that the idea that everything is an object is a myth. Sometimes you really do want simple data structures
with procedures operating on them.

public class Square implements Shape {

private Point topLeft;
private double side;

public double area() {
return side*side;

}
}

public class Rectangle implements Shape {

private Point topLeft;
private double height;
private double width;

public double area() {
return height * width;

}
}

public class Circle implements Shape {

private Point center;
private double radius;

public static final double PI = 3.141592653589793;
public double area() {
return PI * radius * radius;

}
}

Robert Martin
@unclebobmartin

public interface Shape {
public double area();

}

public class Rectangle implements Shape {

private Point topLeft;
private double height;
private double width;

public Rectangle(Point topLeft, double height, double width){
this.topLeft = topLeft;
this.height = height;
this.width = width;

}

public double area() {
return height * width;

}
}

public class Circle implements Shape {
private Point center;
private double radius;

public Circle(Point center, double radius){
this.center = center;
this.radius = radius;

}

public static final double PI = 3.141592653589793;

public double area() {
return PI * radius * radius;

}
}

public class Square implements Shape {

private Point topLeft;
private double side;

public Square(Point topLeft, double side){
this.topLeft = topLeft;
this.side = side;

}

public double area() {
return side*side;

}
} public class Main {

public static void main(String[] args) {

var origin = new Point(0,0);
var square = new Square(origin, 5);
var rectangle = new Rectangle(origin, 2, 3);
var circle = new Circle(origin, 1);

if (square.area() != 25)
throw new AssertionError("square assertion failed");

if (rectangle.area() != 6)
throw new AssertionError("rectangle assertion failed");

if (circle.area() != Circle.PI)
throw new AssertionError("circle assertion failed");

}

}

Here is that code again, with
some missing bits added, and a
Main class, to exercise the code.

We said earlier that in the
procedural code we are using
alternation-based ad-hoc
polymorphism.

In this OO code instead, we are
using subtype polymorphism, in
which subtypes of Shape
(implementations of the Shape
interface) override (implement)
methods defined in the
supertype.

Now let’s look at how the Open Closed Principle
relates to what we have seen so far.

The Open-Closed Principle (OCP)

Modules should be both open and closed

1988
Bertrand Meyer

@Bertrand_Meyer

Robert Martin
@unclebobmartin

2002

Software entities (classes, modules, functions, etc.) should
be open for extension but closed for modification.

Modules that conform to OCP have two primary attributes:

• They are open for extension. This means that the behavior of the module
can be extended. As the requirements of the application change, we can
extend the module with new behaviors that satisfy those changes. In other
words, we are able to change what the module does.

• They are closed for modification. Extending the behavior of a module does
not result in changes to the source, or binary, code of the module. The
binary executable version of the module…remains untouched.

A module is
• Open if it is still available for extension
• Closed if it is available for use by other modules

Addition of new

Function Type

Polymorphism
Subtype OCP✕ OCP✓

Alternation-based ad-hoc OCP✓ OCP✕

Is code using the type of polymorphism
shown below, OPEN and CLOSED with respect
to the type of addition shown on the right?

Closely related to the data/object anti-symmetry described
by Robert Martin in Clean Code, is something that Dean
Wampler writes in Programming Scala, on the subjects of
pattern-matching and subtype polymorphism.@philip_schwarz

You could say that draw defines a protocol that all shapes have to support, but users can customize. It’s up to each shape to
serialize its state to a string representation through its toString method. The f method is called by draw, which constructs the final
string using an interpolated string.

A Sample Application
Let’s finish this chapter by exploring several more seductive features of Scala using a sample
application. We’ll use a simplified hierarchy of geometric shapes, which we will send to another
object for drawing on a display. Imagine a scenario where a game engine generates scenes. As
the shapes in the scene are completed, they are sent to a display subsystem for drawing.

To begin, we define a Shape class hierarchy:

case class Point(x: Double = 0.0, y: Double = 0.0)

abstract class Shape():
/**
* Draw the shape.
* @param f is a function to which the shape will pass a
* string version of itself to be rendered.
*/
def draw(f: String => Unit): Unit = f(s"draw: $this")

case class Circle(center: Point, radius: Double) extends Shape

case class Rectangle(lowerLeft: Point, height: Double, width: Double) extends Shape

case class Triangle(point1: Point, point2: Point, point3: Point) extends Shape

The idea is that callers of draw will pass a function that
does the actual drawing when given a string
representation of the shape. For simplicity, we just use
the string returned by toString, but a structured format
like JSON would make more sense in a real application.

