
Applicative	Functor

slides	by @philip_schwarz

Part	3

@jdegoes
John A De GoesDebasish Ghosh

@debasishg

Sam Halliday
@fommil

learn	how	to	use	Applicative	Functors	with	Scalaz
through	the	work	of

@chris_martin	
@argumatronic

Julie Moronuki
Chris Martin

https://www.slideshare.net/pjschwarz

In Part 2, we translated the username/password validation program from Haskell into Scala and to do that we
coded our own Scala Applicative typeclass providing <*> and *> functions.

Let’s now look at how we can avoid coding Applicative ourselves by using Scalaz.

As Sam Halliday explains in his great book, Functional Programming for Mortals with Scalaz, in Scalaz there
is an Applicative typeclass and it extends an Apply typeclass which in turn extends the Functor typeclass.

@philip_schwarz

5.6.1 Apply
Apply extends Functor by adding a method named ap which is similar to map in that it applies
a function to values. However, with ap, the function is in the same context as the values.

@typeclass trait Apply[F[_]] extends Functor[F] {
@op("<*>") def ap[A, B](fa: =>F[A])(f: =>F[A => B]): F[B]

...

It is worth taking a moment to consider what that means for a simple data structure like Option[A],
having the following implementation of ap

implicit def option[A]: Apply[Option[A]] = new Apply[Option[A]] {
override def ap[A, B](fa: => Option[A])(f: => Option[A => B]) = f match {

case Some(ff) => fa.map(ff)
case None => None

}
...

}

To implement ap, we must first extract the function ff: A => B from f: Option[A => B], then
we can map over fa. The extraction of the function from the context is the important power that
Apply brings, allowing multiple functions to be combined inside the context.

<*> is the Advanced TIE Fighter, as flown by Darth Vader. Appropriate since it looks like an angry
parent. Or a sad Pikachu.

Sam	Halliday @fommil

import scalaz._, Scalaz._

val inc: Int => Int = _ + 1

assert((2.some <*> inc.some) == 3.some)
assert((None <*> inc.some) == None)
assert((2.some <*> None) == None)
assert((None <*> None) == None)

Let’s try out the (automatically available) Apply instance for Option

Star Wars TIE Fighter

Returning to Apply, we find applyX boilerplate that allows us to combine parallel functions and then
map over their combined output:

@typeclass trait Apply[F[_]] extends Functor[F] {
...
def apply2[A,B,C](fa: =>F[A], fb: =>F[B])(f: (A, B) => C): F[C] = ...
def apply3[A,B,C,D](fa: =>F[A],fb: =>F[B],fc: =>F[C])(f: (A,B,C) =>D): F[D] =
...
...
def apply12[...]

Read apply2 as a contract promising: “if you give me an F of A and an F of B, with a way of
combining A and B into a C, then I can give you an F of C”. There are many uses for this
contract and the two most important are:
• constructing some typeclasses for a product type C from its constituents A and B
• performing effects in parallel, like the drone and google algebras we created in Chapter 3, and

then combining their results.

Sam	Halliday @fommil

Remember in Part 1, when we saw FP in Scala explaining that Applicative
can be formulated either in terms of unit and map2 or in terms of unit
and apply (see right hand side) ? In Scalaz apply is called ap (see previous
slide), and map2 is called apply2. Similarly for map3, map4, etc, which in
Scalaz are called apply3, apply4, etc (see also next slide).

BTW, there is a typo in the signature of map2 in
FP in Scala: it should end in F[C] rather than F[A] !

The names map2, map3, etc
make sense if you compare the
signatures with map’s signature
and think ofmap as beingmap1.

See next slide for a reminder of examples
of this use that we have already seen.

We’ll look at this second use later on.

The apply method is useful for implementing map3, map4, and so on, and the pattern
is straightforward. Implement map3 and map4 using only unit, apply, and the curried
method available on functions.

def map3[A,B,C,D](fa: F[A],fb: F[B],fc: F[C])
(f: (A, B, C) => D): F[D]

def map4[A,B,C,D,E](fa: F[A],fb: F[B],fc: F[C],fd: F[D])
(f: (A, B, C, D) => E): F[E]

…
consider a web form that requires a name, a birth date, and a phone number:

case class WebForm(name: String, birthdate: Date, phoneNumber: String)

…to validate an entire web form, we can simply lift the WebForm constructor with map3:

def validWebForm(name: String,
birthdate: String,
phone: String): Validation[String, WebForm] =

map3(
validName(name),
validBirthdate(birthdate),
validPhone(phone))(
WebForm(_,_,_))

If any or all of the functions produce Failure, the whole validWebForm method will return
all of those failures combined.

After you invoke all three of the validation functions, you get three instances of V[_]. If all
of them indicate a successful validation, you extract the validated arguments and pass
them to a function, f, that constructs the final validated object. In case of failure, you
report errors to the client. This gives the following contract for the workflow—let’s
call it apply3

You don’t yet have the implementation of apply3. But assuming you have one, let’s
see how the validation code evolves out of this algebra and plugs into the smart constructor
for creating a SavingsAccount:

Another reminder that in FP in Scala, Scalaz‘s
apply2, apply3, apply4, etc are called map2,
map3,map4, etc.

This slide also reminds us of examples that we have already seen of
one of the two most important uses that Sam Halliday attributes to
functions apply2, apply3, etc, i.e. ‘constructing some typeclasses for
a product type C from its constituents A and B’

Scalaz‘s apply2, apply3, apply4, etc are called
the same in Functional and Reactive Domain
Modeling

Sam	Halliday @fommilIndeed, Apply is so useful that it has special syntax:

implicit class ApplyOps[F[_]: Apply, A](self: F[A]) {
def *>[B](fb: F[B]): F[B] = Apply[F].apply2(self,fb)((_,b) => b)
def <*[B](fb: F[B]): F[A] = Apply[F].apply2(self,fb)((a,_) => a)
def |@|[B](fb: F[B]): ApplicativeBuilder[F, A, B] = ...

