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3.1 Natural Numbers

The natural numbers are the numbers 0, 1, 2 and so on, used for counting. The type 𝑵𝒂𝒕 is introduced by the declaration

    𝐝𝐚𝐭𝐚	𝑵𝒂𝒕	 = 	𝒁𝒆𝒓𝒐	|	𝑺𝒖𝒄𝒄	𝑵𝒂𝒕

𝑵𝒂𝒕	is our first example of a recursive datatype declaration. The definition says that Zero	is a value of 𝑵𝒂𝒕, and that Succ 𝑛	is a 
value of 𝑵𝒂𝒕	whenever 𝑛 is. In particular, the constructor 𝑺𝒖𝒄𝒄 (short for ‘successor’), has type 𝑵𝒂𝒕 → 𝑵𝒂𝒕. For example, each of

	 𝒁𝒆𝒓𝒐, 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐, 𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐) 

is an element of 𝑵𝒂𝒕.  As an element of 𝑵𝒂𝒕 the number 7 would be represented by

	 𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐))))))

Every natural number is represented by a unique value of 𝑵𝒂𝒕. On the other hand, not every value of 𝑵𝒂𝒕	represents a well-
defined natural number. In fact 𝑵𝒂𝒕	also contains the values ⊥, 𝑺𝒖𝒄𝒄 ⊥, 𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄 ⊥), and so on. These additional values will 
be discussed later.

Let us see how to program the basic arithmetic and comparison operations on 𝑵𝒂𝒕. Addition can be defined by

	 + 	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
	 𝑚 + 𝒁𝒆𝒓𝒐	 = 	 𝑚
	 𝑚 + 𝑺𝒖𝒄𝒄	𝑛	 = 	𝑺𝒖𝒄𝒄 𝑚 + 𝑛

This is a recursive definition, defining + by pattern matching on the second argument. Since every element of 𝑵𝒂𝒕, apart for ⊥, is 
either 𝒁𝒆𝒓𝒐	or of the form Succ 𝑛, where 𝑛 is an element of 𝑵𝒂𝒕, the two patterns in the equations for + are disjoint and cover all 
numbers apart from	⊥.
… Richard Bird



Here is how  𝒁𝒆𝒓𝒐 + 𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐) would be evaluated:

        𝒁𝒆𝒓𝒐 + 𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐)
    =       { second equation for +, i.e.	 𝑚 + 𝑺𝒖𝒄𝒄	𝑛	 = 	𝑺𝒖𝒄𝒄 𝑚 + 𝑛  } 	
         𝑺𝒖𝒄𝒄 𝒁𝒆𝒓𝒐 + 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐
    =       { second equation for +, i.e.	 𝑚 + 𝑺𝒖𝒄𝒄	𝑛	 = 	𝑺𝒖𝒄𝒄 𝑚 + 𝑛  } 	
	 𝑺𝒖𝒄𝒄 𝑺𝒖𝒄𝒄	(𝒁𝒆𝒓𝒐 + 𝒁𝒆𝒓𝒐)
    =       { first equation for +, i.e.	 𝑚 + 𝒁𝒆𝒓𝒐	 = 	 𝑚 } 
	 𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐)

…it is not a practical proposition to introduce natural numbers through the datatype 𝑵𝒂𝒕: arithmetic would be just too inefficient. 
In particular, calculating 𝑚 + n	would require (𝑛 + 1)	evaluation steps. On the other hand, counting on your fingers is a good way 
to understand addition.

Given +, we can define ×:

	 (×) 	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
	 𝑚	×	𝒁𝒆𝒓𝒐	 = 	 𝒁𝒆𝒓𝒐
	 𝑚	×	𝑺𝒖𝒄𝒄	𝑛	 = 	 𝑚	×	𝑛 + 𝑚

Given ×, we can define exponentiation (↑) by

	 (↑) 	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
	 𝑚 ↑ 𝒁𝒆𝒓𝒐	 = 	 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐
	 𝑚 ↑ 𝑺𝒖𝒄𝒄	𝑛	 = 	 𝑚 ↑ 𝑛 	×	𝑚

…
Richard Bird



On the next slide we show the definitions of +, ×, 
and ↑	again, and have a go at implementing the 
three operations in Scala, together with some tests.



val `(+)`: Nat => Nat => Nat =
  m => {
    case Zero    => m
    case Succ(n) => Succ(m + n)
  }

implicit class NatOps(m: Nat){
  def +(n: Nat) = `(+)`(m)(n)
  def ×(n: Nat) = `(×)`(m)(n)
  def ↑(n: Nat) = `(↑)`(m)(n)
}

sealed trait Nat
case class Succ(n: Nat) extends Nat
case object Zero extends Nat

+ 	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
	 𝑚 + 𝒁𝒆𝒓𝒐	 = 	 𝑚
	 𝑚 + 𝑺𝒖𝒄𝒄	𝑛	 = 	𝑺𝒖𝒄𝒄 𝑚 + 𝑛

val `(×)`: Nat => Nat => Nat =
  m => {
    case Zero    => Zero
    case Succ(n) => (m × n) + m
  }

val `(↑)`: Nat => Nat => Nat =
  m => {
    case Zero    => Succ(Zero)
    case Succ(n) => (m ↑ n) × m
  }

(×) 	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
	 𝑚	×	𝒁𝒆𝒓𝒐	 = 	 𝒁𝒆𝒓𝒐
	 𝑚	×	𝑺𝒖𝒄𝒄	𝑛	 = 	 𝑚	×	𝑛 + 𝑚

(↑) 	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 → 𝑵𝒂𝒕
	 𝑚 ↑ 𝒁𝒆𝒓𝒐	 = 	 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐
	 𝑚 ↑ 𝑺𝒖𝒄𝒄	𝑛	 = 	 𝑚 ↑ 𝑛 	×	𝑚

𝐝𝐚𝐭𝐚	𝑵𝒂𝒕	 = 	𝒁𝒆𝒓𝒐	|	𝑺𝒖𝒄𝒄	𝑵𝒂𝒕

; assert(0 + 0 == 0) ; assert(Zero + Zero == Zero)
; assert(0 + 1 == 1) ; assert(Zero + Succ(Zero) == Succ(Zero))
; assert(1 + 0 == 1) ; assert(Succ(Zero) + Zero == Succ(Zero))
; assert(1 + 1 == 2) ; assert(Succ(Zero) + Succ(Zero) == Succ(Succ(Zero)))
; assert(2 + 3 == 5) ; assert(Succ(Succ(Zero)) + Succ(Succ(Succ(Zero))) == Succ(Succ(Succ(Succ(Succ(Zero))))))

; assert(0 * 0 == 0) ; assert((Zero × Zero) == Zero)
; assert(1 * 0 == 0) ; assert((Succ(Zero) × Zero) == Zero)
; assert(0 * 1 == 0) ; assert((Zero × Succ(Zero)) == Zero)
; assert(1 * 1 == 1) ; assert((Succ(Zero) × Succ(Zero)) == Succ(Zero))
; assert(1 * 2 == 2) ; assert((Succ(Zero) × Succ(Succ(Zero))) == Succ(Succ(Zero)))
; assert(2 * 3 == 6) ; assert((Succ(Succ(Zero)) × Succ(Succ(Succ(Zero)))) == Succ(Succ(Succ(Succ(Succ(Succ(Zero)))))))

; assert(Math.pow(1,0) == 1) ; assert( (Succ(Zero) ↑ Zero) == Succ(Zero) )
; assert(Math.pow(2,2) == 4) ; assert( (Succ(Succ(Zero)) ↑ Succ(Succ(Zero))) == Succ(Succ(Succ(Succ(Zero)))) )



The remaining arithmetic operation common to all numbers is subtraction (−). However, subtraction is a partial operation on 
natural numbers. The definition is

	 − 	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
	 𝑚 − 𝒁𝒆𝒓𝒐	 = 	 𝑚
	 𝑺𝒖𝒄𝒄	𝑚 − 𝑺𝒖𝒄𝒄	𝑛	 = 	𝑚 − 𝑛

This definition uses pattern matching on both arguments; taken together, the patterns are disjoint but not exhaustive. For 
example,

	 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐	 − 𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐)
    =       { second equation for −, i.e.	 𝑺𝒖𝒄𝒄	𝑚 − 𝑺𝒖𝒄𝒄	𝑛	 = 	𝑚 − 𝑛 }
         𝒁𝒆𝒓𝒐 − 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐
    =       { case exhaustion }
	 ⊥

