
Applicative Functor
learn how to use an Applicative Functor to handle multiple independent effectful values

through the work of

slides by @philip_schwarz

Paul ChiusanoSergei Winitzki Runar Bjarnason Debasish Ghosh Adelbert Chang

@adelbertchang@debasishg@pchiusano@runaroramasergei-winitzki-11a6431

Sergei Winitzki introduces the motivation for Applicative Functors

Functional programming, chapter 8.
Applicative functors and profunctors.

Part 1: Practical examples

Sergei Winitzki
sergei-winitzki-11a6431

with this kind of syntax perhaps, where we have
map2 which takes a tuple of parameters, it also
takes a function f with two arguments and
returns a container.

this is a
flatMap

this is
a map

We want to replace that…

REPLACE WITH

REPLACE WITH

Here is a similar thing with 3
containers, where we have
map3.

Functional programming, chapter 8.
Applicative functors and profunctors.

Part 1: Practical examples

Sergei Winitzki
sergei-winitzki-11a6431

Sergei Winitzki defines map2 for Either[String, A]

In the case where we have
two errors, we want to
accumulate the two errors.

In the case where we have two results,
we can actually perform the computation
that is requested, which is this function f.

only the first error is returned

both errors are returned

In these two cases there is not
enough data to call f so we
return an error.

Notice that map2 does
more than a monadic for,
which stops after the first
error: it can accumulate all
the errors.

Functional programming, chapter 8.
Applicative functors and profunctors.

Part 1: Practical examples

Sergei Winitzki
sergei-winitzki-11a6431

Sergei Winitzki shows how to define map3 using map2

Sergei Winitzki
sergei-winitzki-11a6431

Defining Applicative in terms of primitive combinators map2 and unit

Functional Programming in Scala
(by Paul Chiusano and Runar Bjarnason)

@pchiusano @runarorama

Applicative can also be defined using apply and unit

Functional Programming in Scala
(by Paul Chiusano and Runar Bjarnason)

@pchiusano @runarorama

Defining map3 and map4 using unit, apply and the curried method available on functions

Functional Programming in Scala

(by Paul Chiusano and Runar Bjarnason)
@pchiusano @runarorama

Validation - much like Either, except it can handle more than one error

Functional Programming in Scala
(by Paul Chiusano and Runar Bjarnason)

@pchiusano @runarorama

Validation of independent values using map3

Functional Programming in Scala
(by Paul Chiusano and Runar Bjarnason)

@pchiusano @runarorama

apply is also known as ap and map2 is also known as apply2

@debasishg
Debasish Ghosh

Runar Bjarnason)
 @runarorama

Validation of independent values using apply3 (alternative name for map3)

@debasishg
Debasish Ghosh

Validation of independent values using apply3 (alternative name for map3)

@debasishg
Debasish Ghosh

Validation of independent values using apply3 (alternative name for map3)

@debasishg
Debasish Ghosh

Runar Bjarnason)
 @runarorama

All these follow more or less the same pattern. We want to apply a pure function to an effectful
value and we can’t just do this using the normal mechanism because an F of A can’t be treated as
an A, if it could, this whole exercise would be futile. The whole point is, F of A is separate from an
A but we still want to be able to apply functions expecting an A to this value. And so for each F,
e.g. Option, Either, State, they have this notion of getting inside this value and observing what
that is, and in the case where we do have an A, apply the function and then we are also going to
plumb some bits through.

So for Option it is sort of propagating the effect of not having a
value, for Either, propagating the error, and for State…
And so, being the good programmers that we are, we see the same
pattern occurring over and over again and we want to be able to
talk about them generically, so we unify this pattern into this
typeclass called Functor.

Adelbert Chang
@adelbertchang

The Functor, Applicative, Monad talk

In order to be a Functor you need to support this very
generic map operation. In which given a effectful value F of
A and a pure function A to B, I want you to somehow apply
that function to the effectful value.

So here is an example for Option

and here is an example for Either

Adelbert Chang
@adelbertchang

The Functor, Applicative, Monad talk

pairOption and pairEither follow more or less
the same pattern. We have a notion of looking
inside two effectful values and then pairing
them up together while remaining inside the
effect, and this is what applicatives are all
about.

And of course we also want all applicatives to have this map operation, because in order to work with
N effectful values, we are going to zip them together, so we get a pair, and then we are going to map
over it to destructure the pair and apply an N-ary function.
And also, it makes sense conceptually, because if we claim to work with N independent effectful
values, then I certainly should be able to work with a single effectful value.

Applicative

Adelbert Chang
@adelbertchang

The Functor, Applicative, Monad talk

So here are Applicative
implementations for Option
and Either

So here is some stuff that we couldn’t do with Functor that we can do with
Applicative. Let’s say I parse two integers now, both of which may or may not fail,
I want to zip them together and then map over it and then figure out which one
of those integers is larger and this gives me back an Option of an integer.

I can parse two keys from a config, or I could parse 3 or 4 keys if I wanted
to, and then zip them together and map over it and then get an endpoint,
and that gets me either an error or an endpoint and if any of those
parses fail then I get the first error that I hit.

Adelbert Chang
@adelbertchang

The Functor, Applicative, Monad talk

As a quick note, if you go to say Cats or Scalaz today, or Haskell even, and you look at Applicative, what you’ll see is this ap formulation
instead, so what I presented as zip, map and pure, we will typically see as ap, and ap sort of has a weird type signature, at least in Scala,
where you have a function inside of an F, and then you have an effectful value, and you want to apply the function to that value, all
while remaining in F, and this has a nice theoretical story, and sort of has a nicer story in Haskell, but in Scala, this sort of makes for an
awkward API, and so I like to introduce applicative in terms of zip and map for that reason, I think it makes for a better story, and I think
zip is conceptually simpler, because you can sort of see that zip is about composing two values, in the easiest way possible, whereas ap
sort of has a weird signature.

That thing said, ap is, for historical reasons, like the canonical representation of Applicative, so if after this talk you go and look what
Applicative is, you’ll probably see ap. Just as a quick note, you can implement ap in terms of map and zip, like I have here. You can also go
the other way, you can implement zip and map in terms of ap, and so, exercise left to the reader.

Applicative defined in terms of zip + pure or in terms of ap + pure

Adelbert Chang
@adelbertchang

The Functor, Applicative, Monad talk