}
…
The syntax <* and *> (left bird and right bird) offer a convenient way to ignore the output from
one of two parallel effects.

5.7 Applicative and Monad

From a functionality point of view, Applicative is Apply with a pure method and Monad extends
Applicative with Bind.

@typeclass trait Applicative[F[_]] extends Apply[F] {
def point[A](a: =>A): F[A]
def pure[A](a: =>A): F[A] = point(a)

}

@typeclass trait Monad[F[_]] extends Applicative[F] with Bind[F]

In many ways, Applicative and Monad are the culmination of everything we’ve seen in this chapter.
pure (or point as it is more commonly known for data structures) allows us to create effects or data
structures from values.
Instances of Applicative must meet some laws, effectively asserting that all the methods are
consistent: …

@philip_schwarz

Right now we are interested in *>. We’ll look at |@| a bit later.

So Scalaz can automatically supply Applicative
instances which provide the <*> and *> operators
that we need for the Scala username and password
validation program.

Remember how in Part 2 we looked at the
behaviour of <*> and *> in Haskell’s
Either Applicative?

@philip_schwarz

Main> Right((+) 1) <> Right(2)
Right 3

Main> Right((+) 1) <> Left("bang")
Left "bang"

Main> Left("boom") <> Right(2)
Left "boom"

Main> Left("boom") <> Left("bang")
Left "boom"

*Main> Right(2) *> Right(3)
Right 3

*Main> Left("boom") *> Right(3)
Left "boom"

*Main> Right(2) *> Left("bang")
Left "bang"

*Main> Left("boom") *> Left("bang")
Left "boom"

assert((2.right[String] <*> inc.right) == 3.right.)
assert((2.right[String] <*> "bang".left) == "bang".left)
assert(("boom".left[Int] <*> inc.right) == "boom".left)
assert(("boom".left[Int] <*> "bang".left) == "bang".left)

assert((2.right[String] *> 3.right) == 3.right.)
assert(("boom".left[Int] *> 3.right) == "boom".left)
assert((2.right[String] *> "bang".left) == "bang".left.)
assert(("boom".left[Int] *> "bang".left) == "boom".left[Int])

Let’s do the same using the Scalaz Apply instance for Scalaz’s Disjunction (Either)

scala> 2.right[String] <*> inc.right
res1: String \/ Int = \/-(3)

scala> 2.right[String] <*> "bang".left
res2: String \/ Nothing = -\/(bang)

scala> "boom".left[Int] <*> inc.right
res3: String \/ Int = -\/(boom)

scala> "boom".left[Int] <*> "bang".left
res4: String \/ Nothing = -\/(bang)

scala> 2.right[String] *> 3.right
res5: String \/ Int = \/-(3)

scala> "boom".left[Int] *> 3.right
res6: String \/ Int = -\/(boom)

scala> 2.right[String] *> "bang".left
res7: String \/ Nothing = -\/(bang)

scala> "boom".left[Int] *> "bang".left
res8: String \/ Nothing = -\/(boom)

scala> import scalaz._, Scalaz._
import scalaz._
import Scalaz._

scala> val inc: Int => Int = _ + 1
inc: Int => Int = $$Lambda$4315/304552448@725936c2

No surprises here: we see exactly the same
behaviour using Scalaz as we see using
Haskell.

So Scalaz provides the Applicative typeclass. What else do we need in our
username and password validation program?

We need the Validation abstraction plus an Applicative instance for
Validation instances whose error type is a Semigroup.

And sure enough, Scalaz provides that.

/**
* Represents either:
* - Success(a), or
* - Failure(e).
*
* Isomorphic to scala.Either and scalaz.\/. The motivation for a Validation is to provide the

instance
* Applicative[[a]Validation[E, a]] that accumulate failures through a scalaz.Semigroup[E].
*
...
...
*
* @tparam E The type of the Failure
* @tparam A The type of the Success
*/

sealed abstract class Validation[E, A] extends Product with Serializable {

data Validation err a = Failure err | Success a

instance Semigroup err => Applicative (Validation err)

assert((2.success[String] <*> inc.success) == 3.success)
assert(("boom".failure[Int] <*> inc.success[String]) == "boom".failure)
assert((2.success[String] <*> "bang".failure[Int=>Int]) == "bang".failure)
assert(("boom".failure[Int] <*> "bang".failure[Int=>Int]) == "bangboom".failure)

assert((2.success[String] *> inc.success) == inc.success)
assert(("boom".failure[Int] *> inc.success[String]) == "boom".failure)
assert((2.success[String] *> "bang".failure[Int=>Int]) == "bang".failure)
assert(("boom".failure[Int] *> "bang".failure[Int=>Int]) == "boombang".failure)

Main> Success((+) 1) <> Success(2)
Success 3

Main> Success((+) 1) <> Failure("bang")
Failure "bang"

Main> Failure("boom") <> Success(2)
Failure "boom"

Main> Failure("boom") <> Failure("bang")
Failure "boombang"

*Main> Success(2) *> Success(3)
Success 3

*Main> Failure("boom") *> Success(3)
Failure "boom"

*Main> Success(2) *> Failure("bang")
Failure "bang"

*Main> Failure("boom") *> Failure("bang")
Failure "boombang"

Let’s try out the Scalaz Applicative for Validation[String, Int]

Remember how in Part 2 we looked at the
behaviour of <*> and *> in Haskell’s
Validation Applicative, with Success being a
number and Failure being a string?

