Applicative Functor

learn how to use an Applicative Functor to handle multiple independent effectful values
through the work of

N

Sergei Winitzki Runar Bjarnason Paul Chiusano Debasish Ghosh Adelbert Chang
m sergei-winitzki-11a6431 u @runarorama u @pchiusano u @debasishg u @adelbertchang

slides by u @philip_schwarz

Sergei Winitzki introduces the motivation for Applicative Functors

Chapter 8: Applicative functors and profunctors
Part 1: Practical examples

Motivation for applicative functors

@ Monads are inconvenient for expressing independent effects
Monads perform effects sequentially even if effects are independent:

I Sergei Winitzki
Academy by the Bay

2018-06-25

x < Future { c1 } Future { c1 }.flatMap { x =

Yy 4+ Future { c?2 } Future { c2 }.flatMap { y =

z + Future { c3 ¥ Future { ¢3 }.map { z = ...}
|

@ We would like to parallelize independent computations
@ We would like to accumulate all errors, rather than stop at the first one
Changing the order of monad’s effects will (generally) change the result:

for { for {
x < List(1, 2) y < List(10, 20)
y < List(10, 20) x « List(1, 2)

} yield f(x, y) } yield f(x, y)

f(1.10). f(1. 20). (2. 10). £(2, 20) f(1.10), £(2.10). {(1. 20). £(2. 20)

@ We would like to express a computation where effects are unordered
» This can be done using a method map2, not defined via flatMap: the
desired type signature is map2: FA x Ff = (Ax B= C) = F¢
» Applicative functor has map2 and pure but is not necessarily a monad

Sergei Winitzki
m sergei-winitzki-11a6431

Functional programming, chapter 8.
Applicative functors and profunctors.

Sergei Winitzki (ABTB) Chapter 8: Applicative functors 2018-06-25 2/5

Part 1: Practical examples You{fT®

Defining map2, map3, €LC.

Consider 1, 2, 3, ... commutative and independent “effects”

for {x1 « ci

[We want to replace that... i:

__/

Sergei Winitzki

‘;Ihisisa \}\iKeld £(x1) c1.map(f)
atMap
/
\ — /
mes | for { x1 « c1
amap | X2 c2 — (c1, c2).map2(f)
} yield f(x1, x2) REPLACE WITH

—

X2 +— c2

(with this kind of syntax perhaps, where we have
map2 which takes a tuple of parameters, it also

for { X < cil takes a function f with two arguments and
returns a container.

sergei-winitzki-11a6431

Here is a similar thing with 3

x3 « ¢3 (c1, c2, c3).map3(f) __

REPLACE WITH

containers, where we have
map3.

} yield f(x1, x2, x3)

@ Generalize from map, map2, map3 tO mapN:
map, : FA= (A= Z)= F*
map, : FA x F¥ = (Ax B= Z) = F*
map;: FAX FEx FC = (AxBxC=2Z)= F*

Sergei Winitzki (ABTB) Chapter 8: Applicative functors 2018-06-25

3/5

Functional programming, chapter 8.
Applicative functors and profunctors.
Part 1: Practical examples You{[B

Sergei Winitzki defines map2 for Either[String, A]

Functional programming, chapter 8.
Applicative functors and profunctors.
Part 1: Practical examples You{[TB

-
= In the case where we have

two errors, we want to
L accumulate the two errors.
[

C In these two cases there is not

enough data to call f so we

L return an error.

(y == 0.0)

(

/

In the case where we have two results,
we can actually perform the computation
that is requested, which is this function f.

Sergei Winitzki
sergei-winitzki-11a6431

Notice that map2 does
more than a monadic for,
which stops after the first
error: it can accumulate all
the errors.