The hint ‘case exhaustion’ in the last step indicates that no equation for −  has a pattern that matches (𝒁𝒆𝒓𝒐 − 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐). 
More generally, 𝑚 − 𝑛 = ⊥	if 𝑚 < 𝑛. The partial nature of subtraction on the natural numbers is the prime motivation for 
introducing the integer numbers; over the integers, − 	is a total operation.
...Finally,	here	are	two	more	examples	of	programming	with	𝑵𝒂𝒕.	The	factorial	and	Fibonacci	functions	are	defined	by

   𝑓𝑎𝑐𝑡	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
	 𝑓𝑎𝑐𝑡	𝒁𝒆𝒓𝒐	 = 	 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐
	 𝑓𝑎𝑐𝑡 𝑺𝒖𝒄𝒄	𝑛 	 = 	 𝑺𝒖𝒄𝒄	𝑛	×	𝑓𝑎𝑐𝑡	𝑛

	 𝑓𝑖𝑏	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
	 𝑓𝑖𝑏	𝒁𝒆𝒓𝒐	 = 	 𝒁𝒆𝒓𝒐
	 𝑓𝑖𝑏 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐 	 = 	 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐
	 𝑓𝑖𝑏 𝑺𝒖𝒄𝒄 𝑺𝒖𝒄𝒄	𝑛 	 = 	 𝑓𝑖𝑏 𝑺𝒖𝒄𝒄	𝑛 + 𝑓𝑖𝑏	𝑛 Richard Bird



See the next slide for a Scala 
implementation of the −	operation.



− 	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
	 𝑚 − 𝒁𝒆𝒓𝒐	 = 	 𝑚
	 𝑺𝒖𝒄𝒄	𝑚 − 𝑺𝒖𝒄𝒄	𝑛	 = 	𝑚 − 𝑛

val `(-)`: Nat => Nat => Nat =
  m => n => (m,n) match {
    case (_,Zero) => m
    case (Succ(x),Succ(y)) => x - y
  }

; assert(0 - 0 ==  0) ; assert(Zero - Zero == Zero)
 ; assert(1 - 0 ==  1) ; assert(Succ(Zero) - Zero == Succ(Zero))
 ; assert(5 - 3 ==  2) ; assert(Succ(Succ(Succ(Succ(Succ(Zero))))) - Succ(Succ(Succ(Zero))) == Succ(Succ(Zero)))
 ; assert(3 - 5 == -2) ; assert(
                           Try {
                              Succ(Succ(Succ(Zero))) - Succ(Succ(Succ(Succ(Succ(Zero)))))
                            }.toString.startsWith(
                              "Failure(scala.MatchError: (Zero,Succ(Succ(Zero)))"
                            )
                         )

No equation for −  has a pattern that matches (𝒁𝒆𝒓𝒐 − 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐). 
Similarly for (𝒁𝒆𝒓𝒐 − 𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐)), (𝒁𝒆𝒓𝒐 − 𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄(𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐))), etc.
More generally, 𝑚 − 𝑛 = ⊥	if 𝑚 < 𝑛.

𝑚 − 𝑛 throws  scala.MatchError if 𝑚 < 𝑛. 



@philip_schwarz

On the next slide we show the definitions of 𝑓𝑎𝑐𝑡, 
and 𝑓𝑖𝑏	again, and have a go at implementing the 
two functions in Scala, together with some tests.



val fact: Nat => Nat = {
  case Zero    => Succ(Zero)
  case Succ(n) => Succ(n) × fact(n)
}

𝑓𝑎𝑐𝑡	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
	 𝑓𝑎𝑐𝑡	𝒁𝒆𝒓𝒐	 = 	 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐
	 𝑓𝑎𝑐𝑡 𝑺𝒖𝒄𝒄	𝑛 	 = 	 𝑺𝒖𝒄𝒄	𝑛	×	𝑓𝑎𝑐𝑡	𝑛

𝑓𝑖𝑏	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
	 𝑓𝑖𝑏	𝒁𝒆𝒓𝒐	 = 	 𝒁𝒆𝒓𝒐
	 𝑓𝑖𝑏 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐 	 = 	 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐
	 𝑓𝑖𝑏 𝑺𝒖𝒄𝒄 𝑺𝒖𝒄𝒄	𝑛 	 = 	 𝑓𝑖𝑏 𝑺𝒖𝒄𝒄	𝑛 + 𝑓𝑖𝑏	𝑛

val fib: Nat => Nat = {
  case Zero          => Zero
  case Succ(Zero)    => Succ(Zero)
  case Succ(Succ(n)) => fib(Succ(n)) + fib(n)
}

def factorial(n: Int): Int = 
  if (n == 0) 1 
  else n * factorial(n-1)

; assert(factorial(0) == 1) ; assert(fact(Zero) == Succ(Zero))
; assert(factorial(1) == 1) ; assert(fact(Succ(Zero)) == Succ(Zero))
; assert(factorial(2) == 2) ; assert(fact(Succ(Succ(Zero))) == Succ(Succ(Zero)))
; assert(factorial(3) == 6) ; assert(fact(Succ(Succ(Succ(Zero)))) == Succ(Succ(Succ(Succ(Succ(Succ(Zero)))))))

def fibonacci(n: Int): Int = 
  if (n == 0 || n == 1) n 
  else fibonacci(n-1) + fibonacci(n-2)

; assert(fibonacci(0) == 0) ; assert(fib(Zero) == Succ(Zero))
; assert(fibonacci(1) == 1) ; assert(fib(Succ(Zero)) == Succ(Zero))
; assert(fibonacci(2) == 1) ; assert(fib(Succ(Succ(Zero))) == Succ(Zero))
; assert(fibonacci(3) == 2) ; assert(fib(Succ(Succ(Succ(Zero)))) == Succ(Succ(Zero)))
; assert(fibonacci(4) == 3) ; assert(fib(Succ(Succ(Succ(Succ(Zero))))) == Succ(Succ(Succ(Zero))))
; assert(fibonacci(5) == 5) ; assert(fib(Succ(Succ(Succ(Succ(Succ(Zero)))))) == Succ(Succ(Succ(Succ(Succ(Zero))))))
; assert(fibonacci(6) == 8) ; assert(fib(Succ(Succ(Succ(Succ(Succ(Zero)))))) == Succ(Succ(Succ(Succ(Succ(Succ(Succ(Succ(Zero)))))))))



3.1.1 Partial numbers

Let us now return to the point about there being extra values in 𝑵𝒂𝒕. The values

	 ⊥, 𝑺𝒖𝒄𝒄	 ⊥, 𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄 ⊥), …
  
are	all	different	and	each	is	also	a	member	of	𝑵𝒂𝒕.	That	they	exist	is	a	consequence	of	three	facts:

i. ⊥	is	an	element	of	𝑵𝒂𝒕	because	every	datatype	declaration	introduces	at	least	one	extra	value,	the	undefined	value	of	
the	type.

ii. constructor	functions	of	a	datatype	are	assumed	to	be	nonstrict	
iii. 	𝑺𝒖𝒄𝒄	𝑛	 is	an	element	of	Nat,	whenever	𝑛	is

To	appreciate	why	these	extra	values	are	different	from	one	another,	suppose	we	define	𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑	 ∷ 𝑵𝒂𝒕	by	the	equation	
𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 = 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑.	Then

?𝒁𝒆𝒓𝒐 < 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑
{Interrupted!}
? 𝒁𝒆𝒓𝒐 < 𝑺𝒖𝒄𝒄	𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑
𝑇𝑟𝑢𝑒
? 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐 < 𝑺𝒖𝒄𝒄	𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑
{Interrupted!}
? 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐 < 𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑)
𝑇𝑟𝑢𝑒

One	 can	 interpret	 the	 extra	 values	 in	 the	 following	 way:	⊥	 corresponds	 to	 the	 natural	 number	 about	 which	 there	 is	
absolutely	no	information;	𝑺𝒖𝒄𝒄 ⊥	to	the	natural	number	about	which	the	only	information	is	that	it	is	greater	than	𝒁𝒆𝒓𝒐;	
𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄 ⊥)	 to	the	natural	number	about	which	the	only	information	is	that	it	is	greater	than	𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐;	and	so	on.