@philip_schwarz

scala> 2.success[String] <*> inc.success
res0: scalaz.Validation[String,Int] = Success(3)

scala> "boom".failure[Int] <*> inc.success[String]
res1: scalaz.Validation[String,Int] = Failure(boom)

scala> 2.success[String] <*> "bang".failure[Int=>Int]
res1: scalaz.Validation[String,Int] = Failure(bang)

scala> "boom".failure[Int] <*> "bang".failure[Int=>Int]
res2: scalaz.Validation[String,Int] = Failure(bangboom)

scala> 2.success[String] *> inc.success
res3: scalaz.Validation[String,Int => Int] = Success($$Lambda$4315/304552448@725936c2)

scala> "boom".failure[Int] *> inc.success[String]
res4: scalaz.Validation[String,Int => Int] = Failure(boom)

scala> 2.success[String] *> "bang".failure[Int=>Int]
res5: scalaz.Validation[String,Int => Int] = Failure(bang)

scala> "boom".failure[Int] *> "bang".failure[Int=>Int]
res6: scalaz.Validation[String,Int => Int] = Failure(boombang)

The only surprise here is the different results we get when call
<*> with two failures. In Haskell we get “boombang” but in
Scala we get “bangboom”

Scalaz can automatically make available the Applicative
because it can automatically make available a Semigroup
instance for our error type, which is String.

But strictly speaking, List[String], is not a perfect fit for our error type because while an empty list is a List[String], our list
of error messages can never be empty: if we have an error situation then the list will contain at least one error. What we are looking for
is the notion of non-empty list. Remember how in Part 2 we saw that Haskell has this notion?

OK, so we looked at Validation[String, Int],in
Scalaz, but the error in our validation program, rather than
being a String, is an Error type containing a list of strings.

case class Error(error:List[String])

Validation[Error, Username]

newtype Error = Error [String]

Validation Error Username

We could do away with the Error type and just use List[String] as an error. Let’s try out Validation[List[String], Int]

assert((2.success[List[String]] <*> inc.success) == 3.success)
assert((List("boom").failure[Int] <*> inc.success) == List("boom").failure)
assert((2.success[List[String]] <*> List("bang").failure[Int=>Int]) == List("bang").failure)
assert((List("boom").failure[Int] <*> List("bang").failure[Int=>Int]) == List("bang","boom").failure)

assert((2.success[List[String]] *> inc.success) == inc.success)
assert((List("boom").failure[Int] *> inc.success.) == List("boom").failure)
assert((2.success[List[String]] *> List("bang").failure[Int=>Int]) == List("bang").failure)
assert((List("boom").failure[Int] *> List("bang").failure[Int=>Int]) == List("boom","bang").failure)

NonEmpty, a useful datatype

One useful datatype that can’t have a Monoid instance but does have a Semigroup instance is the NonEmpty list type. It is a list
datatype that can never be an empty list…

We can’t write a Monoid for NonEmpty because it has no identity value by design! There is no empty list to serve as an identity for
any operation over a NonEmpty list, yet there is still a binary associative operation: two NonEmpty lists can still be concatenated.

A type with a canonical binary associative operation but no identity value is a natural fit for Semigroup.

@bitemyapp
@argumatronic

Again, Scalaz can automatically
make available the Applicative
because it can automatically
make available a Semigroup
instance for our error type,
which is List[String].

/**
* Represents either:
* - Success(a), or
* - Failure(e).
*
* Isomorphic to scala.Either and scalaz.\/. The motivation for a Validation is to provide the instance
* Applicative[[a]Validation[E, a]] that accumulate failures through a scalaz.Semigroup[E].
*
* [[scalaz.NonEmptyList]] is commonly chosen as a type constructor for the type E. As a convenience,
* an alias scalaz.ValidationNel[E] is provided as a shorthand for scalaz.Validation[NonEmptyList[E]],
* and a method Validation#toValidationNel converts Validation[E] to ValidationNel[E].
...
...
*
* @tparam E The type of the Failure
* @tparam A The type of the Success
*/
sealed abstract class Validation[E, A] extends Product with Serializable {

Scalaz also has the notion of a non-empty list. It is called NonEmptyList and there is a mention
of it in the Scaladoc for Validation, in the highlighted section below (which I omitted earlier)

/**
* An [[scalaz.Validation]] with a [[scalaz.NonEmptyList]] as the failure type.
*
* Useful for accumulating errors through the corresponding [[scalaz.Applicative]] instance.
*/
type ValidationNel[E, +X] = Validation[NonEmptyList[E], X]

/** A singly-linked list that is guaranteed to be non-empty. */
final class NonEmptyList[A] private[scalaz](val head: A, val tail: IList[A]) {

And here are the Scalaz docs for NonEmptyList and ValidationNel

assert((2.successNel[String] <*> inc.successNel) == 3.successNel)
assert((List("boom").failureNel[Int] <*> inc.successNel) == List("boom").failureNel)
assert((2.successNel[String] <*> "bang".failureNel[Int=>Int]) == "bang".failureNel)
assert(("boom".failureNel[Int] <*> "bang".failureNel[Int=>Int]) == Failure(NonEmptyList("bang","boom")))

assert((2.successNel[String] *> inc.successNel) == inc.successNel)
assert((List("boom").failureNel[Int] *> inc.successNel) == List("boom").failureNel)
assert((2.successNel[String] *> "bang".failureNel[Int=>Int]) == "bang".failureNel)
assert(("boom".failureNel[Int] *> "bang".failureNel[Int=>Int]) == Failure(NonEmptyList("boom","bang")))

Tanks to the ValidationNel alias, we can succinctly define our error as ValidationNel[String, Int]
rather than as Validation[NonEmptyList[String], Int].