: |0p[Z] = (a, b) match {
oncat¢nate the two error

J

// Note that this definition of 'map2’ is not equivalent to the monadic

only the first error is returned

X « safeDivide(1, 0)
y « safeDivide(2, 0)
} yield x - y) shouldEqual Left("Error: dividing 1.0 by 0\n")

9 class Chapter08_01_examplesSpec extends FlatSpec with Matchers {
10
11 behavior of "examples"
12
13 it should "implement map2 and map3 for Either" in {
14 type Op[A] = Either[String, A]
15
16 def safeDivide(x: Double, y: Double): Op[Doub
17 Left(s"Error: dividing $x by 0\n")
18 else Right(x / y)
19
20 // Want to perform operations and collect/all erirors.
21 def map2[A, B, Z]l(a: Op[A]l, b: Op[B])(f:/(A, B)
22 case (Left(sl), Left(s2)) = Left(sl +"s2) //
messages.
23 case (Left(s), Right(_)) = Left(s)
24 case (Right(_), Left(s)) = Left(s)]
25 case (Right(x1), Right(x2)) = Right(f(x1, x2)) |definition:
26 } (for {
27
28 | // We can now collect all error messages.|
29 map2 (
30 safeDivide(1, 0), ot —
3 1 SafeDlVlde (2 i 0) (o) errors are returne
32) { (x, y) = x =y } shouldEqual Left("Error: dividing 1.0 by O\nError:

dividing 2.0 by 0\n")

Sergei Winitzki shows how to define map3 using map2

40
41
42
43
44

45
46
47
48
49
50
51
52
53
54

55

// Now let's define map3:
def map3[A, B, C, Zl(a: Op[Q], b: Op[B]l, c¥ Op[C]l)(f: (A, B, C) = Z): 0p[Z] = {
// We would like to avoid listing 8 possible cases now.
// Let's begin by applying map2() to (a, b).
val opab: Op[(A, B)] = map2(a, b) { (x, y) = (x, y) } // Almost an identity
function here...
// Now we can use map2 again on opab and c:
map2(opab, c) { case ((aa, bb), cc) = f(aa, bb, cc) }

// This is still awkward to generalize.

map3 (
safeDivide(1, 0),
safeDivide(2, 0),
safeDivide(3, 1)
) { (x, y, z) = x =y } shouldEqual Left("Error: dividing 1.0 by O\nError:
dividing 2.0 by 0\n")

Sergei Winitzki
sergei-winitzki-11a6431

Defining Applicative in terms of primitive combinators map2 and unit

12.2 The Applicative trait

Applicative functors can be captured by a new interface, Applicative, in which map2

and unit are primitives.

Listing 12.1 Creating the Applicative interface

trait Applicative[F[_]] extends Functor[F] {
YVe can // primitive combinators
implement Idef map2 [A,B,C] (fa: F[A], fb: F[B]) (f: (A, B) => C): F[C]|
map Ih terms

def unit[A](a: => A): F[A] Recall () is the sole
value of type Unit,

map2. // derived combinators . .
sounit (()) Is . L
def map[B] (fa: F[A]) (f: A => B): F[B] = é—/ calling unit with Functional Programming in Scala

(by Paul Chiusano and Runar Bjarnason)

of unit and

Definition of map2 (fa, unit(())) ((a, _) => f(a)) the dummy value (). u @pchiusano @runarorama
;:szi:;iiile S def traverse[A,B] (as: List[A]) (f: A => F[B]): F[List[B]]
. as.foldrRight (unit (List[B] ())) ((a, fbs) => map2(f(a), fbs) (_ :: _))

}

This establishes that all applicatives are functors. We implement map in terms of map2
and unit, as we’ve done before for particular data types. The implementation is sug-
gestive of laws for Applicative that we’ll examine later, since we expect this imple-

mentation of map to preserve structure as dictated by the Functor laws.
Note that the implementation of traverse is unchanged. We can similarly move
other combinators into Applicative that don’t depend directly on flatMap or join.

Applicative can also be defined using apply and unit

Answers to exercises

trait Applicative[F[_]] extends Functor[F] {

// "map2° is implemented by first currying “f so we get a function

Hard: The name applicative comes from the fact that we can formulate the Applicative
interface using an alternate set of primitives, unit and the function apply, rather than
unit and map2. Show that this formulation is equivalent in expressiveness by defining