Richard Bird



There is also one further value of 𝑵𝒂𝒕, namely the ‘infinite’ number:

        𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	 … )))

This	number	can	be	defined	by	

	 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦	 ∷ 	 𝑵𝒂𝒕 
	 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦	 = 	 𝑺𝒖𝒄𝒄	𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦

It	is	different	from	all	the	other	numbers,	because	it	is	the	only	number	𝑥	for	which	 𝑺𝒖𝒄𝒄	𝑚 < 𝑥	returns	𝑻𝒓𝒖𝒆	for	all	finite	
numbers	𝑚.	In	this	sense,	𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦	is	the	largest	element	of	𝑵𝒂𝒕.	If	we	request	the	value	of	𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦,	then	we	obtain

        ? 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦	
 𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	{𝐼𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑒𝑑!}

The	number	𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦	satisfies	other	properties,	in	particular	𝑛 + 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 = 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦,	for	all	numbers	𝑛.	The	dual	equation	
𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 + 𝑛 = 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦	holds	 only	 for	 finite	 numbers	 𝑛.	We	 will	 see	 how	 to	 prove	 assertions	 such	 as	 these	 in	 the	 next	
section.

To	summarise	this	discussion,	we	can	divide	the	values	of	𝑵𝒂𝒕	into	three	classes:

• The	finite	numbers,	those	that	correspond	to	well-defined	natural	numbers.
• The	partial	numbers,	⊥, 𝑺𝒖𝒄𝒄	 ⊥,	and	so	on.
• The	infinite	numbers,	of	which	there	is	just	one,	namely	𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦.

We	will	see	that	this	classification	holds	true	of	all	recursive	types.	There	will	be	the	finite	elements	of	the	type,	the	partial	
elements,	 and	 the	 infinite	elements.	Although	 the	 infinite	natural	number	 is	not	of	much	use,	 the	same	 is	not	 true	of	 the	
infinite	values	of	other	datatypes.
… Richard Bird



Note that when in this slide deck we mention the concepts of ⊥ 
and 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦, it is mainly in a Haskell context, as we did in the last 
two slides. In particular, we won’t be modelling ⊥ and 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 in 
any of the Scala code you’ll see throughout the deck.



3.2 Induction 

In order to reason about the properties of recursively defined functions over a recursive datatype, we can appeal to a principle of 
structural induction. In the case of 𝑵𝒂𝒕, the principle of structural induction can be defined as follows: In order to show that some 
property 𝑃(𝑛) holds for each finite number 𝑛 of 𝑵𝒂𝒕, it is sufficient to show:

Case (𝒁𝒆𝒓𝒐). That 𝑃(𝒁𝒆𝒓𝒐) holds. 

Case (𝑺𝒖𝒄𝒄	𝑛). That if 𝑃(𝑛) holds, then 𝑃(𝑺𝒖𝒄𝒄	𝑛) holds also. 

Induction	 is	valid	for	the	same	reason	that	recursive definitions	are	valid:	every	finite	number	is	either	𝒁𝒆𝒓𝒐	or of the form 
𝑺𝒖𝒄𝒄 𝑛, where 𝑛 is a finite number. If we prove the first case, then we have shown that the property is true for 𝒁𝒆𝒓𝒐; If we also 
prove the second case, then we have shown that the property is true for 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐, since it is true for 𝒁𝒆𝒓𝒐. But now, by the 
same argument, it is true for	𝑺𝒖𝒄𝒄 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐 , and so on.

The principle needs to be extended if we want to assert that some proposition is true for all elements of 𝑵𝒂𝒕, but we postpone 
discussion of this point for the following section. 

As	an	example,	let’s	prove	that	 𝒁𝒆𝒓𝒐 + 𝑛	 = 	𝑛	 for	all	finite	numbers	𝑛.	Recall	that	+	is	defined	by	

	 𝑚 + 𝒁𝒆𝒓𝒐	 = 	 𝑚
	 𝑚 + 𝑺𝒖𝒄𝒄	𝑛	 = 	𝑺𝒖𝒄𝒄 𝑚 + 𝑛

The	first	equation	asserts	that	𝒁𝒆𝒓𝒐	is	a	right	unit	of	+.	In	general,	𝑒	is	a	left	unit	of	⊕	if	𝑒 ⊕ 𝑥 = 𝑥	for	all	𝑥,	and	a	right	unit	
of	 𝑥	if	 𝑥 ⊕ 𝑒 = 𝑥	for	 all	 𝑥.	 If	 𝑒	is	 both	 a	 left	 unit	 and	 a	 right	 unit	 of	 an	 operator	⊕,	 then	 it	 is	 called	 the	 unit	 of	⊕.	 The	
terminology	is	appropriate	since	only	one	value	can	be	both	a	left	and	right	unit.	So,	by	proving	that	𝒁𝒆𝒓𝒐	is	a	left	unit	,	we	
have	proved	that	𝒁𝒆𝒓𝒐	is	the	unit	of	+.

Richard Bird



Proof.	The	proof	is	by	induction	on	𝑛.	More	precisely,	we	take	for	𝑃(𝑛)	the	assertion	that	𝒁𝒆𝒓𝒐 + 𝑛	 = 	𝑛.	This	equation	is	
referred	to	as	the	induction	hypothesis.

Case (𝒁𝒆𝒓𝒐). We have to show 𝒁𝒆𝒓𝒐 + 𝒁𝒆𝒓𝒐 = 𝒁𝒆𝒓𝒐, which is immediate from the first equation defining +.

Case (𝑺𝒖𝒄𝒄	𝑛). We have to show that 𝒁𝒆𝒓𝒐 + 𝑺𝒖𝒄𝒄	𝑛 = 𝑺𝒖𝒄𝒄	𝑛, which we do by simplifying the left-hand expression:

 𝒁𝒆𝒓𝒐 + 𝑺𝒖𝒄𝒄	𝑛
    =       { second equation for +, i.e.	 𝑚 + 𝑺𝒖𝒄𝒄	𝑛	 = 	𝑺𝒖𝒄𝒄 𝑚 + 𝑛  }
         𝑺𝒖𝒄𝒄	(𝒁𝒆𝒓𝒐 + 𝑛)
    =       { induction hypothesis}
	 𝑺𝒖𝒄𝒄	𝑛
	 	 ☐

This example shows the format we will use for inductive proofs, laying out each case separately and using a ☐	to mark the end. 
The very last step made use of the induction hypothesis, which is allowed by the way induction works.
…
3.2.1 Full Induction
In	the	form	given	above,	the	induction	principle	for	𝑵𝒂𝒕	suffices	only	to	prove	properties	of	the	finite	members	of	𝑵𝒂𝒕.	If	we	
want	to	show	that	a	property	𝑃	also	hold	for	every	partial	number,	then	we	have	to	prove	three	things:

Case (⊥). That 𝑃(⊥) holds. 

Case (𝒁𝒆𝒓𝒐). That 𝑃(𝒁𝒆𝒓𝒐) holds. 

Case (𝑺𝒖𝒄𝒄	𝑛). That if 𝑃(𝑛) holds, then 𝑃(𝑺𝒖𝒄𝒄	𝑛) holds also. 

We	 can	 omit	 the	 second	 case,	 but	 then	we	 can	 conclude	 only	 that	 𝑃(𝑛)	 holds	 for	 every	 partial	 number.	 The	 reason	 the	
principle	is	valid	is	that	is	that	every	partial	number	is	either	⊥	or	of	the	form	𝑺𝒖𝒄𝒄	𝑛	for	some	partial	number	𝑛. Richard Bird



To	illustrate,	let	us	prove	the	somewhat	counterintuitive	result	that	𝑚 + 𝑛 = 𝑛	for	all	numbers	𝑚	and	all	partial	numbers	𝑛.

Proof.	The	proof	is	by	partial	number	induction	on	𝑛.

Case (⊥). The equation 𝑚	+	⊥	=	⊥  follows at once by case exhaustion in the definition of +. That is, ⊥	 does not match either of 
the patterns 𝒁𝒆𝒓𝒐	or 𝑺𝒖𝒄𝒄	𝑛.
	
Case (𝑺𝒖𝒄𝒄	𝑛). For the left-hand side, we reason

	 𝑚 + 𝑺𝒖𝒄𝒄	𝑛
    =       { second equation for +, i.e.	 𝑚 + 𝑺𝒖𝒄𝒄	𝑛	 = 	𝑺𝒖𝒄𝒄 𝑚 + 𝑛  }
         𝑺𝒖𝒄𝒄	(𝑚 + 𝑛)
    =       { induction hypothesis}
	 𝑺𝒖𝒄𝒄	𝑛

Since	the	right-hand	side	is	also	𝑺𝒖𝒄𝒄	𝑛,	we	are	done.

3.2.2 Program synthesis
In	 the	 proofs	 above	 we	 defined	 some	 functions	 and	 then	 used	 induction	 to	 prove	 a	 certain	 property.	We	 can	 also	 view	
induction	as	a	way	to	synthesise	definitions	of	functions	so	that	they	satisfy	the	properties	we	want.