Let’s see an example of ValidationNel[String, Int] in action

scala> 2.successNel[String] <*> inc.successNel
res0: scalaz.ValidationNel[String,Int] = Success(3)

scala> List("boom").failureNel[Int] <*> inc.successNel
res1: scalaz.ValidationNel[List[String],Int] = Failure(NonEmpty[List(boom)])

scala> 2.successNel[String] <*> "bang".failureNel[Int=>Int]
res2: scalaz.ValidationNel[String,Int] = Failure(NonEmpty[bang])

scala> "boom".failureNel[Int] <*> "bang".failureNel[Int=>Int]
res3: scalaz.ValidationNel[String,Int] = Failure(NonEmpty[bang,boom])

scala> 2.successNel[String] *> inc.successNel
res4: scalaz.ValidationNel[String,Int => Int] = Success($$Lambda$4315/304552448@725936c2)

scala> List("boom").failureNel[Int] *> inc.successNel
res5: scalaz.ValidationNel[List[String],Int => Int] = Failure(NonEmpty[List(boom)])

scala> 2.successNel[String] *> "bang".failureNel[Int=>Int]
res6: scalaz.ValidationNel[String,Int => Int] = Failure(NonEmpty[bang])

scala> "boom".failureNel[Int] *> "bang".failureNel[Int=>Int]
res7: scalaz.ValidationNel[String,Int => Int] = Failure(NonEmpty[boom,bang])

@philip_schwarz

The only surprise here is the
different ordering of error
messages that we get when we
use <*> and *> with two failures

In Part 2 we got the Scala validation program to do I/O using the Cats IO Monad.

What shall we do now that we are using Scalaz?

In June 2018, the then upcoming Scalaz 8 effect system, containing an IO Monad, was pulled out
of Scalaz 8 and made into a standalone project called ZIO (see http://degoes.net/articles/zio-solo).

Now that we are using Scalaz, let’s do I/O using ZIO rather than Cats.

/**
* A ZIO[R, E, A] ("Zee-Oh of Are Eeh Aye") is an immutable data structure
* that models an effectful program. The effect requires an environment R,
* and the effect may fail with an error E or produce a single A.
*
...
*/

sealed trait ZIO[-R, +E, +A] extends Serializable { self =>
...

IO[E,A]]however,	is	just	an	alias	for ZIO[Any,E,A]

where ZIO is defined as follows:

type IO[+E, +A] = ZIO[Any, E, A]
Here	is	how	the	IO Data	Type	is	introduced	on	the	ZIO site

For our validation program, the
environment will be the console, the
failure type will be IOException, and
the Success type will be Unit.

Requires Console Might Fail with IOException Might Succeed with Unit

ZIO[Console, IOException, Unit.]Console IOException Unit

@jdegoes

John A De Goes

Here is ZIO’s hello world program.

We’ll use the same approach in the validation
program.

The type of myAppLogic is
ZIO[Console, IOException, Unit],
where Console provides putStrLn and
getStrLn.

ZIO[Console, IOException, Unit.]Console IOException Unit

Requires Console

Might Fail with IOException

Might Succeed with Unit

OK, so we are finally ready to see a new version of
the Scala validation program using Scalaz and ZIO.

In the next four slides we’ll look at how the new
version differs from the existing one.

Then in the subsequent slides, we’ll look at the new
version side by side with the Haskell version.

@philip_schwarz

trait Functor[F[_]] {
def map[A,B](fa: F[A])(f: A => B): F[B]

}

trait Semigroup[A] {
def <>(lhs: A, rhs: A): A

}

implicit val errorSemigroup: Semigroup[Error] =
new Semigroup[Error] {

def <>(lhs: Error, rhs: Error): Error =
Error(lhs.error ++ rhs.error)

}

trait Applicative[F[_]] extends Functor[F] {
def <*>[A,B](fab: F[A => B],fa: F[A]): F[B]
def *>[A,B](fa: F[A],fb: F[B]): F[B]
def unit[A](a: => A): F[A]
def map[A,B](fa: F[A])(f: A => B): F[B] =

<*>(unit(f),fa)
}

sealed trait Validation[+E, +A]
case class Failure[E](error: E) extends Validation[E, Nothing]
case class Success[A](a: A) extends Validation[Nothing, A]

Using	Scalaz	instead	of	plain	Scala

+

Because Scalaz provides all the abstractions we
need, we can simply delete all the code on this slide!

def validationApplicative[E](implicit sg:Semigroup[E]):
Applicative[λ[α => Validation[E,α]]] =

new Applicative[λ[α => Validation[E,α]]] {

def unit[A](a: => A) = Success(a)

def <*>[A,B](fab: Validation[E,A => B], fa: Validation[E,A]): Validation[E,B] =
(fab, fa) match {

case (Success(ab), Success(a)) => Success(ab(a))
case (Failure(err1), Failure(err2)) => Failure(sg.<>(err1,err2))
case (Failure(err), _) => Failure(err)
case (_, Failure(err)) => Failure(err)

}

def *>[A,B](fa: Validation[E,A], fb: Validation[E,B]): Validation[E,B] =
(fa, fb) match {

case (Failure(err1), Failure(err2)) => Failure(sg.<>(err1,err2))
case _ => fb

}
}

val errorValidationApplicative = validationApplicative[Error]
import errorValidationApplicative._

case class Username(username: String) case class Password(password:String)

case class User(username: Username, password: Password)

def checkUsernameLength(username: String): ValidationNel[String, Username] =
username.length > 15 match {
case true => "Your username cannot be longer " +

"than 15 characters.".failureNel
case false => Username(username).successNel

}

def checkPasswordLength(password: String): ValidationNel[String, Password] =
password.length > 20 match {
case true => "Your password cannot be longer " +

"than 20 characters.".failureNel
case false => Password(password).successNel

}

def requireAlphaNum(password: String): ValidationNel[String, String] =
password.forall(_.isLetterOrDigit) match {
case false => "Cannot contain white space " +

"or special characters.".failureNel
case true => password.successNel

}

def cleanWhitespace(password:String): ValidationNel[String, String] =
password.dropWhile(_.isWhitespace) match {
case pwd if pwd.isEmpty => "Cannot be empty.".failureNel
case pwd => pwd.successNel