Dean Wampler
@deanwampler

Even though this will be a single-threaded application, let’s anticipate what we might do in
a concurrent implementation by defining a set of possible Messages that can be exchanged
between modules:

Dean Wampler
@deanwampler

sealed trait Message
case class Draw(shape: Shape) extends Message
case class Response(message: String) extends Message
case object Exit extends Message

The sealed keyword means that we can only define subtypes of Message in the same file. This
prevents bugs where users define their own Message subtypes that would break the code we’re
about to see in the next file! These are all the allowed messages, known in advance.

Recall that Shape was not declared sealed earlier because we intend for people to create their own
subtypes of it. There could be an infinite number of Shape subtypes, in principle. So, use sealed
hierarchies when all the possible variants are fixed.

object ProcessMessages:
def apply(message: Message): Message =
message match
case Exit =>
println(s"ProcessMessage: exiting...")
Exit

case Draw(shape) =>
shape.draw(str => println(s"ProcessMessage: $str"))
Response(s"ProcessMessage: $shape drawn")

case Response(unexpected) =>
val response = Response(s"ERROR: Unexpected Response: $unexpected")
println(s"ProcessMessage: $response")
response

If the case clauses don’t cover all possible values that can
be passed to the match expression, a MatchError is thrown
at runtime.

Fortunately, the compiler can detect and warn you that the
case clauses are not exhaustive, meaning they don’t
handle all possible inputs. Note that our sealed hierarchy
of messages is crucial here.

If a user could create a new subtype of Message, our match
expression would no longer cover all possibilities. Hence, a
bug would be introduced in this code!

Dean Wampler
@deanwampler

object ProcessMessages:
def apply(message: Message): Message =

message match
case Exit =>

println(s"ProcessMessage: exiting...")
Exit

case Draw(shape) =>
shape.draw(str => println(s"ProcessMessage: $str"))
Response(s"ProcessMessage: $shape drawn")

case Response(unexpected) =>
val response = Response(s"ERROR: Unexpected Response: $unexpected")
println(s"ProcessMessage: $response")
response

PATTERN MATCHING VERSUS SUBTYPE POLYMORPHISM

Pattern matching plays a central role in FP just as subtype polymorphism (i.e., overriding
methods in subtypes) plays a central role in OOP.

The combination of functional-style pattern matching with polymorphic dispatch, as used here,
is a powerful combination that is a benefit of a mixed paradigm language like Scala.

Our match expression only knows about Shape and draw. We don’t match on specific subtypes of Shape. This means our code won’t
break if a user adds a new Shape to the hierarchy.

In contrast, the case clauses match on specific subtypes of Message, but we protected ourselves from unexpected change by
making Message a sealed hierarchy. We know by design all the possible Messages exchanged.

Hence, we have combined polymorphic dispatch from OOP with pattern matching, a workhorse of FP. This is one way that Scala
elegantly integrates these two programming paradigms!

One of the tenets of OOP is that you should never use if or match
statements that match on instance type because inheritance
hierarchies evolve.

When a new subtype is introduced without also fixing these
statements, they break.

Instead, polymorphic methods should be used.

So, is the pattern-matching code just discussed an antipattern?

Closely related to the data/object anti-symmetry described
by Robert Martin and to Dean Wampler‘s writings on
pattern-matching and subtype polymorphism, is Li Haoy’s
great explanation, in Hands-On Scala Programming, of the
different use cases for normal traits versus sealed traits.

3.4.1 Traits

traits are similar to interfaces in traditional object-oriented languages: a set of methods that multiple classes can inherit.
Instances of these classes can then be used interchangeably.

trait Point:
def hypotenuse: Double

class Point2D(x: Double, y: Double) extends Point:
def hypotenuse = math.sqrt(x * x + y * y)

class Point3D(x: Double, y: Double, z: Double) extends Point:
def hypotenuse = math.sqrt(x * x + y * y + z * z)

@main def main: Unit =
val points: Array[Point] = Array(new Point2D(1, 2), new Point3D(4, 5, 6))
for (p <- points) println(p.hypotenuse)

Above, we have defined a Point trait with a single method def hypotenuse: Double. The subclasses Point2D and Point3D both
have different sets of parameters, but they both implement def hypothenuse.

Thus we can put both Point2Ds and Point3Ds into our points: Array[Point] and treat them all uniformly as objects with a
def hypotenuse method, regardless of what their actual class is.