Let	us	illustrate	with	a	simple	example.	Suppose	we	specify	subtraction	of	natural	numbers	by	the	condition

	 𝑚 + 𝑛 − 𝑛 = 𝑚

for	 all	𝑚	 and	 𝑛.	 The	 specification	 does	 not	 give	 a	 constructive	 definition	 of − ,	merely	 a	 property	 that	 it	 has	 to	 satisfy.	
However,	we	can	do	an	induction	proof	on	𝑛	of	the	equation	above,	but	view	the	calculation	as	a	way	of	generating	a	suitable	
definition	of − .

Richard Bird



Unlike	 previous	 proofs,	 we	 reason	with	 the	 equation	 as	 a	whole,	 since	 simplification	 of	 both	 sides	 independently	 is	 not	
possible	if	we	do	not	know	what	all	the	rules	of	simplification	are.		

Case (𝒁𝒆𝒓𝒐). We reason 

𝑚 + 𝒁𝒆𝒓𝒐 − 𝒁𝒆𝒓𝒐 = 𝑚
    ≡       { first equation for +, i.e.	 𝑚 + 𝒁𝒆𝒓𝒐	 = 	 𝑚 }
         𝑚 − 𝒁𝒆𝒓𝒐 = 𝑚

Hence we can take 𝑚 − 𝒁𝒆𝒓𝒐 = 𝑚 to satisfy the case. The symbol  ≡	 is used to separate steps of the calculation since we are 
calculating with mathematical assertions, not with values of a datatype. 

Case (𝑺𝒖𝒄𝒄	𝑛). We reason

𝑚 + 𝑺𝒖𝒄𝒄	𝑛 − 𝑺𝒖𝒄𝒄	𝑛 = 𝑚
 ≡       { second equation for +, i.e.	 𝑚 + 𝑺𝒖𝒄𝒄	𝑛	 = 	𝑺𝒖𝒄𝒄 𝑚 + 𝑛  }
	 𝑺𝒖𝒄𝒄 𝑚 + 𝑛 − 𝑺𝒖𝒄𝒄	𝑛 = 𝑚
 ≡       { hypothesis 𝑚 + 𝑛 − 𝑛 = 𝑚}
	 𝑺𝒖𝒄𝒄 𝑚 + 𝑛 − 𝑺𝒖𝒄𝒄	𝑛 = 𝑚 + 𝑛 − 𝑛

Replacing 𝑚 + 𝑛	in the last equation by 𝑚, we can take 𝑺𝒖𝒄𝒄	𝑚 − 	𝑺𝒖𝒄𝒄	𝑛 = 𝑚 − 𝑛  to satisfy the case. Hence we have derived
 
	 𝑚 − 𝒁𝒆𝒓𝒐	 = 	 𝑚
	 𝑺𝒖𝒄𝒄	𝑚 − 𝑺𝒖𝒄𝒄	𝑛	 = 	𝑚 − 𝑛

This is the program for −  seen earlier.

Richard Bird



After that look at structural induction, it is finally time to 
see how Richard Bird introduces the concept of folding.



3.3 The fold function 

Many of the recursive definitions seen so far have a common pattern, exemplified by the following definition of a function 𝑓:

        𝑓	 ∷ 	 𝑵𝒂𝒕 → 𝐴	
        𝑓	𝒁𝒆𝒓𝒐	 = 	 𝑐
        𝑓 𝑺𝒖𝒄𝒄	𝑛 	 = 	 ℎ 𝑓	𝑛

Here,	𝐴	is	some	type,	𝑐	is	an	element	of	𝐴,	and	ℎ ∷ 𝐴 → 𝐴	.	Observe	that	𝑓	works	by	taking	an	element	of	𝑵𝒂𝒕	and	replacing	
𝒁𝒆𝒓𝒐	by	𝑐	 and	𝑺𝒖𝒄𝒄	by	ℎ.	For	example,	𝑓	takes	

        𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	(𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐))				to				ℎ	(ℎ	(ℎ	𝑐))

The	two	equations	for	𝑓	can	be	captured	in	terms	of	a	single	function,	𝑓𝑜𝑙𝑑𝑛,	called	the	𝑓𝑜𝑙𝑑	function	for	𝑵𝒂𝒕.	The	definition	is

        𝑓𝑜𝑙𝑑𝑛	 ∷ 	 𝛼	 → 𝛼 → 𝛼 → 𝑵𝒂𝒕 → 𝛼 
        𝑓𝑜𝑙𝑑𝑛	ℎ	𝑐	𝒁𝒆𝒓𝒐	 = 	 𝑐
        𝑓𝑜𝑙𝑑𝑛	ℎ	𝑐 𝑺𝒖𝒄𝒄	𝑛 	 = 	 ℎ 𝑓𝑜𝑙𝑑𝑛	ℎ	𝑐	𝑛

In	particular,	we	have

        𝑚 + 𝑛	 = 𝑓𝑜𝑙𝑑𝑛	𝑺𝒖𝒄𝒄	𝑚	𝑛
        𝑚	×	𝑛	 = 𝑓𝑜𝑙𝑑𝑛 +	𝑚 	𝒁𝒆𝒓𝒐	𝑛
        𝑚 ↑ 𝑛	 = 𝑓𝑜𝑙𝑑𝑛	 ×	𝑚 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐 	𝑛

It	follows	also	that	the	identity	function	𝑖𝑑	on	𝑵𝒂𝒕	satisfies	𝑖𝑑 = 𝑓𝑜𝑙𝑑𝑛	𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐. A suitable 𝑓𝑜𝑙𝑑 function can be defined for 
every recursive type, and we will see other 𝑓𝑜𝑙𝑑 functions in the following chapters.	

Richard Bird



+ 	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
	 𝑚 + 𝒁𝒆𝒓𝒐	 = 	 𝑚
	 𝑚 + 𝑺𝒖𝒄𝒄	𝑛	 = 	𝑺𝒖𝒄𝒄 𝑚 + 𝑛

(×) 	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 → 𝑵𝒂𝒕
	 𝑚	×	𝒁𝒆𝒓𝒐	 = 	 𝒁𝒆𝒓𝒐
	 𝑚	×	𝑺𝒖𝒄𝒄	𝑛	 = 	 𝑚	×	𝑛 + 𝑚

(↑) 	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 → 𝑵𝒂𝒕
	 𝑚 ↑ 𝒁𝒆𝒓𝒐	 = 	 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐
	 𝑚 ↑ 𝑺𝒖𝒄𝒄	𝑛	 = 	 𝑚 ↑ 𝑛 	×	𝑚

+ 	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
 𝑚 + 𝑛	 = 	𝑓𝑜𝑙𝑑𝑛	𝑺𝒖𝒄𝒄	𝑚	𝑛

(×) 	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 → 𝑵𝒂𝒕
𝑚	×	𝑛	 = 	 𝑓𝑜𝑙𝑑𝑛 +	𝑚 	𝒁𝒆𝒓𝒐	𝑛

(↑) 	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 → 𝑵𝒂𝒕
𝑚 ↑ 𝑛	 = 	 𝑓𝑜𝑙𝑑𝑛	 ×	𝑚 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐 	𝑛

𝑓𝑜𝑙𝑑𝑛	 ∷ 	 𝛼	 → 𝛼 → 𝛼 → 𝑵𝒂𝒕 → 𝛼
 𝑓𝑜𝑙𝑑𝑛	ℎ	𝑐	𝒁𝒆𝒓𝒐	 = 	 𝑐
	𝑓𝑜𝑙𝑑𝑛	ℎ	𝑐 𝑺𝒖𝒄𝒄	𝑛 	 = 	 ℎ 𝑓𝑜𝑙𝑑𝑛	ℎ	𝑐	𝑛

@philip_schwarz

Just to reinforce the ideas on the previous slide, here are the original definitions 
of +, × and ↑, and next to them, the new definitions in terms of 𝑓𝑜𝑙𝑑𝑛. 