}

case class Username(username: String) case class Password(password:String)

case class User(username: Username, password: Password)

case class Error(error:List[String])

def checkUsernameLength(username: String): Validation[Error, Username] =
username.length > 15 match {
case true => Failure(Error(List("Your username cannot be " +

"longer than 15 characters.")))
case false => Success(Username(username))

}

def checkPasswordLength(password: String): Validation[Error, Password] =
password.length > 20 match {
case true => Failure(Error(List("Your password cannot be " +

"longer than 20 characters.")))
case false => Success(Password(password))

}

def requireAlphaNum(password: String): Validation[Error, String] =
password.forall(_.isLetterOrDigit) match {
case false => Failure(Error(List("Cannot contain white " +

"space or special characters.")))
case true => Success(password)

}

def cleanWhitespace(password:String): Validation[Error, String] =
password.dropWhile(_.isWhitespace) match {
case pwd if pwd.isEmpty => Failure(Error(List("Cannot be empty.")))
case pwd => Success(pwd)

}

Using	plain	Scala Using	Scalaz
The only changes are that Error is no longer needed and that rather
than using our own Validation, we are using Scalaz’s ValidationNel
and creating instances of it by calling failureNel and successNel.

def validatePassword(password: Password): Validation[Error, Password] =
password match {
case Password(pwd) =>
cleanWhitespace(pwd) match {
case Failure(err) => Failure(err)
case Success(pwd2) =>
*>(requireAlphaNum(pwd2),checkPasswordLength(pwd2))

}
}

def validateUsername(username: Username): Validation[Error, Username] =
username match {
case Username(username) =>

cleanWhitespace(username) match {
case Failure(err) => Failure(err)
case Success(username2) =>
*>(requireAlphaNum(username2),checkUsernameLength(username2))

}
}

def makeUser(name:Username,password:Password):Validation[Error, User] =
<*>(map(validateUsername(name))(User.curried),validatePassword(password))

def validatePassword(password: Password): ValidationNel[String, Password] =
password match {
case Password(pwd) =>
cleanWhitespace(pwd) match {
case Failure(err) => Failure(err)
case Success(pwd2) =>
requireAlphaNum(pwd2) *> checkPasswordLength(pwd2)

}
}

def validateUsername(username: Username): ValidationNel[String, Username] =
username match {
case Username(username) =>

cleanWhitespace(username) match {
case Failure(err) => Failure(err)
case Success(username2) =>
requireAlphaNum(username2) *> checkUsernameLength(username2)

}
}

def makeUser(name:Username,password:Password):ValidationNel[String, User] =
validatePassword(password) <*> (validateUsername(name) map User.curried)

Using	plain	Scala Using	Scalaz
Here the changes are not using Error, using ValidationNel instead of
Validation, plus some small changes in how <*> and *> are invoked.

@philip_schwarz

import cats.effect.IO

object MyApp extends App {

def getLine = IO { scala.io.StdIn.readLine }
def print(s: String): IO[Unit] = IO { scala.Predef.print(s) }

val main =
for {

_ <- print("Please enter a username.\n")
usr <- getLine map Username
_ <- print("Please enter a password.\n")
pwd <- getLine map Password
_ <- print(makeUser(usr,pwd).toString)

} yield ()
}

import zio.App, zio.console.{getStrLn, putStrLn}

object MyApp extends App {

def run(args: List[String]) =
appLogic.fold(_ => 1, _ => 0)

val appLogic =
for {

_ <- putStrLn("Please enter a username.\n")
usr <- getStrLn map Username
_ <- putStrLn("Please enter a password.\n")
pwd <- getStrLn map Password
_ <- putStrLn(makeUser(usr,pwd).toString)

} yield ()
}

Using	Cats Using	ZIO

Not much at all to say about
differences in the way I/O is done

Now let’s see the whole of the new
version of the Scala program side
by side with the Haskell program

@philip_schwarz

newtype Password = Password String
deriving Show

newtype Username = Username String
deriving Show

newtype Error = Error [String]
deriving Show

data User = User Username Password
deriving Show

checkPasswordLength :: String -> Validation Error Password
checkPasswordLength password =

case (length password > 20) of
True -> Failure (Error "Your password cannot be \

\longer than 20 characters.")
False -> Success (Password password)

checkUsernameLength :: String -> Validation Error Username
checkUsernameLength username =

case (length username > 15) of
True -> Failure (Error "Your username cannot be \

\longer than 15 characters.")
False -> Success (Username username)

cleanWhitespace :: String -> Validation Error String
cleanWhitespace "" = Failure (Error "Your password cannot be empty.")
cleanWhitespace (x : xs) =

case (isSpace x) of
True -> cleanWhitespace xs
False -> Success (x : xs)

requireAlphaNum :: String -> Validation Error String
requireAlphaNum input =

case (all isAlphaNum input) of
False -> Failure "Your password cannot contain \

\white space or special characters."
True -> Success input

case class Username(username: String) case class Password(password:String)

case class User(username: Username, password: Password)

def checkUsernameLength(username: String): ValidationNel[String, Username] =
username.length > 15 match {
case true => "Your username cannot be longer " +

"than 15 characters.".failureNel
case false => Username(username).successNel

}

def checkPasswordLength(password: String): ValidationNel[String, Password] =
password.length > 20 match {
case true => "Your password cannot be longer " +

"than 20 characters.".failureNel
case false => Password(password).successNel

}

def requireAlphaNum(password: String): ValidationNel[String, String] =
password.forall(_.isLetterOrDigit) match {
case false => "Cannot contain white space " +

"or special characters.".failureNel
case true => password.successNel

}

def cleanWhitespace(password:String): ValidationNel[String, String] =
password.dropWhile(_.isWhitespace) match {
case pwd if pwd.isEmpty => "Cannot be empty.".failureNel
case pwd => pwd.successNel

}

validateUsername :: Username -> Validation Error Username
validateUsername (Username username) =
case (cleanWhitespace username) of
Failure err -> Failure err
Success username2 -> requireAlphaNum username2

