
Applicative Functor
Learn more about the canonical definition of the Applicative typeclass by looking at

a great Haskell validation example by Chris Martin and Julie Moronuki
Then see it translated to Scala

slides by @philip_schwarz

@chris_martin @argumatronic

Part 2

The name applicative comes from the fact that we can formulate the Applicative interface using an
alternate set of primitives, unit and the function apply, rather than unit and map2. …this formulation is
equivalent in expressiveness since … map2 and map [can be defined] in terms of unit and apply … [and]
apply can be implemented in terms of map2 and unit.

trait Functor[F[_]] {
def map[A,B](fa: F[A])(f: A => B): F[B]

}

trait Applicative[F[_]] extends Functor[F] {
def apply[A,B](fab: F[A => B])(fa: F[A]): F[B]
def unit[A](a: => A): F[A]
def map[A,B](fa: F[A])(f: A => B): F[B] = map2(fa, unit(()))((a, _) => f(a))
def map2[A,B,C](fa: F[A], fb: F[B])(f: (A,B) => C): F[C]

}

Functional Programming in Scala
(by Paul Chiusano and Runar Bjarnason)

@pchiusano @runarorama

In Part 1 we saw that the Applicative typeclass can be defined either in
terms of unit and map2, or in terms of unit and apply (also known as ap).

@philip_schwarz

Part 1 concluded with Adelbert Chang explaining that “apply has a weird signature, at
least in Scala, where you have a function inside of an F and then you have an effectful
value, and you want to apply the function to that value, all while remaining in F, and this
has a nicer theoretical story in Haskell, but in Scala it sort of makes for an awkward API”

Recently I came across a great book called Finding Success (and Failure) in Haskell. In addition to generally being
very interesting and useful, it contains a great example that shows how to do validation in Haskell progressively
better, and that culminates in using Haskell’s Validation Applicative.

I am grateful to Julie Moronuki and Chris Martin for writing such a great book and I believe Scala developers will
also benefit from reading it.

In this slide deck I am going to look in detail at just two sections of their example, the one where they switch
from the Either Monad to the Either Applicative and the one where they switch from the Either Applicative to
the Validation Applicative. In doing so, I will translate the code in the example from Haskell to Scala, because I
found it a good way of reinforcing the ideas behind Haskell’s canonical representation of the Applicative
typeclass and the ideas behind its Validation instance.

@chris_martin @argumatronic

@philip_schwarz

The validation example that Julie Moronuki and Chris Martin chose for their book is about validating the username
and password of a user. I am assuming that if you are going through this slide deck then you are a developer with a
strong interest in functional programming and you are happy to learn by reading both Haskell and Scala code. If you
are mainly a Scala developer, don’t worry if your Haskell knoweldge is minimal, you’ll be fine. If you are mainly a
Haskell developer, you will get an opportunity to see one way in which some Haskell concepts/abstractions can be
reproduced in Scala.

The good thing about the example being simple, is that I don’t have to spend any time verbally explaining how it works,
I can just show you the code and make some observations at key points. See the book for a great, detailed explanation
of how the authors got to various points on their journey and what they learned in the process, especially if you are
new to Haskell or new to Monads and Applicatives.

In the next slide you’ll see the code as it is before the authors switch from the Either Monad to the Either Applicative.

validatePassword :: Password -> Either Error Password
validatePassword (Password password) =
 cleanWhitespace password
 >>= requireAlphaNum
 >>= checkPasswordLength

cleanWhitespace :: String -> Either Error String
cleanWhitespace "" = Left (Error "Your password cannot be empty.")
cleanWhitespace (x : xs) =
 case (isSpace x) of
 True -> cleanWhitespace xs
 False -> Right (x : xs)

requireAlphaNum :: String -> Either Error String
requireAlphaNum password =
 case (all isAlphaNum password) of
 False -> Left "Your password cannot contain \
 \white space or special characters."
 True -> Right password

checkPasswordLength :: String -> Either Error Password
checkPasswordLength password =
 case (length password > 20) of
 True -> Left (Error "Your password cannot be \
 \longer than 20 characters.")
 False -> Right (Password password)

main :: IO ()
main =
 do
 putStr "Please enter a password\n> "
 password <- Password <$> getLine
 print (validatePassword password)

newtype Password = Password String
 deriving Show

newtype Error = Error String
 deriving Show

Here is a Haskell program that asks the user for a
password, validates it, and prints out to console either
the password or a validation error message.

The program is using the IO Monad and the Either
Monad.

See the next slide for sample executions of the program.

@philip_schwarz

In Haskell, the entry point for an executable
program must be named main and have an IO
type (nearly always IO ()). We do not need to
understand this fully right now. In a very general
sense, it means that it does some I/O and
performs some effects.

@chris_martin
@argumatronic

the bind function of
the Either monad

The fmap (map) function
of the IO monad

validatePassword :: Password -> Either Error Password
validatePassword (Password password) =
 cleanWhitespace password
 >>= requireAlphaNum
 >>= checkPasswordLength

cleanWhitespace :: String -> Either Error String
cleanWhitespace "" = Left (Error "Your password cannot be empty.")
cleanWhitespace (x : xs) =
 case (isSpace x) of
 True -> cleanWhitespace xs
 False -> Right (x : xs)

requireAlphaNum :: String -> Either Error String
requireAlphaNum password =
 case (all isAlphaNum password) of
 False -> Left "Your password cannot contain \
 \white space or special characters."
 True -> Right password

checkPasswordLength :: String -> Either Error Password
checkPasswordLength password =
 case (length password > 20) of
 True -> Left (Error "Your password cannot be \
 \longer than 20 characters.")
 False -> Right (Password password)

main :: IO ()
main =
 do
 putStr "Please enter a password\n> "
 password <- Password <$> getLine
 print (validatePassword password)

newtype Password = Password String
 deriving Show

newtype Error = Error String
 deriving Show

*Main> main
Please enter a password
> excessivelylongpassword
Left (Error "Your password cannot be longer than 20 characters.")

*Main> main
Please enter a password
> has.special*chars
Left (Error "Cannot contain white space or special characters.")

*Main> main
Please enter a password
> has space
Left (Error "Cannot contain white space or special characters.")

*Main> main
Please enter a password
>
Left (Error "Your password cannot be empty.")

*Main> main
Please enter a password
> pa22w0rd
Right (Password "pa22w0rd")

*Main> main
Please enter a password
> leadingspacesareok
Right (Password "leadingspacesareok")
*Main>

See below for a few sample executions I did
for both sunny day and rainy day scenarios.

@chris_martin
@argumatronic

I am going to translate the Haskell password program into Scala,
but what about the IO type for performing side effects (e.g. I/O)?

Let’s use the IO data type provided by Cats Effect.

If you are going through this slide for the first time, you don’t need
to fully absorb all of the text below before moving on.

@philip_schwarz

This project aims to provide a standard IO type for the Cats ecosystem, as well as a set of typeclasses (and associated laws!)
which characterize general effect types. This project was explicitly designed with the constraints of the JVM and of JavaScript in
mind. Critically, this means two things:

•Manages both synchronous and asynchronous (callback-driven) effects
•Compatible with a single-threaded runtime

In this way, IO is more similar to common Task implementations than it is to the classic scalaz.effect.IO or even Haskell’s IO,
both of which are purely synchronous in nature. As Haskell’s runtime uses green threading, a synchronous IO (and the
requisite thread blocking) makes a lot of sense. With Scala though, we’re either on a runtime with native threads (the JVM) or
only a single thread (JavaScript), meaning that asynchronous effects are every bit as important as synchronous ones.