And the next slide is the same but in terms of Scala code.



val `(+)`: Nat => Nat => Nat =
  m => {
    case Zero    => m
    case Succ(n) => Succ(m + n)
  }

val `(×)`: Nat => Nat => Nat =
  m => {
    case Zero    => Zero
    case Succ(n) => (m × n) + m
  }

val `(↑)`: Nat => Nat => Nat =
  m => {
    case Zero    => Succ(Zero)
    case Succ(n) => (m ↑ n) × m
  }

val `(×)`: Nat => Nat => Nat =
  m => n => foldn((x:Nat) => x + m, Zero, n)

def foldn[A](h: A => A, c: A, n: Nat): A =
  n match {
    case Zero => c
    case Succ(n) => h(foldn(h,c,n))
  }

val `(↑)`: Nat => Nat => Nat =
  m => n => foldn((x:Nat) => x × m, Succ(Zero), n)

val `(+)`: Nat => Nat => Nat =
  m => n => foldn(Succ,m,n)



In	the	examples	above,	each	instance	of	𝑓𝑜𝑙𝑑𝑛	also	returned	an	element	of	𝑵𝒂𝒕.	In	the	following	two	examples,	𝑓𝑜𝑙𝑑𝑛	
returns	an	element	of	(𝑵𝒂𝒕,	𝑵𝒂𝒕):

	 𝑓𝑎𝑐𝑡	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
	 𝑓𝑎𝑐𝑡	 = 	 𝑠𝑛𝑑 � 𝑓𝑜𝑙𝑑𝑛	𝑓	(𝒁𝒆𝒓𝒐, 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐)
                             where 𝑓 𝑚, 𝑛 = (𝑺𝒖𝒄𝒄	𝑚, 𝑺𝒖𝒄𝒄	(𝑚)	×	𝑛)

	 𝑓𝑖𝑏	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
	 𝑓𝑖𝑏	 = 	 𝑓𝑠𝑡 � 𝑓𝑜𝑙𝑑𝑛	𝑔	(𝒁𝒆𝒓𝒐, 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐)
                          where 𝑔 𝑚, 𝑛 = (𝑛,𝑚 + 	𝑛)

The function 𝑓𝑎𝑐𝑡 computes the factorial function and function 𝑓𝑖𝑏 computes the Fibonacci function. Each program works by first 
computing a more general result, namely an element of (𝑵𝒂𝒕,	𝑵𝒂𝒕), and then extracts the required result. In fact, 

        𝑓𝑜𝑙𝑑𝑛	𝑓 𝒁𝒆𝒓𝒐, 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐 	𝑛	 = 𝑛, 𝑓𝑎𝑐𝑡	𝑛
	 𝑓𝑜𝑙𝑑𝑛	𝑔 𝒁𝒆𝒓𝒐, 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐 	𝑛	 = 𝑓𝑖𝑏	𝑛, 𝑓𝑖𝑏 𝑺𝒖𝒄𝒄	𝑛 	

These equations can be proved by induction. The program for 𝑓𝑖𝑏 is more efficient than a direct recursive definition. The 
recursive program requires an exponential number of	+	operations, while the program above requires only a linear number. We 
will discuss efficiency in more detail in chapter 7, where the programming technique that led to the invention of the new program 
for 𝑓𝑖𝑏 will be studied in a more general setting.

There are two advantages of writing recursive definitions in terms of 𝑓𝑜𝑙𝑑𝑛. Firstly, the definition is shorter; rather than having to 
write down two equations, we have only to write down one. Secondly, it is possible to prove general properties of 𝑓𝑜𝑙𝑑𝑛 and use 
them to prove properties of specific instantiations. In other words, rather than having to write down many induction proofs, we 
have only to write down one.

Richard Bird



@philip_schwarz

The next slide shows the original definitions of the factorial and Fibonacci 
functions, and next to them, the new definitions in terms of 𝑓𝑜𝑙𝑑𝑛. 

And the slide after that is the same but in terms of Scala code.



𝑓𝑎𝑐𝑡	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
	 𝑓𝑎𝑐𝑡	𝒁𝒆𝒓𝒐	 = 	 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐
	 𝑓𝑎𝑐𝑡 𝑺𝒖𝒄𝒄	𝑛 	 = 	 𝑺𝒖𝒄𝒄	𝑛	×	𝑓𝑎𝑐𝑡	𝑛

𝑓𝑖𝑏	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
𝑓𝑖𝑏	 = 	 𝑓𝑠𝑡 8 𝑓𝑜𝑙𝑑𝑛	𝑔	(𝒁𝒆𝒓𝒐, 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐)
                  where 𝑔 𝑚, 𝑛 = (𝑛,𝑚 + 	𝑛)

𝑓𝑎𝑐𝑡	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
𝑓𝑎𝑐𝑡	 = 	 𝑠𝑛𝑑 8 𝑓𝑜𝑙𝑑𝑛	𝑓	(𝒁𝒆𝒓𝒐, 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐)
                     where 𝑓 𝑚, 𝑛 = (𝑺𝒖𝒄𝒄	𝑚, 𝑺𝒖𝒄𝒄	(𝑚)	×	𝑛)

𝑓𝑖𝑏	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
	 𝑓𝑖𝑏	𝒁𝒆𝒓𝒐	 = 	 𝒁𝒆𝒓𝒐
	 𝑓𝑖𝑏 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐 	 = 	 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐
	 𝑓𝑖𝑏 𝑺𝒖𝒄𝒄 𝑺𝒖𝒄𝒄	𝑛 	 = 	 𝑓𝑖𝑏 𝑺𝒖𝒄𝒄	𝑛 + 𝑓𝑖𝑏	𝑛

𝑓𝑜𝑙𝑑𝑛	 ∷ 	 𝛼	 → 𝛼 → 𝛼 → 𝑵𝒂𝒕 → 𝛼
𝑓𝑜𝑙𝑑𝑛	ℎ	𝑐	𝒁𝒆𝒓𝒐	 = 	 𝑐
𝑓𝑜𝑙𝑑𝑛	ℎ	𝑐 𝑺𝒖𝒄𝒄	𝑛 	 = 	 ℎ 𝑓𝑜𝑙𝑑𝑛	ℎ	𝑐	𝑛



def fact(n: Nat): Nat = {
  
  def snd(pair: (Nat, Nat)): Nat = 
    pair match { case (_,n) => n }
  
  def f(pair: (Nat, Nat)): (Nat, Nat) = 
    pair match { case (m,n) => (Succ(m), Succ(m) × n) }
   
  snd( foldn(f, (Zero, Succ(Zero)), n) )
}

def fib(n: Nat): Nat = {

  def fst(pair: (Nat, Nat)): Nat = 
    pair match { case (n,_) => n }

  def g(pair: (Nat, Nat)): (Nat, Nat) = 
    pair match { case (m,n) => (n, m + n) }

  fst( foldn(g, (Zero, Succ(Zero)), n) )
}

val fact: Nat => Nat = {
  case Zero    => Succ(Zero)
  case Succ(n) => Succ(n) × fact(n)
}

val fib: Nat => Nat = {
  case Zero          => Zero
  case Succ(Zero)    => Succ(Zero)
  case Succ(Succ(n)) => fib(Succ(n)) + fib(n)
}

def foldn[A](h: A => A, c: A, n: Nat): A =
  n match {
    case Zero => c
    case Succ(n) => h(foldn(h,c,n))
  }



Now let’s have a very quick look at the 
datatype for lists, and at induction over lists.



4.1.1 Lists as a datatype

A list can be constructed from scratch by starting with the empty list and successively adding elements one by one. One can add 
elements to the front of the list, or to the rear, or to somewhere in the middle. In the following datatype declaration, nonempty 
lists are constructed by adding elements to the front of the list:

    𝐝𝐚𝐭𝐚	𝑳𝒊𝒔𝒕	𝛼	 = 𝑵𝒊𝒍	|	𝑪𝒐𝒏𝒔	𝛼 (𝑳𝒊𝒔𝒕 𝛼)

…The constructor (short for ‘construct’ – the name goes back to the programming language LISP) adds an element to the front of 
the list. For example, the list 1,2,3  would be represented as the following element of 𝑳𝒊𝒔𝒕	𝑰𝒏𝒕:

	 𝑪𝒐𝒏𝒔	1 (𝑪𝒐𝒏𝒔	2	(𝑪𝒐𝒏𝒔	3	𝑵𝒊𝒍	))

In functional programming, lists are defined as elements of 𝑳𝒊𝒔𝒕 𝛼. The syntax [𝛼] is used instead of 𝑳𝒊𝒔𝒕 𝛼, the constructor 𝑵𝒊𝒍 is 
written as [	], and the constructor 𝑪𝒐𝒏𝒔 is written as infix operator (∶). Moreover, (∶)	associates to the right, so

1,2,3 	= 	 1: 2: 3: [	] 	 = 	 1 ∶ 2 ∶ 3 ∶ [	] 

In other words, the special syntax on the left can be regarded as an abbreviation for the syntax on the right, which is also special, 
but only by virtue of the fact that the constructors are given nonstandard names.

Like functions over other datatypes, functions over lists can be defined by pattern matching. 

Richard Bird



Before moving on to the topic of induction over lists, Richard Bird gives 
an example of a function defined over lists using pattern matching, but 
the function he chooses is the equality function, whereas we are going 
to choose the sum function, just to keep things simpler. 