*> checkUsernameLength username2

validatePassword :: Password -> Validation Error Password
validatePassword (Password password) =
case (cleanWhitespace password) of
Failure err -> Failure err
Success password2 -> requireAlphaNum password2

*> checkPasswordLength password2

def validatePassword(password: Password): ValidationNel[String, Password] = password match
{
case Password(pwd) =>
cleanWhitespace(pwd) match {
case Failure(err) => Failure(err)
case Success(pwd2) => requireAlphaNum(pwd2) *> checkPasswordLength(pwd2)

}
}

def validateUsername(username: Username): ValidationNel[String,Username] = username match
{
case Username(username) =>

cleanWhitespace(username) match {
case Failure(err) => Failure(err)
case Success(username2) =>
requireAlphaNum(username2) *> checkUsernameLength(username2)

}
}

def makeUser(name: Username, password: Password): ValidationNel[String, User] =
validatePassword(password) <*> (validateUsername(name) map User.curried)

makeUser :: Username -> Password -> Validation Error User
makeUser name password =
User <$> validateUsername name

<*> validatePassword password

main :: IO ()
main =
do
putStr "Please enter a username.\n> "
username <- Username <$> getLine
putStr "Please enter a password.\n> "
password <- Password <$> getLine
print (makeUser username password)

object MyApp extends App {
def run(args: List[String]) = appLogic.fold(_ => 1, _ => 0)

val appLogic = for {
_ <- putStrLn("Please enter a username.\n")
usr <- getStrLn map Username
_ <- putStrLn("Please enter a password.\n")
pwd <- getStrLn map Password
_ <- putStrLn(makeUser(usr,pwd).toString)

} yield ()
}

import zio.App
import zio.console.{
getStrLn,
putStrLn

}

As you can see, the Scala and Haskell
programs now are very similar and
pretty much the same size.

Now let’s go back to the second main use of the
applyX functions that we saw in Scalaz’s Apply
typeclass on slide 2, i.e. performing effects in parallel.

@philip_schwarz

package algebra

import scalaz.NonEmptyList

trait Drone[F[_]] {
def getBacklog: F[Int]
def getAgents: F[Int]

}

trait Machines[F[_]] {
def getTime: F[Epoch]
def getManaged: F[NonEmptyList[MachineNode]]
def getAlive: F[Map[MachineNode, Epoch]]
def start(node: MachineNode): F[MachineNode]
def stop(node: MachineNode): F[MachineNode]

}

In FP, an algebra takes the place of an
interface in Java... This is the layer
where we define all side-effecting
interactions of our system.

There is tight iteration between
writing the business logic and
the algebra: it is a good level of
abstraction to design a system.

package logic

import algebra._
import scalaz._
import Scalaz._

final case class WorldView(
backlog: Int,
agents: Int,
managed: NonEmptyList[MachineNode],
alive: Map[MachineNode, Epoch],
pending: Map[MachineNode, Epoch],
time: Epoch

)

trait DynAgents[F[_]] {
def initial: F[WorldView]
def update(old: WorldView): F[WorldView]
def act(world: WorldView): F[WorldView]

}

final class DynAgentsModule[F[_]: Monad](D: Drone[F], M: Machines[F])
extends DynAgents[F] {

def initial: F[WorldView] = for {
db <- D.getBacklog
da <- D.getAgents
mm <- M.getManaged
ma <- M.getAlive
mt <- M.getTime

} yield WorldView(db, da, mm, ma, Map.empty, mt)

def update(old: WorldView): F[WorldView] = ...
def act(world: WorldView): F[WorldView] = ...

}

business logic that defines the application’s behaviour

Algebra of	
Drones and	
Machines

A module to contain our main business logic. A
module is pure and depends only on other
modules, algebras and pure functions.

It indicates that we depend on Drone and Machines.

On the next slide we look in more detail
at the module and its initial function.

Our business logic runs in
an infinite loop (pseudocode)

state = initial()
while True:
state = update(state)
state = act(state)

WorldView aggregates the return values of all the
methods in the algebras, and adds a pending field.@fommil

final class DynAgentsModule[F[_]: Monad](D: Drone[F], M: Machines[F]) extends DynAgents[F] {

def initial: F[WorldView] = for {
db <- D.getBacklog
da <- D.getAgents
mm <- M.getManaged
ma <- M.getAlive
mt <- M.getTime

} yield WorldView(db, da, mm, ma, Map.empty, mt)

def update(old: WorldView): F[WorldView] = ...
def act(world: WorldView): F[WorldView] = ...

}

The implicit Monad[F] means that F is
monadic, allowing us to use map, pure and,
of course, flatMap via for comprehensions.

We have access to the algebra of Drone and
Machines as D and M, respectively.

Using a single capital letter name is a
common naming convention for monad and
algebra implementations.

flatMap (i.e. when we use the <- generator) allows us to operate on a value that is computed
at runtime. When we return an F[_] we are returning another program to be interpreted at
runtime, that we can then flatMap.

This is how we safely chain together sequential side-effecting code, whilst being able to
provide a pure implementation for tests. FP could be described as Extreme Mocking.

@fommil

final class DynAgentsModule[F[_]: Monad](D: Drone[F], M: Machines[F]) extends DynAgents[F] {

def update(old: WorldView): F[WorldView] = ...
def act(world: WorldView): F[WorldView] = ...

}

The application that we have designed runs each of its algebraic methods sequentially (pseudocode)

state = initial()
while True:
state = update(state)
state = act(state)

But there are some obvious places where work can be performed in parallel. In our definition of initial we could ask for all
the information we need at the same time instead of one query at a time.

As opposed to flatMap for sequential operations, Scalaz uses Apply syntax for parallel operations

Sam Halliday is about to show us how to do this switch from sequential monadic flatMap operations to applicative parallel operations, but he will be using the
special Apply syntax that he has just mentioned.