IO
A data type for encoding side effects as pure values, capable of expressing both synchronous
and asynchronous computations.

A value of type IO[A] is a computation which, when evaluated, can perform effects before
returning a value of type A.

IO values are pure, immutable values and thus preserves referential transparency, being usable
in functional programming. An IO is a data structure that represents just a description of a side
effectful computation.

IO can describe synchronous or asynchronous computations that:

1. on evaluation yield exactly one result
2. can end in either success or failure and in case of failure flatMap chains get short-circuited

(IO implementing the algebra of MonadError)
3. can be canceled, but note this capability relies on the user to provide cancellation logic

Effects described via this abstraction are not evaluated until the “end of the world”, which is to
say, when one of the “unsafe” methods are used. Effectful results are not memoized, meaning
that memory overhead is minimal (and no leaks), and also that a single effect may be run multiple
times in a referentially-transparent manner. For example:

The above example prints “hey!” twice, as the effect re-runs each time it is sequenced in the
monadic chain.

import cats.effect.IO

val ioa = IO { println("hey!") }

val program: IO[Unit] =
 for {
 _ <- ioa
 _ <- ioa
 } yield ()

program.unsafeRunSync()
//=> hey!
//=> hey!
()

In the next slide we’ll see the same Haskell program we
saw earlier but with an equivalent Scala version next to it.

validatePassword :: Password -> Either Error Password
validatePassword (Password password) =
 cleanWhitespace password
 >>= requireAlphaNum
 >>= checkPasswordLength

cleanWhitespace :: String -> Either Error String
cleanWhitespace "" = Left (Error "Your password cannot be empty.")
cleanWhitespace (x : xs) =
 case (isSpace x) of
 True -> cleanWhitespace xs
 False -> Right (x : xs)

requireAlphaNum :: String -> Either Error String
requireAlphaNum password =
 case (all isAlphaNum password) of
 False -> Left "Your password cannot contain \
 \white space or special characters."
 True -> Right password

checkPasswordLength :: String -> Either Error Password
checkPasswordLength password =
 case (length password > 20) of
 True -> Left (Error "Your password cannot be \
 \longer than 20 characters.")
 False -> Right (Password password)

main :: IO ()
main =
 do
 putStr "Please enter a password\n> "
 password <- Password <$> getLine
 print (validatePassword password)

newtype Password = Password String
 deriving Show

newtype Error = Error String
 deriving Show

case class Password(password:String)
case class Error(error:String)

def checkPasswordLength(password: String): Either[Error, Password] =
 password.length > 20 match {
 case true => Left(Error("Your password cannot be longer" +
 "than 20 characters."))
 case false => Right(Password(password))
 }

def requireAlphaNum(password: String): Either[Error, String] =
 password.forall(_.isLetterOrDigit) match {
 case false => Left(Error("Your password cannot contain white " +
 "space or special characters."))
 case true => Right(password)
 }

def cleanWhitespace(password:String): Either[Error, String] =
 password.dropWhile(_.isWhitespace) match {
 case pwd if pwd.isEmpty => Left(Error("Your password cannot be empty."))
 case pwd => Right(pwd)
}

def validatePassword(password: Password): Either[Error,Password] = password match {
 case Password(pwd) =>
 cleanWhitespace(pwd)
 .flatMap(requireAlphaNum)
 .flatMap(checkPasswordLength)
}

val main: IO[Unit] =
 for {
 _ <- print("Please enter a password.\n")
 pwd <- getLine map Password
 _ <- print(validatePassword(pwd).toString)
 } yield ()

main.unsafeRunSync

import cats.effect.IO

def getLine =
 IO { scala.io.StdIn.readLine }
def print(s: String): IO[Unit] =
 IO { scala.Predef.print(s) }

Here on the right is the Scala equivalent of the
Haskell program on the left.

@chris_martin
@argumatronic

In chapter seven of Finding Success (and Failure) in Haskell,
the authors introduce the Applicative typeclass.

This chapter picks up where the previous one ended and adds a
validateUsername function. Then, since we’d like to keep a username
and a password together as a single value, we write a product type
called User and a makeUser function that constructs a User from the
conjunction of a valid Username and a valid Password. We will introduce
the Applicative typeclass to help us write that function.

@chris_martin
@argumatronic In the next slide we look at the corresponding code changes

checkUsernameLength :: String -> Either Error Username
checkUsernameLength username =
 case (length username > 15) of
 True -> Left (Error "Your username cannot be \
 \longer than 15 characters.")
 False -> Right (Username username)

data User = User Username Password
 deriving Show

makeUser :: Username -> Password -> Either Error User
makeUser name password =
 User <$> validateUsername name
 <*> validatePassword password

main :: IO ()
main =
 do
 putStr "Please enter a username.\n> "
 username <- Username <$> getLine
 putStr "Please enter a password.\n> "
 password <- Password <$> getLine
 print (makeUser username password)

validateUsername :: Username -> Either Error Username
validateUsername (Username username) =
 cleanWhitespace username
 >>= requireAlphaNum
 >>= checkUsernameLength

newtype Username = Username String
 deriving Show

validatePassword :: Password -> Either Error Password
validatePassword (Password password) =
 cleanWhitespace password
 >>= requireAlphaNum
 >>= checkPasswordLength

cleanWhitespace :: String -> Either Error String
cleanWhitespace "" = Left (Error "Your password cCannot be empty.")
cleanWhitespace (x : xs) =
 case (isSpace x) of
 True -> cleanWhitespace xs
 False -> Right (x : xs)

requireAlphaNum :: String -> Either Error String
requireAlphaNum input =
 case (all isAlphaNum input) of
 False -> Left "Your password cCannot contain \
 \white space or special characters."
 True -> Right input

checkPasswordLength :: String -> Either Error Password
checkPasswordLength password =
 case (length password > 20) of
 True -> Left (Error "Your password cannot be \
 \longer than 20 characters.")
 False -> Right (Password password)

main :: IO ()
main =
 do
 putStr "Please enter a password\n> "
 password <- Password <$> getLine
 print (validatePassword password)

newtype Password = Password String
 deriving Show

newtype Error = Error String
 deriving Show

The 1st change is the introduction of a
Username and associated
checkUsernameLength and
validateUsername functions,
almost identical to those for
Password.

The 3rd change is the introduction of a User, consisting of a
Username and a Password, together with a function makeUser that
creates a User from a username and a password, provided they are
both valid. We’ll look at the function in detail in the slide after next.

The 4td change is that instead of
just asking for a password and
printing it, the main function now
also asks for a username, creates
a User with the username and
password, and prints the User
rather than just the password.