map2 and map in terms of unit and apply. Also establish that apply can be imple-

// of type A => B => C°. This is a function that takes "A" and returns mented in terms of map2 and unit.
// another function of type B => C . So if we map "f.curried” over an .
R N . V . . . R . trait Applicative[F[_]] extends Functor[F] { Define in terms of
// “F[A]", we get “F[B => C] . Passing that to ‘apply” along with the map2 and unit.
// 'F[B] will give us the desired “F[C]". def apply(A,B] (fab: F[A => B]) (fa: F[A]): F[B] <+—////
def map2[A,B,C](fa: F[A], fb: F[B])(f: (A, B) => C): F[C] = def unit[A] (a: => A): F[A]
. Define in terms
apply(map(fa)(f.curried), fb)
def map[A,B] (fa: F[A]) (f: A => B): F[B] <—-////of§pp1yand
def map2[A,B,C](fa: F[A], fb: F[B]) (f: (A,B) => C): F[A] unit.
// We simply use “map2° to lift a function into “F° so we can apply it }

// to both “fab™ and “fa'.

// which is the same as the lambda notation “(f, x)

// It's a function that takes two arguments:

// 1.

//

// and it simply applies "f° to “x .

def apply[A,B](fab: F[A => B])(fa: F[A]):
map2(fab, fa)(_(_))

def unit[A](a: => A): F[A]

A function “f°

2. An argument “x° to that function

The function being lifted here is “_(_)",

def map[A,B](fa: F[A])(f: A => B): F[B] =
apply(unit(f))(fa)

=> f(x) . That is,

Functional Programming in

A companion booklet to
Functional Programming in Scala

Chapter notes, errata, hints, and answers 1o exercises

Paul Chiusano
Rdnar Bjarnason

compiled by Runar Oli Bjamason

Functional Programming in Scala
(by Paul Chiusano and Runar Bjarnason)
u @pchiusano @runarorama

Defining map3 and map4 using unit, apply and the curried method available on functions

A companion booklet to

Functional Programming in Scala

The apply method is useful for implementing map3, map4, and so on, and the pattern
is straightforward. Implement map3 and map4 using only unit, apply, and the curried

method available on functions.!

def map3[A,B,C,D] (fa: F[A],
fb: F[B],
fc: F[C])(f: (A, B, C) => D): F[D]

def map4[A,B,C,D,E] (fa: F[A],
fb: F[B],
fc: F[C],
fd: F[D])(f: (A, B, C, D) => E):

F[E]

(by Paul Chiusano and Runar Bjarnason)
u @pchiusano @runarorama

Functional Programming in Scala

Exercise 12.03 P

J*

The pattern is simple. We just curry the function

we want to 1ift, pass the result to "unit , and then “apply"

as many times as there are arguments.

Each call to “apply” is a partial application of the function

*/

def map3[A,B,C,D](fa: F[A],
fb: F[B]
fc: F[C])(f: (A, B, C) => D): F[D] =

apply(apply(apply(unit(f.curried))(fa))(fb))(fc)

4

def map4[A,B,C,D,E](fa: F[A],
fb: F[B],
fc: F[C]

fd: F[D])(f: (A, B, C, D) => E): F[E]
apply(apply(apply(apply(unit(f.curried))(fa))(fb))(fc))(fd)

Validation - much like Either, except it can handle more than one error

Let’s invent a new data type, Validation, that is much like Either except that it

can explicitly handle more than one error:

sealed trait Validation[+E, +A]

case class Failure[E] (head: E, tail: Vector[E] =
extends Validation[E, Nothing]

case class Success[A] (a: A) extends Validation[Nothing,

Vector())

A]

Write an Applicative instance for Validation that accumulates errors in Failure.
Note that in the case of Failure there’s always at least one error, stored in head. The
rest of the errors accumulate in the tail.

Exercise 12.06

def validationApplicative[E]:
new Applicative[({type f[x] = Validation|[E,x]})®*f] {
def unit[A](a: => A) = Success(a)
override def map2[A,B,C](fa: Validation|[E,A],

fb: Validation[E,B])(f: (A, B) => C) =

(fa, fb) matech {
case (Success(a), Success(b)) => Success(f(a, b))
case (Failure(h1, t1), Failure(h2, t2)) =>
Failure(h1, t1 ++ Vector(h2) ++ t2)
case (e@Failure(_, _), _) => e
case (_, e@Failure(_, _)) => e