𝑠𝑢𝑚	 ∷ 	 [𝑰𝒏𝒕] → 𝑰𝒏𝒕
𝑠𝑢𝑚	[	] 	 = 	 0
𝑠𝑢𝑚 𝑥: 𝑥𝑠 	 = 	 𝑥 + (𝑠𝑢𝑚	𝑥𝑠)

val sum : List[Int] => Int = {
  case Nil     => 0
  case x :: xs => x + sum(xs)   
}

assert( sum( 1 :: (2 :: (3 :: Nil)) ) == 6)



sealed trait Nat
case class Succ(n: Nat) extends Nat
case object Zero extends Nat

sealed trait List[+A]
case class Cons[+A](head: A, tail: List[A]) extends List[A]
case object Nil extends List[Nothing]

val `(+)`: Nat => Nat => Nat =
  m => { case Zero    => m
         case Succ(n) => Succ(m + n) }

implicit class NatSyntax(m: Nat){
  def +(n: Nat) = `(+)`(m)(n)
}

val sum: List[Nat] => Nat = {
  case Nil         => Zero
  case Cons(x, xs) => x + sum(xs)
}

assert( sum( Cons(
               Succ(Zero), // 1
               Cons(
                 Succ(Succ(Zero)), // 2 
                 Cons(
                   Succ(Succ(Succ(Zero))), // 3
                   Nil))) )
        == Succ(Succ(Succ(Succ(Succ(Succ(Zero))))))) // 6

𝑠𝑢𝑚	 ∷ 	 𝑳𝒊𝒔𝒕	𝑵𝒂𝒕 → 𝑵𝒂𝒕
𝑠𝑢𝑚	𝑵𝒊𝒍	 = 	 𝒁𝒆𝒓𝒐
𝑠𝑢𝑚	𝑪𝒐𝒏𝒔	𝑥	𝑥𝑠 = 	 𝑥 + (𝑠𝑢𝑚	𝑥𝑠)

+ 	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 → 𝑵𝒂𝒕
𝑚 + 𝒁𝒆𝒓𝒐	 = 	 𝑚
𝑚 + 𝑺𝒖𝒄𝒄	𝑛	 = 	𝑺𝒖𝒄𝒄 𝑚 + 𝑛

𝐝𝐚𝐭𝐚	𝑵𝒂𝒕	 = 	𝒁𝒆𝒓𝒐	|	𝑺𝒖𝒄𝒄	𝑵𝒂𝒕

𝐝𝐚𝐭𝐚	𝐋𝐢𝐬𝐭	α	 = 𝐍𝐢𝐥	|	𝐂𝐨𝐧𝐬	α (𝐋𝐢𝐬𝐭 α)

Same as on the previous slide, but this time 
using Nat rather than Int, just for fun.



4.1.2 Induction over Lists

Recall from section 3.2 that, for the datatype 𝑵𝒂𝒕 of natural numbers, structural induction is based on three cases: every element 
of 𝑵𝒂𝒕 is either ⊥, or 𝒁𝒆𝒓𝒐, or else has the form 𝑺𝒖𝒄𝒄	𝑛 for some element 𝑛 of 𝑵𝒂𝒕. Similarly, structural induction on lists is also 
based on on three cases: every list is either the undefined list ⊥, the empty list [	], or else has the form 𝑥: 𝑥𝑠  for some 𝑥 and list 
𝑥𝑠. 
To show by induction that a proposition 𝑃(𝑥𝑠) holds for all lists 𝑥𝑠 it suffices therefore to establish three cases:

Case (⊥). That 𝑃(⊥) holds. 

Case ([	]). That 𝑃([	]) holds. 

Case 𝑥: 𝑥𝑠 . That if 𝑃(𝑥𝑠) holds, then 𝑃(𝑥: 𝑥𝑠) also holds for every 𝑥. 

If we prove only the second two cases, then we can conclude only that 𝑃(𝑥𝑠) holds for every finite list; if we prove only the first 
and third cases. Then we can conclude only that 𝑃(𝑥𝑠) holds for every partial list. If	𝑃 takes the form of an equation, as all of our 
laws do, then proving the first and third cases is sufficient to show that 𝑃(𝑥𝑠) holds for every infinite list. Partial lists and infinite 
lists are described in the following section. Examples of induction proofs are given throughout the remainder of the chapter. 

Richard Bird



Richard Bird provides other examples of recursive functions 
over lists. Let’s see some of them: list concatenation, 
flattening of lists of lists, list reversal and length of a list.

When looking at the first one, i.e. concatenation, let’s also 
see an example of proof by structural induction on lists.

@philip_schwarz



4.2.1 Concatenation
Two lists can be concatenated to form one longer list. This function is denoted by the binary operator	⧺	(pronounced 
‘concatenate’). As two simple examples, we have

? 1,2,3 	⧺ 4,5
1,2,3,4,5

? 1,2 	⧺ 	 ⧺ 	1
1,2,1

The formal definition of ⧺	is

(⧺) 	 ∷ 	 [α] → [α] → [α] 
	 ⧺	𝑦𝑠	 = 	 𝑦𝑠
𝑥: 𝑥𝑠 	⧺	𝑦𝑠	 = 	 𝑥 ∶ (𝑥𝑠	⧺	𝑦𝑠)

Concatenation takes two lists, both of the same type, and produces a third list, again of the same type. Hence the type assignment. 
The definition of ⧺ is by pattern matching on the left-hand argument; the two patterns are disjoint and cover all cases, apart from 
the undefined list ⊥. It follows by case exhaustion that	⊥ ⧺	𝑦𝑠 =	⊥.

However, it is not the case that	 𝑦𝑠	⧺ ⊥	=	⊥. For example,

? 1,2,3 	⧺	𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑
1,2,3{𝐼𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑒𝑑!}

The list 1,2,3 	⧺ ⊥ is a partial list; In full form it is the list 1: 2: 3: ⊥. The evaluator can compute the first three elements, but 
thereafter it goes into a nonterminating computation, so we interrupt it.

The second equation for ⧺ is very succinct and requires some thought. Once one has come to grips with the definition of ⧺, one Richard Bird



has understood a good deal about how lists work in functional programming. Note that the number of steps required to compute 
𝑥𝑠	⧺	𝑦𝑠	is proportional to the number of elements in 𝑥𝑠.

1, 2 	⧺ 3, 4, 5
=       { notation}
	 (1 ∶ 2 ∶ 	 ⧺	(3 ∶ (4 ∶ 5 ∶ [	] ))
=       { second equation for ⧺, i.e. 𝑥: 𝑥𝑠 	⧺	𝑦𝑠 = 𝑥 ∶ (𝑥𝑠	⧺	𝑦𝑠) }
	 1 ∶ ( 2 ∶ 	 ⧺	(3 ∶ (4 ∶ 5 ∶ [	] )))
=       { second equation for ⧺ }
        1 ∶ (2 ∶ ( 	 ⧺	(3 ∶ (4 ∶ 5 ∶ [	] ))))
=       { first equation for ⧺ i.e. , 	 ⧺	𝑦𝑠 = 𝑦𝑠	}
        1 ∶ (2 ∶ (3 ∶ (4 ∶ 5 ∶ [	] )))
 =       { notation}

1, 	2, 3, 	4, 	5 	

Concatenation is an associative operation with unit 	 :

	 𝑥𝑠	⧺	𝑦𝑠 	⧺	𝑧𝑠	 = 	 𝑥𝑠	⧺	(𝑦𝑠	⧺	𝑧𝑠)
	 𝑥𝑠	⧺ 	 = 	 	 ⧺	𝑥𝑠	 = 	 𝑥𝑠

Let us now prove by induction that ⧺	is associative.

Proof.	The	proof	is	by	induction	on	𝑥𝑠.
Case (⊥). For the left-hand side, we reason 

        ⊥ ⧺	(𝑦𝑠	⧺	𝑧𝑠)
=       { case exhaustion}
        ⊥ ⧺	𝑧𝑠
=       { case exhaustion}
 ⊥ Richard Bird



The right-hand side simplifies to ⊥ as well, establishing the case.

Case ([	]). For the left hand side, we reason 

	 [	]	⧺	(𝑦𝑠	⧺	𝑧𝑠)
=       { first equation for ⧺ i.e. , 	 ⧺	𝑦𝑠 = 𝑦𝑠	}
	 (𝑦𝑠	⧺	𝑧𝑠)

The right-hand side simplifies to(𝑦𝑠	⧺	𝑧𝑠) as well, establishing the case.