@chris_martin
@argumatronic

The 2nd change is that
requireAlphaNum
and
cleanWhitespace
are now used for both
username and
password.

checkUsernameLength :: String -> Either Error Username
checkUsernameLength username =
 case (length username > 15) of
 True -> Left (Error "Your username cannot be \
 \longer than 15 characters.")
 False -> Right (Username username)

data User = User Username Password
 deriving Show

makeUser :: Username -> Password -> Either Error User
makeUser name password =
 User <$> validateUsername name
 <*> validatePassword password

main :: IO ()
main =
 do
 putStr "Please enter a username.\n> "
 username <- Username <$> getLine
 putStr "Please enter a password.\n> "
 password <- Password <$> getLine
 print (makeUser username password)

validateUsername :: Username -> Either Error Username
validateUsername (Username username) =
 cleanWhitespace username
 >>= requireAlphaNum
 >>= checkUsernameLength

newtype Username = Username String
 deriving Show

validatePassword :: Password -> Either Error Password
validatePassword (Password password) =
 cleanWhitespace password
 >>= requireAlphaNum
 >>= checkPasswordLength

cleanWhitespace :: String -> Either Error String
cleanWhitespace "" = Left (Error "Cannot be empty.")
cleanWhitespace (x : xs) =
 case (isSpace x) of
 True -> cleanWhitespace xs
 False -> Right (x : xs)

requireAlphaNum :: String -> Either Error String
requireAlphaNum input =
 case (all isAlphaNum input) of
 False -> Left "Cannot contain \
 \white space or special characters."
 True -> Right input

checkPasswordLength :: String -> Either Error Password
checkPasswordLength password =
 case (length password > 20) of
 True -> Left (Error "Your password cannot be \
 \longer than 20 characters.")
 False -> Right (Password password)

newtype Password = Password String
 deriving Show

newtype Error = Error String
 deriving Show

Here is how the code
looks after the changes

@chris_martin
@argumatronic

When we wrote the validateUsername and validatePassword functions, we noted the importance of using the monadic (>>=) operator when the input of
a function must depend on the output of the previous function. We wanted the inputs to our character and length checks to depend on the output of
cleanWhitespace because it might have transformed the data as it flowed through our pipeline of validators. However, in this case, we have a different
situation. We want to validate the name and password inputs independently – the validity of the password does not depend on the validity of the
username, nor vice versa – and then bring them together in the User type only if both operations are successful.

For that, then, we will use the primary operator of a different typeclass: Applicative. We often call that operator “tie-fighter” or sometimes “apply” or
“ap”. Applicative occupies a space between Functor (from which we get (<$>)) and Monad, and (<*>) is doing something very similar to (<$>) and
(>>=), which is allowing for function application in the presence of some outer type structure.

In our case, the “outer type structure” is the Either a functor. As we’ve seen before with fmap and (>>=), (<*>) must effectively ignore the a parameter
of Either, which is the Error in our case, and only apply the function to the Right b values. It still returns a Left error value if either side evaluates to the
error case, but unlike (>>=), there’s nothing inherent in the type of (<*>) that would force us to “short-circuit” on an error value. We don’t see evidence
of this in the Either applicative, which behaves coherently with its monad, but we will see the difference once we’re using the Validation type.

@chris_martin
@argumatronic

makeUser :: Username -> Password -> Either Error User
makeUser name password =
 User <$> validateUsername name
 <*> validatePassword password

Just like validatePassword, the new validateUsername function uses >>=, the bind function of the Either Monad. Every Monad is also an Applicative Functor and the new makeUser
function uses both <$> and <*>, which are the map function and the apply function of the Either Applicative Functor. See below and next slide for how the makeUser function works.

validateUsername :: Username -> Either Error Username
validateUsername (Username username) =
 cleanWhitespace username
 >>= requireAlphaNum
 >>= checkUsernameLength

cleanWhitespace :: String -> Either Error String

requireAlphaNum :: String -> Either Error String

clean
white
space

require
alpha
num

input validate
username

validate
password

make
user

valid
usernameinput

input
valid

password

trimmed
input check

username
length

⍺-num
input

Either
Error
String

>>=

Either
Error
String

String String

>>=

String

checkUsernameLength :: String -> Either Error Username

Either
Error
Username

(>>=) :: Monad m => m a -> (a -> m b) -> m b

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

Password Either
Error
Password

Username

Either
Error
Username Username

Password

Either
Error
User

<*><$>

I have annotated the
diagrams a bit to aid
my comprehension
further.

In the next slide we
look a little bit closer
at how the
makeUser function
uses <$> and <*>
to turn Either
Error Username
and Either Error
Password into
Either Error
User.

(<$>) :: Functor m => m a -> (a -> b) -> m b

To see how <$> and <*> are working together in the makeUser function, let’s
take the four different combinations of values that validateUsername and
validatePassword can return, and see how <$> and <*> process them.

makeUser :: Username -> Password -> Either Error User
makeUser name password =
 User <$> validateUsername name
 <*> validatePassword password

User <$> Right(Username "fredsmith") <*> Right(Password "pa22w0rd")

 Right(User(Username "fredsmith")) <*> Right(Password "pa22w0rd")

 Right(User (Username "fredsmith") (Password "pa22w0rd"))

User <$> Left(Error "Cannot be blank.") <*> Right(Password "pa22w0rd")

 Left(Error "Cannot be blank.") <*> Right(Password "pa22w0rd")

 Left(Error "Cannot be blank.")

User <$> Right(Username "fredsmith") <*> Left(Error "Cannot be blank.")

 Right(User(Username "fredsmith")) <*> Left(Error "Cannot be blank.")

 Left(Error "Cannot be blank.")

User <$> Left(Error "Cannot be blank.") <*> Left(Error "Cannot be blank.")

 Left(Error "Cannot be blank.") <*> Left(Error "Cannot be blank.")

 Left(Error "Cannot be blank.")

One way to visualize the result of this

is to think of User applied to its first argument as a lambda
function that takes User’s second parameter

Right(\pwd -> User (Username "fredsmith") pwd)

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

(<$>) :: Functor m => m a -> (a -> b) -> m b

User <$> Right(Username "fredsmith")

That way maybe we can better visualise this

as the application of the partially applied User function to its second parameter

Right(User(Username "fredsmith")) <*> Right(Password "pa22w0rd")

Right(\pwd->User(Username "fredsmith")pwd) <*> Right(Password "pa22w0rd")

fmap (map)

ap (apply)

@philip_schwarz

*Main> makeUser (Username "fredsmith") (Password "pa22w0rd")
Right (User (Username "fredsmith") (Password "pa22w0rd"))

*Main> makeUser (Username "extremelylongusername") (Password "pa22w0rd")
Left (Error "Your username cannot be longer than 15 characters.")

*Main> makeUser (Username "fredsmith") (Password "password with spaces")
Left (Error "Cannot contain white space or special characters.")

*Main> makeUser (Username "extremelylongusername") (Password "password with spaces")
Left (Error "Your username cannot be longer than 15 characters.")

*Main>

makeUser :: Username -> Password -> Either Error User
makeUser name password =
 User <$> validateUsername name
 <*> validatePassword password

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

(<$>) :: Functor m => m a -> (a -> b) -> m b

Let’s see the four cases again but this time from the
point of view of calling the makeUser function.

The bottom case is a problem: when both username and password are invalid
then the makeUser function only reports the problem with the username.

In upcoming slides we are going to see how the authors of Finding Success
(and Failure) in Haskell improve the program so that it does not suffer
from the problem just described. Because they will be be referring to the
Semigroup typeclass, the next three slides are a quick reminder of the
Semigroup and Monoid typeclasses (defining the latter helps defining the
former).