Applicative[({type f[x] = Validation[E,6x]})#f] =

Functional Programming in

A companion booklet to
Functional Programming in Scala

Chapter notes, errata, hints, and answers 1o exercises

Paul Chiusano
Ranar Bjarnason

Functional Programming in Scala

(by Paul Chiusano and Runar Bjarnason)
u @pchiusano @runarorama

compiled by Rinar Oli Bjarnason

Validation of independent values using map3

To continue the example, consider a web form that requires a name, a birth date, and
a phone number:

CHAPTER 12 Applicative and traversable functors

Listing 12.5 Validating user input in a web form

def validName (name: String): Validation[String, String] =
if (name != "") Success (name)
else Failure("Name cannot be empty")

def validBirthdate (birthdate: String): Validation[String,
try {
import java.text._

Success ((new SimpleDateFormat ("yyyy-MM-dd")) .parse (birthdate))

} catch {
Failure("Birthdate must be in the form yyyy-MM-dd")

def validPhone (phoneNumber: String): Validation[String, String] =

if (phoneNumber.matches("[0-9]{10}"))
Success (phoneNumber)
else Failure("Phone number must be 10 digits")

And to validate an entire web form, we can simply lift the WebForm constructor with

map3:

def validWebForm(name: String,
birthdate: String,

Imap3(
validName (name) ,
validBirthdate (birthdate),
validPhone (phone)) (
WebForm(_,_,_))

If any or all of the functions produce Failure, the whole validWebForm method will

return all of those failures combined.

Date] =

phone: String): Validation[String, WebForm]

case class WebForm(name: String, birthdate: Date, phoneNumber: String)

This data will likely be collected from the user as strings, and we must make sure that
the data meets a certain specification. If it doesn’t, we must give a list of errors to the
user indicating how to fix the problem. The specification might say that name can’t be
empty, that birthdate must be in the form "yyyy-MM-dd", and that phoneNumber must
contain exactly 10 digits.

Functional Programming in

Paul Chiusano
=] S) Rinar Bjarnason

Functional Programming in Scala

(by Paul Chiusano and Runar Bjarnason)
u @pchiusano @runarorama

apply is also known as ap and map2 is also known as apply2

Answers to exercises Listing 4.4 The Applicative Functor trait (simplified)

trait Applicative[F[]] extends Functor[F] {

trait Applicative[F[_]] extends Functor[F] { — [Gef ap[A, Bl (fa: == FIAI)(E: = FIA = B FI51] < Primitive

operations that
implementing
classes need to
def 1ift2[A,B,C] (f: (A, B) => C): (F[A]l, F[B]) => F[C] = provide. You’ll

apply2(_,) (f) §eeasampk.
implementation

def unit[A] (a: => A): F[A] < shortly.

// "map2° is implemented by first currying "f° so we get a function

// of type A => B => C°. This is a function that takes A" and returns L

// another function of type B => C . So iIf we map "f.curried over an

// “F[A]", we get “F[B => C]". Passing that to ‘apply’ along with the

// “F[B] will give us the desired ‘F[C] .

def map2[A,B,C](fa: F[A], fb: F[B])(f: (A, B) => C): F[C] =
apply(map(fa)(f.curried), fb)

" | def apply2I[A,B,C] (fa: F[A], fb: F[B]) (f: (A, B) => C): F[C] =
ap (fb) (map (fa) (f.curried))

}

// We simply use "map2° to lift a function into F° so we can apply it
// to both “fab® and “fa'. The function being lifted here is ~_(_)",
// which is the same as the lambda notation “(f, x) => f(x) . That is,
// It's a function that takes two arguments:
// 1. A function “f°
// 2. An argument “x° to that function

\ {/ and it simply applies f_ to x . Functiona‘;:’r?ong;?:r':ri;?nl;oifwkéigl:

def apply[A,B](fab: F[A => B])(fa: F[A]): F[B] =

map2(fab, fa)(_(_))
def unit[A](a: => A): F[A]

FUNCTIONAL AND REACTIVE
DOMAIN MODELING

DEBASISH GHOSH

Chapter notes, errata, hints, and answers 10 exercises

Il MANNING

def map[A,B](fa: F[A])(f: A => B): F[B] =
apply(unit(f))(fa)

compiled by Runar Oli Bjamason

Debasish Ghosh
[@debasishg

‘& 4 (
Runar Bjarnason)

u @runarorama

Validation of independent values using apply3 (alternative name for map3)

type V[A] = Validation[String, A]

def validateAccountNo (no: String): V[String]

def validateOpenCloseDate (openDate: Option[Date], closeDate: Option[Date]) :
V[(Date, Option[Date])]

def validateRateOfInterest (rate: BigDecimal) : V[BigDecimal]