Case 𝑥 ∶ 𝑥𝑠 . For the left hand side, we reason 

	 ((x	 ∶ 𝑥𝑠)	⧺	𝑦𝑠)	⧺	𝑧𝑠
=       { second equation for ⧺, i.e. 𝑥: 𝑥𝑠 	⧺	𝑦𝑠 = 𝑥 ∶ (𝑥𝑠	⧺	𝑦𝑠) }
         (	𝑥 ∶ 𝑥𝑠	⧺	𝑦𝑠)  ⧺	𝑧𝑠
=       { second equation for ⧺ }
 𝑥 ∶ ( 𝑥𝑠	⧺	𝑦𝑠 ⧺	𝑧𝑠)
=       { induction hypothesis }
	 𝑥 ∶ (𝑥𝑠	⧺ 𝑦𝑠	⧺	𝑧𝑠)

For the right-hand side we reason 

	 (x ∶ 𝑥𝑠)	⧺	(𝑦𝑠	⧺	𝑧𝑠)
=       { second equation for ⧺, i.e. 𝑥 ∶ 𝑥𝑠 	⧺	𝑦𝑠 = 𝑥 ∶ (𝑥𝑠	⧺	𝑦𝑠) }
	 𝑥 ∶ (𝑥𝑠	⧺	(𝑦𝑠	⧺	𝑧𝑠))

The two sides are equal, establishing the case.
…Note that associativity is proved for all lists, finite, partial or infinite. Hence we can assert that ⧺	is associative without 
qualification…. Richard Bird



4.2.2 Concat

Concatenation performs much the same function for lists as the union operator ∪ does for sets. A companion function is concat, 
which concatenates a list of lists into one long list. This function, which roughly corresponds to the big-union operator	⋃ for sets 
of sets, is defined by

concat	 ∷ 	 [ α ] → [α]
concat 	 = 	 	
concat 𝑥𝑠: 𝑥𝑠𝑠 	 = 	 𝑥𝑠	⧺	𝑐𝑜𝑛𝑐𝑎𝑡	𝑥𝑠𝑠

For example, 

?concat	 [ 1, 2 , 	 , 3, 2,1 ]
1,2,3,2,1

4.2.3 Reverse

Another basic function on lists is reverse, the function that reverses the order of elements in a finite list. For example:

? reverse “Madam, I’m Adam.”
“.MadA m’I ,madaM”

The definition is

reverse	 ∷ 	 α → [α]
reverse 	 = 	 	
reverse 𝑥 ∶ 𝑥𝑠 	 = 	 𝑟𝑒𝑣𝑒𝑟𝑠𝑒	𝑥𝑠	⧺	[𝑥]

In words, to reverse a list 𝑥 ∶ 𝑥𝑠 , one reverses 𝑥𝑠, and then adds 𝑥	to the end. As a program, the above definition is not very Richard Bird



efficient: on  a list of length 𝑛, it will need a number of reduction steps proportional to 𝑛2	to deliver the reversed list. The first 
element will be appended to the end of a list of length 𝑛	 − 1 , which will take about 𝑛	 − 1 	steps, the second element will be 
appended to a list of length 𝑛	 − 2 , taking 𝑛	 − 2 	steps, and so on. The total time is therefore about 

	 𝑛	 − 1 + 𝑛	 − 2 +⋯1 = 𝑛(𝑛 − 1)/2  steps

A more precise analysis is given in chapter 7, and a more efficient program for reverse  is given in section 4.5.

4.2.2 Length

The length of a list is the number of elements it contains:

𝑙𝑒𝑛𝑔𝑡ℎ	 ∷ 	 [α] → 𝑰𝒏𝒕
𝑙𝑒𝑛𝑔𝑡ℎ	 [	] 	 = 	 0
𝑙𝑒𝑛𝑔𝑡ℎ 𝑥: 𝑥𝑠 	 = 	 1 + 𝑙𝑒𝑛𝑔𝑡ℎ	𝑥𝑠

The nature of the list element is irrelevant when computing the length of a list, whence the type assignment. For example,

? 𝑙𝑒𝑛𝑔𝑡ℎ	[𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑, 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑] 
2

However, not every list has a well-defined length. In particular, the partial lists  ⊥, 𝑥 ∶	⊥, 𝑥 ∶ 𝑦 ∶	⊥, and so on, have an undefined 
length. Only finite lists have well-defined lengths. The list ⊥, ⊥ 	is a finite list, not a partial list,  because it is the list	⊥	∶	⊥	∶ [	], 
which ends in [	], not ⊥. The computer cannot produce the elements, but it can produce the length of the list.
…

Richard Bird



4.3 Map and filter
Two useful functions on lists are map and £ilter. The function map applies a function to each element of a list. For example

? 𝑚ap	square	[9, 3]	  ? 𝑚ap	(<3)	[1, 2, 3]	  ? 𝑚ap	nextLetter	 “HAL” 
[81, 9]   [𝑇𝑟𝑢𝑒, 𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒]  “IBM”

The definition is

map	 ∷ 	 (α → 𝛽) → [α] → [𝛽] 
map	 f 	 = 	 	
map	 f 𝑥 ∶ 𝑥𝑠 	 = 	 𝑓	𝑥 ∶ map	𝑓	𝑥𝑠
…

4.3 filter
The second function, £ilter, takes a Boolean function 𝑝 and a list 𝑥𝑠 and returns that sublist of 𝑥𝑠 whose elements satisfy p. For 
example, 

? £ilter	even	[1,2,4,5,32]	 ? (sum	 � map	 square	 � £ilter	even)	[1. . 10]	
[2,4,32]   220

The last example asks for the sum of the squares of the even integers in the range 1..10.

The definition of filter is

£ilter	 ∷ 	 (α → 𝐵𝑜𝑜𝑙) → [α] → [α] 
£ilter  p 	 = 	 	
£ilter  p 𝑥 ∶ 𝑥𝑠 	 = 	 𝐢𝐟	𝑝	𝑥	𝐭𝐡𝐞𝐧	𝑥 ∶ £ilter	p	 𝑥𝑠	𝐞𝐥𝐬𝐞	£ilter	p	 𝑥𝑠

… Richard Bird



Now let’s look at fold functions over lists.



4.5 The fold functions 
We	have	 seen	 in	 the	 case	 of	 the	 datatype	𝑵𝒂𝒕	 that	many	 recursive	 definitions	 can	be	 expressed	 very	 succinctly	 using	 a	
suitable	𝑓𝑜𝑙𝑑	operator.	Exactly	the	same	is	true	of	lists.	Consider	the	following	definition	of	a	function	ℎ	:

								ℎ	[	] 	 = 	 𝑒
        ℎ 𝑥: 𝑥𝑠 	 = 	 𝑥 ⊕ ℎ	𝑥𝑠

The function ℎ works by taking a list, replacing [	]	 by 𝑒 and ∶  by	⊕, and evaluating the result. For example, ℎ converts the list

	 𝑥1 ∶ (𝑥2 ∶ 𝑥3 ∶ 𝑥4 ∶ 	 )

to the value

	 𝑥1⊕ (𝑥2⊕ (𝑥3⊕ 𝑥4⊕𝑒 ))

Since ∶ 	associates to the right, there is no need to put in parentheses in the first expression. However,  we do need to put in 
parentheses in the second expression because we do not assume that	⊕ associates to the right.

The pattern of definition given by ℎ is captured in a function 𝑓𝑜𝑙𝑑𝑟 (prounced ‘fold right’) defined as follows:

 𝑓𝑜𝑙𝑑𝑟	 ∷ 𝛼	 → 𝛽	 → 𝛽 → 𝛽 → 𝛼 → 𝛽	
 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒 	 = 𝑒
 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒 𝑥: 𝑥𝑠 	= 𝑓	𝑥 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒	𝑥𝑠

We can now write h = 𝑓𝑜𝑙𝑑𝑟 ⊕ 	𝑒. The first argument of 𝑓𝑜𝑙𝑑𝑟 is a binary operator that takes an 𝛼-value on its left and an a 𝛽–
value on its right, and delivers a 𝛽–value. The second argument of 𝑓𝑜𝑙𝑑𝑟 is a 𝛽-value. The third argument is of type 𝛼 , and the 
result is of type 𝛽. In many cases, 𝛼	and 𝛽	will be instantiated to the same type, for instance when	⊕ denotes an associative 
operation. Richard Bird



In the next slide we look at how some of the recursively 
defined functions on lists that we have recently seen can be 
redefined in terms of 𝑓𝑜𝑙𝑑𝑟.