Before he does that, in order to better understand the switch, we will first carry it out without using any syntactic sugar. Remember Apply’s applyX functions
(apply2, apply3, etc) for applying a function f with N parameters to N argument values, each in a context F, and produce a result, also in a context F (see slide 4)?

def initial: F[WorldView] =
for {

db <- D.getBacklog
da <- D.getAgents
mm <- M.getManaged
ma <- M.getAlive
mt <- M.getTime

} yield WorldView(db, da, mm, ma, Map.empty, mt)

def initial: F[WorldView] =
Apply[F].apply5(

D.getBacklog,
D.getAgents,
M.getManaged,
M.getAlive,
M.getTime

){ case (db, da, mm, ma, mt) => WorldView(db, da, mm, ma, Map.empty, mt) }

def apply5[A, B, C, D, E, R]
(

fa: => F[A],
fb: => F[B],
fc: => F[C],
fd: => F[D],
fe: => F[E]

)(f: (A, B, C, D, E) => R): F[R]

SWITCH

Since F is aMonad and everyMonad is also an Applicative, instead of obtaining the N arguments for function f
by chaining the Fs together sequentially using flatMap, we can have the Fs computed in parallel and passed to
applyN, which then obtains from them the arguments for function f and invokes the latter.

@fommil

Now that we have seen how to use applyX to switch from sequential to
parallel computation of effects, let’s see how Sam Halliday did the same
switch, but right from the start, used more convenient Apply syntax.

In our definition of initial we could ask for all the information we need at the same time instead of one query at a time.

As opposed to flatMap for sequential operations, scalaz uses Apply syntax for parallel operations:

which can also use infix notation:

If each of the parallel operations returns a value in the same monadic context, we can apply a function to the results
when they all return. Rewriting update to take advantage of this:

^^^^(D.getBacklog, D.getAgents, M.getManaged, M.getAlive, M.getTime)

(D.getBacklog |@| D.getAgents |@| M.getManaged |@| M.getAlive |@| M.getTime)

def initial: F[WorldView] =
^^^^(D.getBacklog, D.getAgents, M.getManaged, M.getAlive, M.getTime) {

case (db, da, mm, ma, mt) => WorldView(db, da, mm, ma, Map.empty, mt)
}

/** Wraps a value `self` and provides methods related to `Apply` */
final class ApplyOps[F[_],A] private[syntax](val self: F[A])(implicit val F: Apply[F]) extends Ops[F[A]] {
…
/**
* DSL for constructing Applicative expressions.
*
* (f1 |@| f2 |@| ... |@| fn)((v1, v2, ... vn) => ...) is an alternative
* to Apply[F].applyN(f1, f2, ..., fn)((v1, v2, ... vn) => ...)
*
* Warning: each call to |@| leads to an allocation of wrapper object. For performance sensitive code,
* consider using [[scalaz.Apply]]#applyN directly.
*/
final def |@|[B](fb: F[B]) = new ApplicativeBuilder[F, A, B] {
...

One place where the |@| syntax is mentioned is in Scalaz’s ApplySyntax.scala

more on this warning in the next slide

@philip_schwarz

@fommil

The |@| operator has many names. Some call it the Cartesian Product Syntax, others call it the
Cinnamon Bun, the Admiral Ackbar or the Macaulay Culkin. We prefer to call it The Scream
operator, after the Munch painting, because it is also the sound your CPU makes when it is
parallelising All The Things.

Unfortunately, although the |@| syntax is clear, there is a problem in that a new Applicative-Builder object is allocated for
each additional effect. If the work is I/O-bound, the memory allocation cost is insignificant. However, when performing
CPU-bound work, use the alternative lifting with arity syntax, which does not produce any intermediate objects:

def ^[F[_]: Apply,A,B,C](fa: =>F[A],fb: =>F[B])(f: (A,B) =>C): F[C] = ...
def ^^[F[_]: Apply,A,B,C,D](fa: =>F[A],fb: =>F[B],fc: =>F[C])(f: (A,B,C) =>D): F[D] = ...
...
def ^^^^^^[F[_]: Apply, ...]

used like

^^^^(d.getBacklog, d.getAgents, m.getManaged, m.getAlive, m.getTime) ^^^^(d.getBacklog, d.getAgents, m.getManaged, m.getAlive, m.getTime)

def ^[F[_]: Apply,A,B,C](fa: =>F[A],fb: =>F[B])(f: (A,B) =>C): F[C] = ...
def ^^[F[_]: Apply,A,B,C,D](fa: =>F[A],fb: =>F[B],fc: =>F[C])(f: (A,B,C) =>D): F[D] = ...
...
def ^^^^^^[F[_]: Apply, ...]

|@|

The Scream. Edward Munch

@fommil

def makeUser(name: Username, password: Password): ValidationNel[String, User] =
validatePassword(password) <*> (validateUsername(name) map User.curried)

type ValidationNelString[A] = ValidationNel[String,A]

def makeUser(name: Username, password: Password): ValidationNel[String, User] =
Apply[ValidationNelString].apply2(validateUsername(name), validatePassword(password))(User)

def makeUser(name: Username, password: Password): ValidationNel[String, User] =
(validateUsername(name) |@| validatePassword(password))(User)

Let’s revisit the makeUser function in the Scala validation
program and have a go at using applyX, |@| and ^.

using	<*>

using	apply2

using	|@| def makeUser(name: Username, password: Password): ValidationNel[String, User] =
^(validateUsername(name), validatePassword(password))(User)

using	^

@philip_schwarz

To conclude this slide deck, let’s look at final validation example using
Scalaz and the |@| syntax. The example is provided by Debasish
Ghosh in his great book Functional and Reactive Domain Modeling.