You know nothing about the implementation of Validation so far—just a place-
holder for the type and how it fits into the algebra of the validation functions. After
you invoke all three of the validation functions, you get three instances of V[_]. If all
of them indicate a successful validation, you extract the validated arguments and pass
them to a function, £, that constructs the final validated object. In case of failure, you
report errors to the client. This gives the following contract for the workflow—Ilet’s

def apply3([V[], A, B, C, D] (va: V[A], vb: V[B], vc: V[C]) <F—W

(E: (A, B, C) =p D)
: vip] 4_‘ Validated output object The processing

The input
contexts

in the same context function

FUNCTIONAL AND REACTIVE
DOMAIN MODELING

DEBASISH GHOSH

II MANNING

Debasish Ghosh
[l @debasishg

Validation of independent values using apply3 (alternative name for map3)

You don’t yet have the implementation offapply3.]But assuming you have one, let’s
see how the validation code evolves out of this algebra and plugs into the smart con-

structor for creating a SavingsAccount:

def savingsAccount (no: String, name: String, rate: BigDecimal,
openDate: Option[Date], closeDate: Option[Date],
balance: Balance): V[Account] = ({ The three contexts

of validation
apply3 (

validateAccountNo (no),
validateOpenCloseDate (openDate, closeDate),
validateRate (rate)
) { (n, 4, r) =>
SavingsAccount (n, name, r, d. 1, d. 2, balance)

The function that extracts
information from the
contexts and constructs
a valid SavingsAccount

} validateOpenCloseDate returns a Tuple2, and you
access the two members using d._1 and d._2.

nicely fits this use case. But you need to generalize the entire workflow into an
abstraction that can have a broader application. After allor 1ift3 aren’t APIs
specific to validating a bunch of fields. Where will or 1ift3 live? Right now
you’ve kept them in a global namespace and parameterized them on the context type
constructor V[_]. Let’s put them into a module and unearth the pattern inside.

FUNCTIONAL AND REACTIVE
DOMAIN MODELING

DEBASISH GHOSH

M manNiNG

Debasish Ghosh
[l @debasishg

Validation of independent values using apply3 (alternative name for map3)

Listing 4.4 The Applicative Functor trait (simplified)

trait Applicative[F[]] extends Functor [F] ({

FUNCTIONAL AND REACTIVE
DOMAIN MODELING

def ap[A,B] (fa: => F[A]) (f: => F[A => B]): F[B] <+— Primitive
operations that
implementing
classes need to
def 1ift2[A,B,C]l (f: (A, B) => C): (F[A], F[B]) => F[C] = provide. You’ll

apply2(_, _) (f) see a sample
- - implementation

def unit[A] (a: => A): F[A] < shortly. Debasish Ghosh
} 2 @debasishg

DEBASISH GHOSH

def apply2I[A,B,C] (fa: F[A], fb: F[B]) (f: (A, B) => C): F[C] =
ap (fb) (map (fa) (f.curried))

'l MANNING

After you have the Applicative trait in place, provide an instance of Applicative for

Validation.'* And you have the implementation of savingsAccount with the valida- Runar Bjarnason)

. u@runarorama
tion logic implemented with applicative effects.
Exercise 12.03
val av: Applicativel[V] = ..
def savingsAccount (no: String, name: String, rate: BigDecimal, /* A companion booklet to
The pattern is simple. We just curry the function Functional Programming in Scala

openDate: Option[Date], closeDate: Option[Date],

we want to 1ift, pass the result to ‘unit’, and then “apply’

balance: Balance): V[Account] = { i RN &
as many times as there are arguments.
Each call to ‘“apply’ is a partial application of the function
/] .. : -
You invoke apply3 from the tet mans (A8, G0l (a: FlA]
. . . el map ,b,0C, a: ’
av.apply3 (Applicative instance of V. _/ to: F[B].
validateAccountNo (no), fe: F[C])(f: (A, B, C) => D): F[D] =
validateOpenCloseDate (openDate, closeDate), apply(apply(apply(unit(f.curried))(fa))(fb))(fc)
validateRate (rate)
def map4[A,B,C,D,E](fa: F[A],
) { (n, 4, 1) => fb: F[B],
SavingsAccount (n, name, r, d. 1, d. 2, balance) fe: F[C],
} £fd: F[D])(f: (A, B, C, D) => E): F[E]