If you already know what a Semigroup is then feel free to skip the next
three slides. Also, if you want to know more about Monoids, see the two
slide decks on the right.

https://www.slideshare.net/pjschwarz/monoids-with-examples-using-scalaz-and-cats-part-1

@philip_schwarz

https://www.slideshare.net/pjschwarz/monoids-with-examples-using-scalaz-and-cats-part-2

@philip_schwarz

https://www.slideshare.net/pjschwarz/natural-transformations
https://www.slideshare.net/pjschwarz/natural-transformations

Monoid is an embarrassingly simple but amazingly powerful concept. It’s the concept behind basic arithmetics:
Both addition and multiplication form a monoid. Monoids are ubiquitous in programming. They show up as strings,
lists, foldable data structures, futures in concurrent programming, events in functional reactive programming, and so on.
…

In Haskell we can define a type class for monoids — a type for which there is a neutral element called mempty and a
binary operation called mappend:

 class Monoid m where
 mempty :: m
 mappend :: m -> m -> m
…
As an example, let’s declare String to be a monoid by providing the implementation of mempty and mappend (this is, in
fact, done for you in the standard Prelude):

 instance Monoid String where
 mempty = ""
 mappend = (++)

Here, we have reused the list concatenation operator (++), because a String is just a list of characters.

A word about Haskell syntax: Any infix operator can be turned into a two-argument function by surrounding it with
parentheses. Given two strings, you can concatenate them by inserting ++ between them:

 "Hello " ++ "world!”

or by passing them as two arguments to the parenthesized (++):

 (++) "Hello " "world!"

@BartoszMilewski

Bartosz Milewski

Monoid

A monoid is a binary associative operation with an identity.
…
For lists, we have a binary operator, (++), that joins two lists together. We can also use a function, mappend, from the
Monoid type class to do the same thing:

 Prelude> mappend [1, 2, 3] [4, 5, 6]
 [1, 2, 3, 4, 5, 6]

For lists, the empty list, [], is the identity value:

 mappend [1..5] [] = [1..5]
 mappend [] [1..5] = [1..5]

We can rewrite this as a more general rule, using mempty from the Monoid type class as a generic identity value (more
on this later):

 mappend x mempty = x
 mappend mempty x = x

In plain English, a monoid is a function that takes two arguments and follows two laws: associativity and identity.
Associativity means the arguments can be regrouped (or reparenthesized, or reassociated) in different orders and give
the same result, as in addition. Identity means there exists some value such that when we pass it as input to our function,
the operation is rendered moot and the other value is returned, such as when we add zero or multiply by one. Monoid is
the type class that generalizes these laws across types.

By Christopher Allen
and Julie Moronuki

@bitemyapp @argumatronic

Semigroup

Mathematicians play with algebras like that creepy kid you knew in grade school who would pull legs off of insects.
Sometimes, they glue legs onto insects too, but in the case where we’re going from Monoid to Semigroup, we’re pulling
a leg off.

In this case, the leg is our identity. To get from a monoid to a semigroup, we simply no longer furnish nor require an
identity. The core operation remains binary and associative. With this, our definition of Semigroup is:

class Semigroup a where
(<>) :: a -> a -> a

And we’re left with one law:
(a <> b) <> c = a <> (b <> c)

Semigroup still provides a binary associative operation, one that typically joins two things together (as in
concatenation or summation), but doesn’t have an identity value. In that sense, it’s a weaker algebra.
…

NonEmpty, a useful datatype

One useful datatype that can’t have a Monoid instance but does have a Semigroup instance is the NonEmpty list type. It
is a list datatype that can never be an empty list…

We can’t write a Monoid for NonEmpty because it has no identity value by design! There is no empty list to serve as an
identity for any operation over a NonEmpty list, yet there is still a binary associative operation: two NonEmpty lists
can still be concatenated.

A type with a canonical binary associative operation but no identity value is a natural fit for Semigroup.

By Christopher Allen
and Julie Moronuki

@bitemyapp @argumatronic

After that refresher on Semigroup and Monoid, let’s turn to
chapter eight of Finding Success (and Failure) in Haskell, in which
the authors address the problem in the current program by
switching from Either to Validation.

Refactoring with Validation

In this chapter we do a thorough refactoring to switch from Either to Validation, which comes from the package
called validation available on Hackage.

These two types are essentially the same. More precisely, these two types are isomorphic, by which we
mean that you can convert values back and forth between Either and Validation without discarding any
information in the conversion.

But their Applicative instances are quite different and switching to Validation allows us to accumulate
errors on the left. In order to do this, we’ll need to learn about a typeclass called Semigroup to handle
the accumulation of Error values.

Introducing validation

Although the Validation type is isomorphic to Either, they are different types, so they can have different
instances of the Applicative class. Since instance declarations define how functions work, this means
overloaded operators from the Applicative typeclass can work differently for Either and Validation.

We used the Applicative for Either in the last chapter and we noted we used Applicative instead of Monad
when we didn’t need the input of one function to depend on the output of the other. We also noted that
although we weren’t technically getting the “short-circuiting” behavior of Monad, we could still only
return one error string. The “accumulating Applicative” of Validation will allow us to return more than
one.

The way the Applicative for Validation works is that it appends values on the left/error side using a
Semigroup. We will talk more about semigroups later, but for now we can say that our program will be
relying on the semigroup for lists, which is concatenation.

@chris_martin
@argumatronic

If you type import Data.Validation and then :info Validation, you can see the type definition

 data Validation err a = Failure err | Success a

The type has two parameters, one called err and the other called a, and two constructors, Failure err and
Success a. The output of :info Validation also includes a list of instances.

Validation is not a Monad

The instance list does not include Monad. Because of the accumulation on the left, the Validation type is
not a monad. If it were a monad, it would have to “short circuit” and lose the accumulation of values on
the left side. Remember, monadic binds, since they are a sort of shorthand for nested case expressions, must
evaluate sequentially, following a conditional, branching pattern. When the branch that it’s evaluating
reaches an end, it must stop. So, it would never have the opportunity to evaluate further and find out if
there are more errors. However, since functions chained together with applicative operators instead of
monadic ones can be evaluated independently, we can accumulate the errors from several function
applications, concatenate them using the underlying semigroup, and return as many errors as there are.

err needs a Semigroup

Notice that Applicative instance has a Semigroup constraint on the left type parameter.

 instance Semigroup err => Applicative (Validation err)

That’s telling us that the err parameter that appears in Failure err must be a semigroup, or else we don’t
have an Applicative for Validation err. You can read the => symbol like implication: If err is Semigroupal
then Validation err is applicative. Our return types all have our Error type as the first argument to Either,
so as we convert this to use Validation, the err parameter of Validation will be Error.

@chris_martin
@argumatronic

In the next slide we are going to see again what the code looks
like just before the refactoring, and in the slide after that we start
looking at the detail of the refactoring.