Li Haoyi
@lihaoyi

5.1.2 Sealed Traits

traits can also be defined sealed, and only extended by a fixed set of case classes. In the following example, we define a sealed
trait Point extended by two case classes, Point2D and Point3D:

sealed trait Point
case class Point2D(x: Double, y: Double) extends Point
case class Point3D(x: Double, y: Double, z: Double) extends Point

def hypotenuse(p: Point) = p match
case Point2D(x, y) => math.sqrt(x * x + y * y)
case Point3D(x, y, z) => math.sqrt(x * x + y * y + z * z)

@main def main: Unit =
val points: Array[Point] = Array(Point2D(1, 2), Point3D(4, 5, 6))
for (p <- points) println(hypotenuse(p))

The core difference between normal traits and sealed traits can be summarized as follows:

• Normal traits are open, so any number of classes can inherit from the trait as long as they provide all the required methods,
and instances of those classes can be used interchangeably via the trait's required methods.

• sealed traits are closed: they only allow a fixed set of classes to inherit from them, and all inheriting classes must be defined
together with the trait itself in the same file or REPL command …

Because there are only a fixed number of classes inheriting from sealed trait Point, we can use pattern matching in the def
hypotenuse function above to define how each kind of Point should be handled. Li Haoyi

@lihaoyi

5.1.3 Use Cases for Normal v.s. Sealed Traits

Both normal traits and sealed traits are common in Scala applications: normal traits for interfaces which may have any number
of subclasses, and sealed traits where the number of subclasses is fixed. Normal traits and sealed traits make different things
easy:

• A normal trait hierarchy makes it easy to add additional sub-classes: just define your class and implement the necessary
methods. However, it makes it difficult to add new methods: a new method needs to be added to all existing subclasses, of
which there may be many.

• A sealed trait hierarchy is the opposite: it is easy to add new methods, since a new method can simply pattern match on
each sub-class and decide what it wants to do for each. However, adding new sub-classes is difficult, as you need to go to all
existing pattern matches and add the case to handle your new sub-class.

In general, sealed traits are good for modelling hierarchies where you expect the number of sub-classes to change very little or
not-at-all. A good example of something that can be modeled using sealed trait is JSON:

sealed trait Json
case class Null() extends Json
case class Bool(value: Boolean) extends Json
case class Str(value: String) extends Json
case class Num(value: Double) extends Json
case class Arr(value: Seq[Json]) extends Json
case class Dict(value: Map[String, Json]) extends Json

• A JSON value can only be JSON null, boolean, number, string, array, or dictionary.
• JSON has not changed in 20 years, so it is unlikely that anyone will need to extend our JSON trait with additional subclasses.
• While the set of sub-classes is fixed, the range of operations we may want to do on a JSON blob is unbounded: parse it,

serialize it, pretty-print it, minify it, sanitize it, etc.

Thus it makes sense to model a JSON data structure as a closed sealed trait hierarchy rather than a normal open trait hierarchy.

Li Haoyi
@lihaoyi

Let’s translate our two Java programs
into Scala, starting with the OO program.

public interface Shape {
public double area();

}

public class Circle implements Shape {
private Point center;
private double radius;

public Circle(Point center, double radius){
this.center = center;
this.radius = radius;

}

public static final double PI = 3.141592653589793;

public double area() {
return PI * radius * radius;

}
}

public class Square implements Shape {

private Point topLeft;
private double side;

public Square(Point topLeft, double side){
this.topLeft = topLeft;
this.side = side;

}

public double area() {
return side*side;

}
}

trait Shape:
def area: Double

class Square(topLeft: Point, side: Double) extends Shape:
def area: Double = side * side;

class Circle(center: Point, radius: Double) extends Shape:
def area: Double = PI * radius * radius

object Circle:
val PI: Double = 3.141592653589793

public class Rectangle implements Shape {

private Point topLeft;
private double height;
private double width;

public Rectangle(Point topLeft, double height, double width){
this.topLeft = topLeft;
this.height = height;
this.width = width;

}

public double area() {
return height * width;

}
}

public class Main {

public static void main(String[] args) {

var origin = new Point(0,0);
var square = new Square(origin, 5);
var rectangle = new Rectangle(origin, 2, 3);
var circle = new Circle(origin, 1);

if (square.area() != 25)
throw new AssertionError("square assertion failed");

if (rectangle.area() != 6)
throw new AssertionError("rectangle assertion failed");

if (circle.area() != Circle.PI)
throw new AssertionError("circle assertion failed");