} apply(apply(apply(apply(unit(f.curried))(fa))(fb))(fc))(fd)

Working with effects

val x: Option[Int] = parselnt(...)

val y: Option[Int] = x match {
case Some(int) => Some(int max 0)
case None => None

/AII these follow more or less the same pattern. We want to apply a pure function to an effectfum
value and we can’t just do this using the normal mechanism because an F of A can’t be treated as
an A, if it could, this whole exercise would be futile. The whole point is, F of A is separate from an
A but we still want to be able to apply functions expecting an A to this value. And so for each F,
e.g. Option, Either, State, they have this notion of _getting inside this value and observing what
that is, and in the case where we do have an A, apply the function and then we are also going to

_plumb some bits through.

Working with effects

val x: Either[String, Host] = getKey[Host] ("host") _tvpeclass called Functor.

val y: Either[String, Endpoint] = x match {
case Right(host) => Right(host / "api")

case Left(err) => Left(err)

}

Working with effects

The Functor, Applicative, Monad talouh

» Apply a pure function f : A — B to an effectful value F[A]
» “Inside” F[A] we apply the function to the value and
propagate some extra bits through, giving F[B]

» These “extra bits” tend to be the “something” effectful Adelbert Chang
functions do [] @adelbertchang

Functor //\ﬁ
/So for Option it is sort of propagating the effect of not having a

value, for Either, propagating the error, and for State...

And so, being the good programmers that we are, we see the same
pattern occurring over and over again and we want to be able to
talk about them generically, so we unify this pattern_into this

J

trait Functor[F[_]] {
defA, Bl (fa: F[A])(f: A => B): F[B]
}

new Functor[Option] {
def |map[A, B](fa: Option[A]) (f: A => B): Option[B] =
fa match {
] case Some(a) => Some(f(a))
case None => None

Adelbert Chang
[@adelbertchang

here is an example for Option

}

Functor

[ﬁreisan example for Either]

In order to be a Functor you need to support this very new Functor [Elther [E’ 7]] {

generic map operation. In which given a effectful value F of def |map (A, B](fa: Either[E, A]l])(f: A => B): Either[E, B]
A and a pure function A to B, | want you to somehow appl
’ Y PP fa match {

that function to the effectful value.
case Right(a) => Right(f(a))
case Left(e) => Left(e)

trait Functor[F[_]] { }
def |map[A, Bl (fa: F[A])(f: A => B): F[B] } ton b e i T U

}

val i: Option[Int] = parselnt(...)
val bounded: Option[Int] = i.jmapf_ max 0)

The Functor, Applicative, Monad tallou@H

val path: Either[String, Host] = getKey[Host] ("host")
val api: Either[String, Endpoint] = path. map[_ / "api")

Working with a single effectful value

The Functor, Applicative, Monad tallouh

» What if we want to work with two or more effectful values?

» Apply a pure n-ary function to n effectful values
» Focus on tupling the values - (F[A], F[B]) => F[(A, B)]

Working with multiple effectful values

def pairOption[A, B]
(oa: Option[A], ob: Option[B]): Option[(A, B)] =

Working with multiple effectful values

def pairEither[E, A, B]

(ea: Either[E, A], eb: Either[E, B]): Either[E, (A, B)] ;

(ea, eb) match {
case (Right(a), Right(b)) => Right((a, b))
case (Left(e), _) => Left(e)
case (_, Left(e)) => Left(e)

(oa, ob) match {
case (Some(a), Some(b)) => Some((a, b))

case _ => None

}

Adelbert Chang
1 @adelbertchang

Applicative

over it to destructure the pair and apply an N-ary function.

values, then | certainly should be able to work with a single effectful value.