@philip_schwarz

checkUsernameLength :: String -> Either Error Username
checkUsernameLength username =
 case (length username > 15) of
 True -> Left (Error "Your username cannot be \
 \longer than 15 characters.")
 False -> Right (Username username)

data User = User Username Password
 deriving Show

makeUser :: Username -> Password -> Either Error User
makeUser name password =
 User <$> validateUsername name
 <*> validatePassword password

main :: IO ()
main =
 do
 putStr "Please enter a username.\n> "
 username <- Username <$> getLine
 putStr "Please enter a password.\n> "
 password <- Password <$> getLine
 print (makeUser username password)

validateUsername :: Username -> Either Error Username
validateUsername (Username username) =
 cleanWhitespace username
 >>= requireAlphaNum
 >>= checkUsernameLength

newtype Username = Username String
 deriving Show

validatePassword :: Password -> Either Error Password
validatePassword (Password password) =
 cleanWhitespace password
 >>= requireAlphaNum
 >>= checkPasswordLength

cleanWhitespace :: String -> Either Error String
cleanWhitespace "" = Left (Error "Cannot be empty.")
cleanWhitespace (x : xs) =
 case (isSpace x) of
 True -> cleanWhitespace xs
 False -> Right (x : xs)

requireAlphaNum :: String -> Either Error String
requireAlphaNum input =
 case (all isAlphaNum input) of
 False -> Left "Cannot contain \
 \white space or special characters."
 True -> Right input

checkPasswordLength :: String -> Either Error Password
checkPasswordLength password =
 case (length password > 20) of
 True -> Left (Error "Your password cannot be \
 \longer than 20 characters.")
 False -> Right (Password password)

newtype Password = Password String
 deriving Show

newtype Error = Error String
 deriving Show

Just a reminder of what the
code looks like at this stage

@chris_martin
@argumatronic

Before we start refactoring, just a reminder that being a Monad, Either is also an Applicative, i.e. it has a <*> operator
(the tie-fighter operator - aka ap or apply).

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

Ok, let’s start: we are not happy with the way our makeUser function currently works.

This is because errors are modeled using Either and processed using its <*> operator, which means that when both
validateUsername and validatePassword return an error, we only get the error returned by
validateUsername.

In what follows below, the sample a -> b function that I am going to use is (+) 1, i.e. the binary plus function applied to
one (i.e. a partially applied plus function).

The problem with Either’s <*> is that it doesn’t accumulate the errors in its Left err arguments.

When passed a Right(a -> b), e.g. Right((+) 1), and a Right a, e.g. Right(2), <*> applies the function a -> b to the a,
producing a Right b, i.e. Right(3). That’s fine.

If the first argument of <*> is a Left err then the operator just returns that argument.

If the first argument of <*> is a Right(a -> b) then the operator maps function a->b onto its second argument, so if the
second argument happens to be a Left err, then the operator ends up returning that Left err.

So we see that when either or both of the arguments of <*> is a Left err then the operator returns a Left err, either the
only one it has been passed or the first one it has been passed. In the latter case, there is no notion of combining two
Left err arguments into a result Left err that somehow accumulates the values in both Left err arguments.

makeUser :: Username -> Password -> Either Error User
makeUser name password =
 User <$> validateUsername name
 <*> validatePassword password

Main> Right((+) 1) <> Right(2)
Right 3

Main> Right((+) 1) <> Left("bang")
Left "bang"

Main> Left("boom") <> Right(2)
Left "boom"

Main> Left("boom") <> Left("bang")
Left "boom"

*Main>

instance Applicative (Either e) where
 pure = Right
 Left e <*> _ = Left e
 Right f <*> r = fmap f r

@philip_schwarz

We want to replace Either with Validation, which is an Applicative whose <*> operator _does_ accumulate the
errors in its arguments. Validation is defined as follows:

 data Validation err a = Failure err | Success a

So the first thing we have to do is replace this

 Either Error Username // Left Error | Right Username
 Either Error Password // Left Error | Right Password
 Either Error User // Left Error | Right User

with this

 Validation Error Username // Failure Error | Success Username
 Validation Error Password // Failure Error | Success Password
 Validation Error User // Failure Error | Success User

Next, what do we mean when we say that Validation’s <*> accumulates errors in its arguments? We mean that
unlike Either’s <*>, when both of the arguments of Validation’s <*> are failures, then <*> combines the errors in
those failures. e.g if we pass <*> a Failure(“boom”) and a Failure(“bang”) then it returns Failure(“boombang”) !!!

But how does Validation know how to combine “boom” and “bang” into “boombang”? Because Validation is an
Applicative that requires a Semigroup to exist for the errors in its failures:

 instance Semigroup err => Applicative (Validation err)

In the above example, the errors are strings, which are lists of characters, and there is a semigroup for lists, whose
combine operator is defined as string concatenation.

 class Semigroup a where instance Semigroup [a] where
 (<>) :: a -> a -> a (<>) = (++)

So ”boom” and “bang” can be combined into “boombang” using the list Semigroup’s <> operator (mappend).

Main> Success((+) 1) <> Success(2)
Success 3

Main> Success((+) 1) <> Failure("bang")
Failure "bang"

Main> Failure("boom") <> Success(2)
Failure "boom"

Main> Failure("boom") <> Failure("bang")
Failure "boombang"

*Main> [1,2,3] ++ [4,5,6]
[1,2,3,4,5,6]

*Main> "boom" ++ "bang"
"boombang"

*Main> "boom" <> "bang"
"boombang"

Main> Right((+) 1) <> Right(2)
Right 3

Main> Right((+) 1) <> Left("bang")
Left "bang"

Main> Left("boom") <> Right(2)
Left "boom"

Main> Left("boom") <> Left("bang")
Left "boom"

In our case, the value in the Validation failures is not a plain string, but rather, an Error wrapping a string:

 newtype Error = Error String
 deriving Show

We need to define a semigroup for Error, so that Validation Error a can combine Error values.

But we don’t want accumulation of errors to mean concatenation of error messages. E.g. if we have two error messages “foo” and ”bar”, we don’t want their
combination to be “foobar”.

So the authors refactor Error to wrap a list of error messages rather than a single error message:

 newtype Error = Error [String]
 deriving Show

They then define a Semigroup for Error whose combine operator <> (mappend) concatenates the error lists they wrap:

 instance Semigroup Error where
 Error xs <> Error ys = Error (xs ++ ys)

So now combining two errors results in an error whose error message list is a combination of the error message lists of the two errors.

and passing two failures to Validation’s <*> operator results in a failure whose error is the combination of the errors of the two failures:

*Main> Error(["snap"]) <> Error(["crackle","pop"])
Error ["snap","crackle","pop"]

Main> Failure(Error(["snap"])) <> Failure(Error(["crackle","pop"]))
Failure (Error ["snap","crackle","pop"])

Next, we are unhappy with the way our validatePassword function works.

Because it uses >>= (bind, i.e. flatMap in Scala), which short-circuits when its first argument is a Left err, it doesn’t accumulate the errors in its
Left err arguments.

The authors of Finding Success (and Failure) in Haskell address this problem
by introducing another Applicative operator (see below).

validatePassword :: Password -> Either Error
Password
validatePassword (Password password) =
 cleanWhitespace password
 >>= requireAlphaNum
 >>= checkPasswordLength

*Main> Right(2) >>= \x -> Right(x + 3) >>= \y -> Right(x * y)
Right 10

*Main> Left("boom") >>= \x -> Right(x + 3) >>= \y -> Right(y * 2)
Left "boom"

*Main> Right(2) >>= \x -> Left("bang") >>= \y -> Right(y * 2)
Left "bang”

*Main> Left("boom") >>= \x -> Left("bang") >>= \y -> Right(y * 2)
Left "boom"

The Applicative typeclass has a pair of operators that we like to call left- and right-facing bird, but some
people call them left and right shark. Either way, the point is they eat one of your values.