Here’s the basic structure of Validation in Scalaz:

sealed abstract class Validation[+E, +A] { //.. }
final case class Success[A](a: A) extends Validation[Nothing, A]
final case class Failure[E](e: E) extends Validation[E, Nothing]

This looks awfully similar to scala.Either[+A,+B], which also has two variants in Left and Right. In fact,
scalaz.Validation is isomorphic to scala.Either26. In that case, why have scalaz.Validation as a
separate abstraction? Validation gives you the power to accumulate failures, which is a common requirement
when designing domain models.

A typical use case arises when you’re validating a web-based form containing many fields and you want to report all errors
to the user at once. If you construct a Validation with a Failure type that has a Semigroup27, the library
provides an applicative functor for Validation, which can accumulate all errors that can come up in the course of
your computation. This also highlights an important motivation for using libraries such as Scalaz: You get to enjoy more
powerful functional abstractions on top of what the Scala standard library offers. Validation is one of these
functional patterns that make your code more powerful, succinct, and free of boilerplates.

In our discussion of applicative functors and the use case of validation of account attributes, we didn’t talk about strategies
of handling failure. But because in an applicative effect you get to execute all the validation functions independently,
regardless of the outcome of any one of them, a useful strategy for error reporting is one that accumulates all errors and
reports them at once to the user.

The question is, should the error-handling strategy be part of the application code or can you abstract this in the
pattern itself? The advantage of abstracting the error-handling strategy as part of the pattern is increased reusability
and less boilerplate in application code, which are areas where FP shines. And as I’ve said, a beautiful combination of
Applicative Functor and Semigroup patterns enables you to have this concern abstracted within the library itself.
When you start using this approach, you’ll end up with a library of fundamental patterns for composing code generically.
And types will play a big role in ensuring that the abstractions are correct by construction, and implementation details
don’t leak into application-specific code. You’ll explore more of this in exercises 4.2 and 4.3 and in the other examples in
the online code repository for this chapter.

27 A semigroup is a monoid
without the zero.

@debasishg
Debasish	Ghosh

EXERCISE 4.2 ACCUMULATING VALIDATION ERRORS (APPLICATIVELY)

Section 4.2.2 presented the Applicative Functor pattern and used it to model validations of domain entities. Consider the
following function that takes a bunch of parameters and returns a fully-constructed, valid Account to the user:

def savingsAccount(
no: String,
name: String,
rate: BigDecimal,
openDate: Option[Date],
closeDate: Option[Date],
balance: Balance

): ValidationNel[String,Account] = { //..

• The return type of the function is scalaz.ValidationNel[String,Account], which is a shorthand for
Validation[NonEmptyList[String],Account]. If all validations succeed, the function returns
Success[Account], or else it must return all the validation errors in Failure. This implies that all validation
functions need to run, regardless of the outcome of each of them. This is the applicative effect.

• You need to implement the following validation rules:
1. account numbers must have a minimum length of 10 characters,
2. the rate of interest has to be positive, and
3. the open date (default to today if not specified) must be before the close date.

• Hint: Take a deep look at Scalaz’s implementation of Validation[E, A]. Note how it provides an
Applicative instance that supports accumulation of error messages through Semigroup[E]. Note
Semigroup is Monoid without a zero.

https://github.com/debasishg/frdomain/blob/master/src/main/scala/frdomain/ch4/patterns/Account.scala

@debasishg
Debasish	Ghosh

/**
* Uses Applicative instance of ValidationNEL which
* accumulates errors using Semigroup
*/

object FailSlowApplicative {

import scalaz._
import syntax.apply._, syntax.std.option._, syntax.validation._

private def validateAccountNo(no: String): ValidationNel[String, String] =
if (no.isEmpty || no.size < 5)

s"Account No has to be at least 5 characters long: found $no”.failureNel[String]
else no.successNel[String]

private def validateOpenCloseDate(od:Date,cd:Option[Date]): ValidationNel[String,String] = cd.map { c =>
if (c before od)

s"Close date [$c] cannot be earlier than open date [$od]”.failureNel[(Option[Date], Option[Date])]
else (od.some, cd).successNel[String]

}.getOrElse { (od.some, cd).successNel[String] }

private def validateRate(rate: BigDecimal): ValidationNel[String,String] =
if (rate <= BigDecimal(0))

s"Interest rate $rate must be > 0”.failureNel[BigDecimal]
else rate.successNel[String]

@debasishg
Debasish	Ghosh

https://github.com/debasishg/frdomain/blob/master/src/main/scala/frdomain/ch4/patterns/Account.scala

final case class CheckingAccount(
no: String, name: String,dateOfOpen: Option[Date], dateOfClose: Option[Date] = None, balance: Balance = Balance())

extends Account

final case class SavingsAccount(
no:String, name:String, rateOfInterest:Amount, dateOfOpen:Option[Date], dateOfClose:Option[Date]=None, balance:Balance = Balance())

extends Account

def savingsAccount(no:String, name:String, rate:BigDecimal, openDate:Option[Date], closeDate: Option[Date], balance: Balance):
Validation[NonEmptyList[String], Account] = {
val od = openDate.getOrElse(today)
(validateAccountNo(no) |@| validateOpenCloseDate(openDate.getOrElse(today), closeDate) |@| validateRate(rate)) { (n, d, r) =>

SavingsAccount(n, name, r, d._1, d._2, balance)
}

}
}

def checkingAccount(no:String, name:String, openDate:Option[Date], closeDate: Option[Date], balance: Balance):
Validation[NonEmptyList[String], Account] = {
val od = openDate.getOrElse(today)
(validateAccountNo(no) |@| validateOpenCloseDate(openDate.getOrElse(today), closeDate)) { (n, d) =>

CheckingAccount(n, name, d._1, d._2, balance)
}

}

https://github.com/debasishg/frdomain/blob/master/src/main/scala/frdomain/ch4/patterns/Account.scala

@debasishg
Debasish	Ghosh

to	be	continued	in	Part	IV