}

}

class Rectangle(topLeft: Point, height: Double, width: Double) extends Shape:
def area: Double = height * width

@main def main: Unit =

val origin = Point(0,0)
val square = Square(origin, 5)
val rectangle = Rectangle(origin, 2, 3)
val circle = Circle(origin, 1)

assert(square.area == 25, "square assertion failed")
assert(rectangle.area == 6, "rectangle assertion failed")
assert(circle.area == Circle.PI, "circle assertion failed")

And now let’s translate
the procedural program.

enum Shape:
case Square(topLeft: Point, side: Double)
case Rectangle(topLeft: Point, width: Double, height: Double)
case Circle(center: Point, radius: Double)

public class Geometry {
public final double PI = 3.141592653589793;
public double area(Shape shape) {
return switch(shape) {
case Square s -> s.side() * s.side();
case Rectangle r -> r.height() * r.width();
case Circle c -> PI * c.radius() * c.radius();

};
}

}

sealed interface Shape { }
record Square(Point topLeft, double side) implements Shape { }
record Rectangle (Point topLeft, double height, double width) implements Shape { }
record Circle (Point center, double radius) implements Shape { }

def area(shape: Shape): Double = shape match
case Square(_,side) => side * side
case Rectangle(_,width,height) => width * height
case Circle(_,radius) => math.Pi * radius * radius

public class Main {
public static void main(String[] args) {
var origin = new Point(0,0);
var geometry = new Geometry();
var rectangle = new Rectangle(origin,2,3);
var circle = new Circle(origin,1);
var square = new Square(origin,5);

if (geometry.area(square) != 25)
throw new AssertionError("square assertion failed");

if (geometry.area(rectangle) != 6)
throw new AssertionError("rectangle assertion failed");

if (geometry.area(circle) != geometry.PI)
throw new AssertionError("circle assertion failed");

}
}

@main def main: Unit =

val origin = Point(0,0)
val square = Square(origin, 5)
val rectangle = Rectangle(origin, 2, 3)
val circle = Circle(origin, 1)

assert(area(square) == 25, "square assertion failed")
assert(area(rectangle) == 6 , "rectangle assertion failed")
assert(area(circle) == math.Pi, "circle assertion failed")

Notice how, in translating the procedural program, rather than defining the sealed trait hierarchy literally

we have defined it using an equivalent but more succinct enum

enum Shape:
case Square(topLeft: Point, side: Double)
case Rectangle(topLeft: Point, width: Double, height: Double)
case Circle(center: Point, radius: Double)

sealed trait Shape
case class Square(topLeft: Point, side: Double) extends Shape
case class Rectangle(topLeft: Point, width: Double, height: Double) extends Shape
case class Circle(center: Point, radius: Double) extends Shape

@philip_schwarz

Next, let’s look at ad-hoc polymorphism in Haskell,
both alternation-based, and class-based.

Ad-hoc polymorphism

"Wadler conceived of type classes in a conversation with Joe Fasel. Fasel had in mind a different idea, but it was he
who had the key insight that overloading should be reflected in the type of the function. Wadler misunderstood what
Fasel had in mind, and type classes were born!"

-- History of Haskell, Hudak et al.

The canonical example of ad hoc polymorphism (also known as overloading) is that of the polymorphic + operator, defined
for all types that implement the Num typeclass:

class Num a where
(+) :: a -> a -> a

instance Int Num where
(+) :: Int → Int → Int
x + y = intPlus x y

instance Float Num where
(+) :: Float → Float → Float
x + y = floatPlus x y

In fact, the introduction of type classes into Haskell was driven by the need to solve the problem of overloading numerical
operators and equality.

Ryan Lemmer

When we call (+) on two numbers, the compiler will dispatch evaluation to the concrete implementation, based on the
types of numbers being added:

let x_int = 1 + 1 -- dispatch to 'intPlus’
let x_float = 1.0 + 2.5 -- dispatch to 'floatPlus’
let x = 1 + 3.14 –- dispatch to 'floatPlus'

In the last line, we are adding what looks like an int to a float. In many languages, we'd have to resort to
explicit coercion (of int to float, say) to resolve this type of "mismatch". In Haskell, this is resolved by treating the value
of 1 as a type-class polymorphic value:

ghci> :type 1
1 :: Num a => a
ghci>

1 is a generic value; whether 1 is to be considered an int or a float value (or a fractional, say) depends on the context in
which it will appear.