(*>) :: Applicative f => f a -> f b -> f b
(<*) :: Applicative f => f a -> f b -> f a

These effectively let you sequence function applications, discarding either the first return value or the
second one.

The thing that’s pertinent for us now is they do not eat any effects that are part of the f. Remember, when we talk
about the Applicative instance for Validation, it’s really the Applicative instance for Validation err because
Validation must be applied to its first argument, so our f is Validation Error, and that instance lets us accumulate
Error values via a Semigroup instance (concatenation).

@chris_martin
@argumatronic

Let’s see the Applicative *> operator in action. While the *> operator of the Either Applicative does not combine the contents of two Left
values, the *> operator of the Validation Applicative does:

And because Error has been redefined to be a Semigroup and wrap a list of error messages, the *> of the Validation Applicative combines the
contents of two Error values:

*Main> Right(2) *> Right(3)
Right 3

*Main> Left("boom") *> Right(3)
Left "boom"

*Main> Right(2) *> Left("bang")
Left "bang"

*Main> Left("boom") *> Left("bang")
Left "boom"

*Main> Success(2) *> Success(3)
Success 3

*Main> Failure("boom") *> Success(3)
Failure "boom"

*Main> Success(2) *> Failure("bang")
Failure "bang"

*Main> Failure("boom") *> Failure("bang")
Failure "boombang"

*Main> Success(2) *> Success(3)
Success 3

*Main> Failure(Error ["boom"]) *> Success(3)
Failure (Error ["boom"])

*Main> Success(2) *> Failure(Error ["bang"])
Failure (Error ["bang"])

*Main> Failure(Error ["boom"]) *> Failure(Error ["bang"])
Failure (Error ["boom","bang"])

@philip_schwarz

The authors of Finding Success (and Failure) in Haskell rewrite the validatePassword function as follows:

similarly for the validateUsername function.

Here is how requireAlphaNum password2 *> checkPasswordLength password2 works:

Similarly for the equivalent section of the validateUsername function.

In the next slide we look at how the behaviour of the makeUser function changes with the switch from Either to Validation.

validatePassword :: Password -> Either Error Password
validatePassword (Password password) =
 cleanWhitespace password
 >>= requireAlphaNum
 >>= checkPasswordLength

validatePassword :: Password -> Validation Error Password
validatePassword (Password password) =
 case (cleanWhitespace password) of
 Failure err -> Failure err
 Success password2 -> requireAlphaNum password2
 *> checkPasswordLength password2

*Main> Success(Password("fredsmith")) *> Success(Password("fredsmith"))
Success (Password "fredsmith")

*Main> Failure(Error ["boom"]) *> Success(Password("fredsmith"))
Failure (Error ["boom"])

*Main> Success(Password("fredsmith")) *> Failure(Error ["bang"])
Failure (Error ["bang"])

*Main> Failure(Error ["boom"]) *> Failure(Error ["bang"])
Failure (Error ["boom","bang"])

*Main> makeUser (Username "fredsmith") (Password "pa22w0rd")
Success (User (Username "fredsmith") (Password "pa22w0rd"))

*Main> makeUser (Username "extremelylongusername") (Password "pa22w0rd")
Failure (Error ["Your username cannot be longer than 15 characters."])

*Main> makeUser (Username "fredsmith") (Password "password with spaces")
Failure (Error ["Cannot contain white space or special characters."])

*Main> makeUser (Username "extremelylongusername") (Password "password with spaces")
Failure (Error ["Your username cannot be longer than 15 characters.","Cannot contain white space or special characters."])

*Main>

*Main> makeUser (Username "fredsmith") (Password "pa22w0rd")
Right (User (Username "fredsmith") (Password "pa22w0rd"))

*Main> makeUser (Username "extremelylongusername") (Password "pa22w0rd")
Left (Error "Your username cannot be longer than 15 characters.")

*Main> makeUser (Username "fredsmith") (Password "password with spaces")
Left (Error "Cannot contain white space or special characters.")

*Main> makeUser (Username "extremelylongusername") (Password "password with spaces")
Left (Error "Your username cannot be longer than 15 characters.")

*Main>

Here is how makeUser works following the switch from the Either Applicative to the to Validation Applicative

And here is how makeUser used to work
before switching from Either to Validation.

The problem with the original program is solved: when both username and password are invalid then makeUser reports all the validation errors it has encountered

cleanWhitespace :: String -> Validation Error String
cleanWhitespace "" = Failure (Error "Your password cannot be empty.")
cleanWhitespace (x : xs) =
 case (isSpace x) of
 True -> cleanWhitespace xs
 False -> Success (x : xs)

requireAlphaNum :: String -> Validation Error String
requireAlphaNum input =
 case (all isAlphaNum input) of
 False -> Failure "Your password cannot contain \
 \white space or special characters."
 True -> Success input

checkPasswordLength :: String -> Validation Error Password
checkPasswordLength password =
 case (length password > 20) of
 True -> Failure (Error "Your password cannot be \
 \longer than 20 characters.")
 False -> Success (Password password)

newtype Password = Password String
 deriving Show

checkUsernameLength :: String -> Validation Error Username
checkUsernameLength username =
 case (length username > 15) of
 True -> Failure (Error "Your username cannot be \
 \longer than 15 characters.")
 False -> Success (Username username)

makeUser :: Username -> Password -> Validation Error User data User = User Username Password
makeUser name password = deriving Show
 User <$> validateUsername name
 <*> validatePassword password

main :: IO ()
main =
 do
 putStr "Please enter a username.\n> "
 username <- Username <$> getLine
 putStr "Please enter a password.\n> "
 password <- Password <$> getLine
 print (makeUser username password)

newtype Username = Username String
 deriving Show

newtype Error = Error [String]
 deriving Show

instance Semigroup Error where
 Error xs <> Error ys = Error (xs ++ ys)

validatePassword :: Password -> Validation Error Password
validatePassword (Password password) =
 case (cleanWhitespace password) of
 Failure err -> Failure err
 Success password2 -> requireAlphaNum password2
 *> checkPasswordLength password2

validateUsername :: Username -> Validation Error Username
validatePassword (Username username) =
 case (cleanWhitespace username) of
 Failure err -> Failure err
 Success username2 -> requireAlphaNum username2
 *> checkUsernameLength username2

class Semigroup a where instance Semigroup [a] where
 (<>) :: a -> a -> a (<>) = (++)

instance Semigroup err => Applicative (Validation err)

(<$>) :: Functor m => m a -> (a -> b) -> m b
(<*>) :: Applicative f => f (a -> b) -> f a -> f b
 (*>) :: Applicative f => f a -> f b -> f b

@chris_martin
@argumatronic

Here is how the code looks
like after the switch from the
Either Applicative to the
Validation Applicative

Now let’s look at the Scala equivalent of the refactoring.