And of course we also want all applicatives to have this map operation, because in order to work with
N effectful values, we are going to zip them together, so we get a pair, and then we are going to map

And also, it makes sense conceptually, because if we claim to work with N independent effectful

pairOption and pairEither follow more or less
the same pattern. We have a notion of looking
inside two effectful values and then pairing
them up together while remaining inside the
effect, and this is what applicatives are all
about.

Applicative > def |pure FA] (a: A): F[A]

}

trait Applicative[F[_]] extends Functor[F] {
def |zip[A, Bl(fa: F[A]l, fb: F[B]): F[(A, B)]

def map[A, Bl(fa: F[A])(f: A => B): F[B]

Applicative

So here are Applicative
implementations for Option
and Either

trait Applicative[F[_]] extends Functor[F] {
def zip[A, Bl(fa: F[A]l, fb: F[B]): F[(A, B)]
def pure[A]l(a: A): F[A]

def map[A, Bl(fa: F[A])(f: A => B): F[B]
}

new Applicative[Option] {
def zip[A, B]

(fa: Option[A], fb: Option[B]): Option[(A, B)] =

(fa, fb) match {
case (Some(a), Some(b))
case _

=> Some((a, b))
=> None

}

def pure[A](a: A): Option[A] = Some(a)

The Functor, Applicative, Monad talloufB

}

new Applicative[Either[E, ?7]] {
def zip[A, B]

(fa: Either[E, A]l, fb: Either[E, B]): Either[E, (A, B)]

(So here is some stuff that we couldn’t do with Functor that we can do with

\-

Applicative. Let’s say | parse two integers now, both of which may or may not fail,
| want to zip them together and then map over it and then figure out which one
of those integers is larger and this gives me back an Option of an integer.

(fa, fb) match {

case (Right(a), Right(b)) => Right((a, b))

' A 2 e F Tand 1
/ / up twon LINT/

parselnt(.

..);zip(parseInt(...)).map {

=> Left(e)
=> Left(e)

case (Left(e), _)
case (_, Left(e))
}

def pure[A](a: A): Either[E, A] = Right(a)

case (x, y) => x max y

}

—

/' / +h o [Koranpon
// LULTNer[LTrror

| can parse two keys from a config, or | could parse 3 or 4 keys if | wanted
to, and then zip them together and map over it and then get an endpoint,
and that gets me either an error or an endpoint and if any of those
parses fail then | get the first error that | hit.

Endpoint] Adelbert Chang

>

getKey[Host] ("host") .zip(getKey[Port] ("port")) .map {
case (host, p) => host :| p / "api"
}

u @adelbertchang

Applicative defined in terms of zip + pure or in terms of ap + pure Applicat ive

The Functor, Applicative, Monad tallou(fB

trait Applicative[F[_]] extends Functor[F] {
def zip[A, B](fa: F[A], fb: F[B]): F[(A, B)]
def pure[A](a: A): F[A]

def map[A, B](fa: F[A])(f: A => B): F[B]

Adelbert Chang def ap[A, B, Cl(ff: F[A => B])(fa: F[A]): F[B] =
[l @adelbertchang map(zip(ff, fa)) { case (f, a) => f(a) }

/\

ﬁ a quick note, if you go to say Cats or Scalaz today, or Haskell even, and you look at Applicative, what you’ll see is this ap formulatim
instead, so what | presented as zip, map and pure, we will typically see as ap, and ap sort of has a weird type signature, at least in Scala,
where you have a function inside of an F, and then you have an effectful value, and you want to apply the function to that value, all
while remaining in F, and this has a nice theoretical story, and sort of has a nicer story in Haskell, but in Scala, this sort of makes for an
awkward API, and so | like to introduce applicative in terms of zip and map for that reason, I think it makes for a better story, and | think

zip is conceptually simpler, because you can sort of see that zip is about composing two values, in the easiest way possible, whereas ap
sort of has a weird signature.

That thing said, ap is, for historical reasons, like the canonical representation of Applicative, so if after this talk you go and look what
Qoplicative is, you’ll probably see ap. Just as a quick note, you can implement ap in terms of map and zip, like | have here. You can also go
: W,

e other way, you can implement zip and map in terms of ap, and so, exercise left to the reader.