Ryan Lemmer

Alternation-based ad-hoc polymorphism

There are two kinds of ad-hoc polymorphism. We've seen the first type already in this chapter:

data Maybe' a = Nothing' | Just' a

fMaybe f (Just' x) = Just' (f x)
fMaybe f Nothing' = Nothing’

The fMaybe function is polymorphically defined over the alternations of Maybe. In order to directly contrast the two kinds
of polymorphism, let's carry this idea over into another example:

data Shape = Circle Float | Rect Float Float

area :: Shape -> Float
area (Circle r) = pi * r^2
area (Rect length width) = length * width

The area function is dispatched over the alternations of the Shape type.

Ryan Lemmer

data Maybe' a = Nothing' | Just' a

fMaybe :: (a->b) -> Maybe a -> Maybe b
fMaybe f (Just' x) = Just' (f x)
fMaybe f Nothing' = Nothing’

def fMaybe[A,B](f: A=>B, ma: Maybe[A]): Maybe[B] = ma match
case Just(a) => Just(f(a))
case Nothing => Nothing

enum Shape:
case Circle(radius: Float)
case Rect(length: Float, width: Float)

data Shape = Circle Float | Rect Float Float

area :: Shape -> Float
area (Circle r) = pi * r^2
area (Rect length width) = length * width

def area(shape: Shape): Double = shape match
case Circle(radius) => math.Pi * radius * radius
case Rect(length,width) => length * width

Let’s translate those two Haskell examples of
alternation-based ad-hoc polymorphism into Scala.

enum Maybe[+A]:
case Nothing
case Just(a: A)

@philip_schwarz

enum Shape:
case Circle(radius: Float)
case Rect(length: Float, width: Float)

data Shape = Circle Float | Rect Float Float

area :: Shape -> Float
area (Circle r) = pi * r^2
area (Rect length width) = length * width

def area(shape: Shape): Double = shape match
case Circle(radius) => math.Pi * radius * radius
case Rect(length,width) => length * width

Let’s see that code again, together with the equivalent Java code.

public double area(Shape shape) {
return switch(shape) {

case Circle c -> PI * c.radius() * c.radius();
case Rect r -> r.height() * r.width();

};
}

sealed interface Shape { }
record Circle (double radius) implements Shape { }
record Rect (double height, double width) implements Shape { }

We can clearly see that adding a new
function, e.g. perimeter, would not require us
to change any existing code. We would just
need to add the code for the new function.

perimeter :: Shape -> Float
perimeter (Circle r) = 2 * pi * r
perimeter (Rect length width) = 2 * (length + width)

def perimeter(shape: Shape): Double = shape match
case Circle(radius) => 2 * math.Pi * radius
case Rect(length,width) => 2 * (length + width)

public double perimeter(Shape shape) {
return switch(shape) {

case Circle c -> 2 * PI * c.radius();
case Rect r -> 2 * (r.height() + r.width());

};
}

Adding a new Shape, on the other hand, e.g. a Square,
would require us to modify all existing functions, e.g. area
and perimeter, to get them to handle a Square.

Class-based ad-hoc polymorphism

We could also have achieved a polymorphic area function over shapes in this way:

data Circle = Circle Float
data Rect = Rect Float Float

class Shape a where
area :: a -> Float

instance Shape Circle where
area (Circle r) = pi * r^2

instance Shape Rect where
area (Rect length' width') = length' * width'

Instead of unifying shapes with an algebraic "sum of types", we created two distinct shape types and unified them with
the Shape type-class. This time the area function exhibits class-based ad-hoc polymorphism.

Ryan Lemmer

By the way, if you could do with an introduction to Algebraic
Data Types, then you might want to take a look at the following:

Alternation-based versus class-based

It is tempting to ask "which approach is best?" Instead, let's explore the important ways in which they differ:

Alternation-based Class-based

Different coupling between function
and type

The function type refers to the
algebraic type Shape and then defines
special cases for each alternative.

The function type is only aware of the
type it is acting on, not
the Shape "super type".

Distribution of function definition The overloaded functions are defined
together in one place for all alternations.

Overloaded functions all appear in their
respective class implementations. This
means a function can be overloaded in
very diverse parts of the codebase if
need be.

Adding new types Adding a new alternative to the
algebraic type requires changing all
existing functions acting directly on the
algebraic "super type"

We can add a new type that
implements the type class without
changing any code in place (only
adding). This is very important since it
enables us to extend third-party code.

Adding new functions A perimeter function acting
on Shape won't be explicitly related to
area in any way.