In the next three slides we’ll look at the Scala equivalent
of the code as it was before the refactoring.

newtype Username = Username String
 deriving Show

newtype Password = Password String
 deriving Show

data User = User Username Password
 deriving Show

newtype Error = Error String
 deriving Show

case class Username(username: String) case class Password(password:String)

case class User(username: Username, password: Password)

case class Error(error:String)

checkUsernameLength :: String -> Either Error Username
checkUsernameLength username =
 case (length username > 15) of
 True -> Left (Error "Your username cannot be \
 \longer than 15 characters.")
 False -> Right (Username username)

checkPasswordLength :: String -> Either Error Password
checkPasswordLength password =
 case (length password > 20) of
 True -> Left (Error "Your password cannot be \
 \longer than 20 characters.")
 False -> Right (Password password)

def checkUsernameLength(username: String): Either[Error, Username] =
 username.length > 15 match {
 case true => Left(Error("Your username cannot be " +
 "longer than 15 characters."))
 case false => Right(Username(username))
 }

def checkPasswordLength(password: String): Either[Error, Password] =
 password.length > 20 match {
 case true => Left(Error("Your password cannot be " +
 "longer than 20 characters."))
 case false => Right(Password(password))
 }

cleanWhitespace :: String -> Either Error String
cleanWhitespace "" = Left (Error "Cannot be empty.")
cleanWhitespace (x : xs) =
 case (isSpace x) of
 True -> cleanWhitespace xs
 False -> Right (x : xs)

requireAlphaNum :: String -> Either Error String
requireAlphaNum input =
 case (all isAlphaNum input) of
 False -> Left "Cannot contain \
 \white space or special characters."
 True -> Right input

def requireAlphaNum(password: String): Either[Error, String] =
 password.forall(_.isLetterOrDigit) match {
 case false => Left(Error("Cannot contain white " +
 "space or special characters."))
 case true => Right(password)
 }

def cleanWhitespace(password:String): Either[Error, String] =
 password.dropWhile(_.isWhitespace) match {
 case pwd if pwd.isEmpty => Left(Error("Cannot be empty."))
 case pwd => Right(pwd)
 }

validateUsername :: Username -> Either Error Username
validateUsername (Username username) =
 cleanWhitespace username
 >>= requireAlphaNum
 >>= checkUsernameLength

validatePassword :: Password -> Either Error Password
validatePassword (Password password) =
 cleanWhitespace password
 >>= requireAlphaNum
 >>= checkPasswordLength

def validatePassword(password: Password): Either[Error,Password] = password match {
 case Password(pwd) =>
 cleanWhitespace(pwd)
 .flatMap(requireAlphaNum)
 .flatMap(checkPasswordLength)
}

def validateUsername(username: Username): Either[Error,Username] = username match {
 case Username(username) =>
 cleanWhitespace(username)
 .flatMap(requireAlphaNum)
 .flatMap(checkUsernameLength)
}

Nothing noteworthy
here. The next slide
is more interesting

makeUser :: Username -> Password -> Either Error User
makeUser name password =
 User <$> validateUsername name
 <*> validatePassword password

main :: IO ()
main =
 do
 putStr "Please enter a username.\n> "
 username <- Username <$> getLine
 putStr "Please enter a password.\n> "
 password <- Password <$> getLine
 print (makeUser username password)

trait Functor[F[_]] {
 def map[A,B](fa: F[A])(f: A => B): F[B]
}

trait Applicative[F[_]] extends Functor[F] {
 def <*>[A,B](fab: F[A => B],fa: F[A]): F[B]
 def unit[A](a: => A): F[A]
 def map[A,B](fa: F[A])(f: A => B): F[B] = <*>(unit(f),fa)
}

type Validation[A] = Either[Error, A]

val eitherApplicative = new Applicative[Validation] {

 def <*>[A,B](fab: Validation[A => B],fa: Validation[A]): Validation[B] =
 (fab, fa) match {
 case (Right(ab), Right(a)) => Right(ab(a))
 case (Left(err), _) => Left(err)
 case (_, Left(err)) => Left(err)
 }

 def unit[A](a: => A): Validation[A] = Right(a)
}

val main: IO[Unit] =
 for {
 _ <- print("Please enter a username.\n")
 usr <- getLine map Username
 _ <- print("Please enter a password.\n")
 pwd <- getLine map Password
 _ <- print(makeUser(usr,pwd).toString)
 } yield ()

import eitherApplicative._

def makeUser(name: Username, password: Password): Either[Error, User] =
 <*>(map(validateUsername(name))(User.curried),
 validatePassword(password))

import cats.effect.IO

def getLine =
 IO { scala.io.StdIn.readLine }
def print(s: String): IO[Unit] =
 IO { scala.Predef.print(s) }

Scala doesn’t have an Applicative typeclass, so we define it ourselves in terms of unit and
<*>. We then define an Applicative instance for Either.

We deliberately implement Either’s <*> so it behaves the same way as in Haskell, i.e. so
that when <*> is passed one or more Left values it just returns the first or only value it is
passed. i.e. when it is passed two Left values, it does not attempt to combine the contents
of the two values.

scala> main.unsafeRunSync
Please enter a username.
extremelylongusername
Please enter a password.
extremelylongpassword
Left(Error(Your username cannot be longer than 15 characters.))
scala>

In Haskell every function takes only one parameter. In Scala, we have to curry User
so it takes a username and returns a function that takes a password.

@philip_schwarz

Because it is us who are implementing <*>, instead of implementing it like this

we could, if we wanted to, implement it like this, which would be one way to get it to combine Left values:

scala> main.unsafeRunSync
Please enter a username.
extremelylongusername
Please enter a password.
extremelylongpassword
Left(Error(Your username cannot be longer than 15 characters.Your password cannot be longer than 20 characters.))
scala>

def <*>[A,B](fab: Validation[A => B],fa: Validation[A]): Validation[B] =
 (fab, fa) match {
 case (Right(ab), Right(a)) => Right(ab(a))
 case (Left(Error(err1)), Left(Error(err2))) => Left(Error(err1 + err2))
 case (Left(err), _) => Left(err)
 case (_, Left(err)) => Left(err)
 }

def <*>[A,B](fab: Validation[A => B],fa: Validation[A]): Validation[B] =
 (fab, fa) match {
 case (Right(ab), Right(a)) => Right(ab(a))
 case (Left(err), _) => Left(err)
 case (_, Left(err)) => Left(err)
 }

string concatention

two combined (concatented) error message strings

case class Error(error:String)

type Validation[A] = Either[Error, A]

for reference:

Now back to the refactoring. In the next thre slides we’ll see
what the Scala code looks like at the end of the refactoring.

newtype Password = Password String
 deriving Show

newtype Username = Username String
 deriving Show

newtype Error = Error [String]
 deriving Show

data User = User Username Password
 deriving Show

checkPasswordLength :: String -> Validation Error Password
checkPasswordLength password =
 case (length password > 20) of
 True -> Failure (Error "Your password cannot be \
 \longer than 20 characters.")
 False -> Success (Password password)

checkUsernameLength :: String -> Validation Error Username
checkUsernameLength username =
 case (length username > 15) of
 True -> Failure (Error "Your username cannot be \
 \longer than 15 characters.")
 False -> Success (Username username)

cleanWhitespace :: String -> Validation Error String
cleanWhitespace "" = Failure (Error "Your password cannot be empty.")
cleanWhitespace (x : xs) =
 case (isSpace x) of
 True -> cleanWhitespace xs
 False -> Success (x : xs)

requireAlphaNum :: String -> Validation Error String
requireAlphaNum input =
 case (all isAlphaNum input) of
 False -> Failure "Your password cannot contain \
 \white space or special characters."
 True -> Success input

case class Username(username: String) case class Password(password:String)

case class User(username: Username, password: Password)

case class Error(error:List[String])

def checkUsernameLength(username: String): Validation[Error, Username] =
 username.length > 15 match {
 case true => Failure(Error(List("Your username cannot be " +
 "longer than 15 characters.")))
 case false => Success(Username(username))
 }

def checkPasswordLength(password: String): Validation[Error, Password] =
 password.length > 20 match {
 case true => Failure(Error(List("Your password cannot be " +
 "longer than 20 characters.")))
 case false => Success(Password(password))
 }

def requireAlphaNum(password: String): Validation[Error, String] =
 password.forall(_.isLetterOrDigit) match {
 case false => Failure(Error(List("Cannot contain white " +
 "space or special characters.")))
 case true => Success(password)
 }

def cleanWhitespace(password:String): Validation[Error, String] =
 password.dropWhile(_.isWhitespace) match {
 case pwd if pwd.isEmpty => Failure(Error(List("Cannot be empty.")))
 case pwd => Success(pwd)
 }

Nothing
noteworthy
other than
the switch
from Either to
Validation.