A perimeter function could be explicitly
related to area by adding it to
the Shape class. This is a powerful way
of grouping functions together.

Type expressivity This approach is useful for expressing
simple type hierarchies.

We can have multiple, orthogonal
hierarchies, each implementing the type
class (For example, we can express
multiple-inheritance type relations).
This allows for modeling much richer
data types.

Ryan Lemmer

case class Circle(radius: Float)data Circle = Circle Float

class Shape a where
area :: a -> Float

instance Shape Circle where
area (Circle r) = pi * r^2

instance Shape Rect where
area (Rect length' width') = length' * width'

data Rect = Rect Float Float case class Rect(length: Float, width: Float)

trait Shape[A]:
extension (shape: A)
def area: Double

given Shape[Circle] with
extension (c: Circle)
def area: Double = math.Pi * c.radius * c.radius

given Shape[Rect] with
extension (r: Rect)
def area: Double = r.length * r.width

@main def main: Unit =
assert(Circle(1).area == math.Pi)
assert(Rect(2,3).area == 6)

Let’s translate that Haskell example of class-based ad-hoc polymorphism
into Scala, which also has the concept of a typeclass.

main = runTestTT
(TestList [TestCase (assertEqual "test1" pi (area (Circle 1))),

TestCase (assertEqual "test2" 6 (area (Rect 2 3)))])

data Circle = Circle Float

class Shape a where
area :: a -> Float

instance Shape Circle where
area (Circle r) = pi * r^2

instance Shape Rect where
area (Rect length' width') = length' * width'

data Rect = Rect Float Float

data Square = Square Float

instance Shape Square where
area (Square side) = side * side

case class Circle(radius: Float)

case class Rect(length: Float, width: Float)

trait Shape[A]:
extension (shape: A)
def area: Double

given Shape[Circle] with
extension (c: Circle)
def area: Double = math.Pi * c.radius * c.radius

given Shape[Rect] with
extension (r: Rect)
def area: Double = r.length * r.width

case class Square(side: Float)

given Shape[Square] with
extension (s: Square)
def area: Double = s.side * s.side

We can see clearly that adding a new Shape, e.g. Square, would
not require us to change any existing code. We would just need
to add the code for Square and a new Shape typeclass instance
for Square providing an area function for a Square.

Adding a new function on the other hand, e.g.
perimeter, would require us to modify the Shape
typeclass and all existing instances of the typeclass, in
order to add the new perimeter function.

@philip_schwarz

Addition of new

Function Type

Polymorphism

Subtype OCP✕ OCP✓

Alternation-based ad-hoc OCP✓ OCP✕

Class-based ad-hoc OCP✕ OCP✓

Based purely on the example that we have just seen, it
would seem reasonable to add class-based ad-hoc
polymorphism to our table in the way shown below.

Addition of new

Function Type

Polymorphism

Subtype OCP✕ OCP✓

Alternation-based ad-hoc OCP✓ OCP✕

Class-based ad-hoc OCP✓

But in actual fact, it turns out that typeclasses are more
powerful than that. They allow us to solve what is called
the Expression Problem, i.e. they allow us to write code
that is open and closed with respect to both the addition
of new types and the addition of new functions.

Cc: Philip Wadler <wadler@research.bell-labs.com>
Subject: The Expression Problem
Date: Thu, 12 Nov 1998 14:27:55 -0500
From: Philip Wadler <wadler@research.bell-labs.com>

The Expression Problem
Philip Wadler, 12 November 1998

The Expression Problem is a new name for an old problem. The goal is
to define a datatype by cases, where one can add new cases to the
datatype and new functions over the datatype, without recompiling
existing code, and while retaining static type safety (e.g., no
casts). For the concrete example, we take expressions as the data
type, begin with one case (constants) and one function (evaluators),
then add one more construct (plus) and one more function (conversion
to a string).

Whether a language can solve the Expression Problem is a salient
indicator of its capacity for expression. One can think of cases as
rows and functions as columns in a table. In a functional language,
the rows are fixed (cases in a datatype declaration) but it is easy to
add new columns (functions). In an object-oriented language, the
columns are fixed (methods in a class declaration) but it is easy to
add new rows (subclasses). We want to make it easy to add either rows
or columns.
…

https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

Computer Scientist Philip Wadler

Here is the definition of
the Expression Problem.

https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

In Part 2 we are going to see how typeclasses
can be used to solve the expression problem.

See you there.
@philip_schwarz