The next slide
is more
interesting

Error now contains a list of messages

trait Functor[F[_]] {
 def map[A,B](fa: F[A])(f: A => B): F[B]
}

trait Semigroup[A] {
 def <>(lhs: A, rhs: A): A
}

implicit val errorSemigroup: Semigroup[Error] =
 new Semigroup[Error] {
 def <>(lhs: Error, rhs: Error): Error =
 Error(lhs.error ++ rhs.error)
 }

trait Applicative[F[_]] extends Functor[F] {
 def <*>[A,B](fab: F[A => B],fa: F[A]): F[B]
 def *>[A,B](fa: F[A],fb: F[B]): F[B]
 def unit[A](a: => A): F[A]
 def map[A,B](fa: F[A])(f: A => B): F[B] =
 <*>(unit(f),fa)
}

sealed trait Validation[+E, +A]
case class Failure[E](error: E) extends Validation[E, Nothing]
case class Success[A](a: A) extends Validation[Nothing, A]

class Semigroup a where
 (<>) :: a -> a -> a

instance Semigroup [a] where
 (<>) = (++)

instance Semigroup Error where
 Error xs <> Error ys = Error (xs ++ ys)

instance Semigroup err => Applicative (Validation err)

(<$>) :: Functor m => m a -> (a -> b) -> m b
(<*>) :: Applicative f => f (a -> b) -> f a -> f b
 (*>) :: Applicative f => f a -> f b -> f b

def validationApplicative[E](implicit sg:Semigroup[E]):
 Applicative[λ[α => Validation[E,α]]] =

 new Applicative[λ[α => Validation[E,α]]] {

 def unit[A](a: => A) = Success(a)

 def <*>[A,B](fab: Validation[E,A => B], fa: Validation[E,A]): Validation[E,B] =
 (fab, fa) match {
 case (Success(ab), Success(a)) => Success(ab(a))
 case (Failure(err1), Failure(err2)) => Failure(sg.<>(err1,err2))
 case (Failure(err), _) => Failure(err)
 case (_, Failure(err)) => Failure(err)
 }

 def *>[A,B](fa: Validation[E,A], fb: Validation[E,B]): Validation[E,B] =
 (fa, fb) match {
 case (Failure(err1), Failure(err2)) => Failure(sg.<>(err1,err2))
 case _ => fb
 }
 }

val errorValidationApplicative = validationApplicative[Error]
import errorValidationApplicative._

While before the refactoring, Validation was just an alias

now it is a sum type Validation[+E, +A] with a Failure and a Success, and with Failure
containing an error of type E (see bottom left of slide).

We define an Applicative instance for Validation[+E, +A]. The instance has an implicit
Semigroup for the Validation’s error type E so that the instance’s <*> function can combine
the contents of two failures.

The Applicative typeclass now also has a right-shark function and the Validation instance
of the Applicative implements this so that it also combines the contents of two failures.

type Validation[A] = Either[Error, A]

We defined Semigroup and
declared an implicit instance of it
for Error, which gets used by the
Validation Applicative.

After declaring the instance (the implicit Semigroup[Error]
is being passed in here) we import its operators, e.g. <*>
and *>, so that functions on the next slide can use them.

Validation is now a sum type
whose Failure contains an error

Applicative now has a
right-shark function

validateUsername :: Username -> Validation Error Username
validateUsername (Username username) =
 case (cleanWhitespace username) of
 Failure err -> Failure err
 Success username2 -> requireAlphaNum username2
 *> checkUsernameLength username2

validatePassword :: Password -> Validation Error Password
validatePassword (Password password) =
 case (cleanWhitespace password) of
 Failure err -> Failure err
 Success password2 -> requireAlphaNum password2
 *> checkPasswordLength password2

def validatePassword(password: Password): Validation[Error, Password] = password match {
 case Password(pwd) =>
 cleanWhitespace(pwd) match {
 case Failure(err) => Failure(err)
 case Success(pwd2) => *>(requireAlphaNum(pwd2),
 checkPasswordLength(pwd2))
 }
}

def validateUsername(username: Username): Validation[Error, Username] = username match {
 case Username(username) =>
 cleanWhitespace(username) match {
 case Failure(err) => Failure(err)
 case Success(username2) => *>(requireAlphaNum(username2),
 checkUsernameLength(username2))
 }
}

def makeUser(name: Username, password: Password): Validation[Error, User] =
 <*>(map(validateUsername(name))(User.curried),
 validatePassword(password))

makeUser :: Username -> Password -> Validation Error User
makeUser name password =
User <$> validateUsername name
 <*> validatePassword password

main :: IO ()
main =
 do
 putStr "Please enter a username.\n> "
 username <- Username <$> getLine
 putStr "Please enter a password.\n> "
 password <- Password <$> getLine
 print (makeUser username password)

val main: IO[Unit] =
 for {
 _ <- print("Please enter a username.\n")
 usr <- getLine map Username
 _ <- print("Please enter a password.\n")
 pwd <- getLine map Password
 _ <- print(makeUser(usr,pwd).toString)
 } yield ()

import cats.effect.IO

def getLine =
 IO { scala.io.StdIn.readLine }
def print(s: String): IO[Unit] =
 IO { scala.Predef.print(s) }

The right-shark function in action

By the way, if you look back at the signatures of <*> and *> you’ll see that rather than taking one argument at a time, they both take two arguments in one go. I did this
purely because it makes for a tidier call site (e.g. by avoiding the need for a cast in one case), but it is not strictly necessary: I could have left the signatures alone.

scala> main.unsafeRunSync
Please enter a username.
very long username with spaces
Please enter a password.
very long password with spaces
Failure(
 Error(
 List(Cannot contain white space or special characters.,
 Your username cannot be longer than 15 characters.,
 Cannot contain white space or special characters.,
 Your password cannot be longer than 20 characters.)))
scala>

Let’s have a go at running the Scala version of the refactored program.

See how if we feed it a username and a password that each violate two validation constraints
then the program returns a Failure whose Error containts a list of four error messages.

The two singleton error-message lists for username get combined by *> into a single two error-
message list. Similarly for password. This pair of two error-message lists then gets combined by
<*> into a single four error-message list.

You’ll have noticed that the error messages for white space or
special characters are not great in that they don’t say whether they
apply to a username or to password. While that is easily fixed I have
not yet bothered doing that in this slide deck.

*>
<*>

combined by

combined bycombined by

@philip_schwarz

to be continued in Part III