To aid comprehension, I have added the original function 
definitions next to the new definitions in terms of 𝑓𝑜𝑙𝑑𝑟. For 
reference, I also added the definition of 𝑓𝑜𝑙𝑑𝑟. 



The single function foldr can be used to define almost every function on lists that we have met so far. Here are just some 
examples:

concat	 ∷ 	 [ α ] → [α]
concat	 = 	 𝑓𝑜𝑙𝑑𝑟	(⧺)	[	]

reverse	 ∷ 	 α → [α]
reverse	 = 	 𝑓𝑜𝑙𝑑𝑟	𝑠𝑛𝑜𝑐 	
																											𝒘𝒉𝒆𝒓𝒆	𝑠𝑛𝑜𝑐	𝑥	𝑥𝑠 = 𝑥𝑠	⧺	[𝑥]	

𝑙𝑒𝑛𝑔𝑡ℎ	 ∷ 	 [α] → 𝑰𝒏𝒕
𝑙𝑒𝑛𝑔𝑡ℎ	 = 	 𝑓𝑜𝑙𝑑𝑟	𝑜𝑛𝑒𝑝𝑙𝑢𝑠	0
																										 𝒘𝒉𝒆𝒓𝒆	𝑜𝑛𝑒𝑝𝑙𝑢𝑠	𝑥	𝑛 = 1 + 𝑛
…

𝑠𝑢𝑚	 ∷ 	 [𝑰𝒏𝒕] → 𝑰𝒏𝒕
𝑠𝑢𝑚	 = 	 𝑓𝑜𝑙𝑑𝑟 + 	0

map	 ∷ 	 (α → 𝛽) → [α] → [𝛽] 
map	𝑓        = 	 𝑓𝑜𝑙𝑑𝑟 𝑐𝑜𝑛𝑠 � 𝑓 	
	 𝒘𝒉𝒆𝒓𝒆	𝑐𝑜𝑛𝑠	𝑥	𝑥𝑠 = 𝑥 ∶ 	𝑥𝑠	
…

concat	 ∷ 	 [ α ] → [α]
concat 	 = 	 	
concat 𝑥𝑠: 𝑥𝑠𝑠 	 = 	 𝑥𝑠	⧺	𝑐𝑜𝑛𝑐𝑎𝑡	𝑥𝑠𝑠

reverse	 ∷ 	 α → [α]
reverse 	 = 	 	
reverse 𝑥 ∶ 𝑥𝑠 	 = 	 𝑟𝑒𝑣𝑒𝑟𝑠𝑒	𝑥𝑠	⧺	[𝑥]

𝑙𝑒𝑛𝑔𝑡ℎ	 ∷ 	 [α] → 𝑰𝒏𝒕
𝑙𝑒𝑛𝑔𝑡ℎ	[	] 	 = 	 0
𝑙𝑒𝑛𝑔𝑡ℎ 𝑥: 𝑥𝑠 	 = 	 1 + 𝑙𝑒𝑛𝑔𝑡ℎ	𝑥𝑠

𝑠𝑢𝑚	 ∷ 	 [𝑰𝒏𝒕] → 𝑰𝒏𝒕
𝑠𝑢𝑚	[	] 	 = 	 0
𝑠𝑢𝑚 𝑥: 𝑥𝑠 	 = 	 𝑥 + (𝑠𝑢𝑚	𝑥𝑠)

map	 ∷ 	 (α → 𝛽) → [α] → [𝛽] 
map	 f 	 = 	 	
map	 f 𝑥 ∶ 𝑥𝑠 	 = 	 𝑓	𝑥 ∶ map	𝑓	𝑥𝑠

𝑓𝑜𝑙𝑑𝑟	 ∷ 𝛼	 → 𝛽	 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒 	 = 𝑒
𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒 𝑥: 𝑥𝑠 	 = 𝑓	𝑥 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒	𝑥𝑠 Richard Bird



On the next slide, the same code translated into Scala
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def foldr[A,B](f: A => B => B)(e: B)(xs: List[A]): B = 
  xs match {
    case Nil   => e
    case x::xs => f(x)(foldr(f)(e)(xs))
  }

def concatenate[A]: List[A] => List[A] => List[A] = 
  xs => ys => xs match {
    case Nil => ys
    case x :: xs => x :: concatenate(xs)(ys) 
  }

def concat[A]: List[List[A]] => List[A] =
  foldr(concatenate[A])(Nil)

def reverse[A]: List[A] => List[A] = {
  def snoc[A]: A => List[A] => List[A] =
    x => xs => concatenate(xs)(List(x))
  foldr(snoc[A])(Nil)
}

def length[A]: List[A] => Int = {
  def oneplus[A]: A => Int => Int = x => n => 1 + n
  foldr(oneplus)(0)
}

val sum: List[Int] => Int = {
  val plus: Int => Int => Int = a => b => a + b
  foldr(plus)(0)
}

def map[A,B]: (A => B) => List[A] => List[B] = {
  def cons: B => List[B] => List[B] = x => xs => x :: xs
  f => foldr(cons compose f)(Nil)
}

𝑓𝑜𝑙𝑑𝑟	 ∷ 𝛼	 → 𝛽	 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒 	 = 𝑒
𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒 𝑥: 𝑥𝑠 	 = 𝑓	𝑥 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒	𝑥𝑠

(⧺) 	 ∷ 	 [α] → [α] → [α] 
	 ⧺	𝑦𝑠	 = 	 𝑦𝑠
𝑥: 𝑥𝑠 	⧺	𝑦𝑠	 = 	 𝑥 ∶ (𝑥𝑠	⧺	𝑦𝑠)

concat	 ∷ 	 [ α ] → [α]
concat	 = 	 𝑓𝑜𝑙𝑑𝑟	(⧺)	[	]

reverse	 ∷ 	 α → [α]
reverse	 = 	 𝑓𝑜𝑙𝑑𝑟	𝑠𝑛𝑜𝑐 	
																											𝒘𝒉𝒆𝒓𝒆	𝑠𝑛𝑜𝑐	𝑥	𝑥𝑠 = 𝑥𝑠	⧺	[𝑥]	

𝑙𝑒𝑛𝑔𝑡ℎ	 ∷ 	 [α] → 𝑰𝒏𝒕
𝑙𝑒𝑛𝑔𝑡ℎ	 = 	 𝑓𝑜𝑙𝑑𝑟	𝑜𝑛𝑒𝑝𝑙𝑢𝑠	0
																										 𝒘𝒉𝒆𝒓𝒆	𝑜𝑛𝑒𝑝𝑙𝑢𝑠	𝑥	𝑛 = 1 + 𝑛

𝑠𝑢𝑚	 ∷ 	 [𝑰𝒏𝒕] → 𝑰𝒏𝒕
𝑠𝑢𝑚	 = 	 𝑓𝑜𝑙𝑑𝑟 + 	0

map	 ∷ 	 (α → 𝛽) → [α] → [𝛽] 
map	𝑓        = 	 𝑓𝑜𝑙𝑑𝑟 𝑐𝑜𝑛𝑠 U 𝑓 	
	 𝒘𝒉𝒆𝒓𝒆	𝑐𝑜𝑛𝑠	𝑥	𝑥𝑠 = 𝑥 ∶ 	𝑥𝑠	



assert( concatenate(List(1,2,3))(List(4,5)) == List(1,2,3,4,5) )

assert( concat(List(List(1,2), List(3), List(4,5))) == List(1,2,3,4,5) )

assert( reverse(List(1,2,3,4,5)) == List(5,4,3,2,1) )

assert( length(List(0,1,2,3,4,5)) == 6 )

assert( sum(List(2,3,4)) == 9 )

val mult: Int => Int => Int = a => b => a * b
assert( map(mult(10))(List(1,2,3)) == List(10,20,30))

Here a some sample tests for the 
Scala functions on the previous slide.



It turns out that if it is possible to define a function on lists both using a recursive definition and 
using a definition in terms of 𝑓𝑜𝑙𝑑𝑟, then there is a technique that can be used to go from the 
recursive definition to the definition using 𝑓𝑜𝑙𝑑𝑟. 

I came across the technique in the following paper by the author of Programming in Haskell:

The tutorial (which I shall be referring to as TUEF),  shows how to apply the technique to the 
sum function and the map function, which is the subject of the next five slides. Note: in the 
paper, the 𝑓𝑜𝑙𝑑𝑟  function is referred to as 𝑓𝑜𝑙𝑑.

@philip_schwarz



3 The universal property of fold 

As with the fold operator itself, the universal property of 𝒇𝒐𝒍𝒅 also has its origins in recursion theory. The first systematic use of the 
universal property in functional programming was by Malcolm (1990a), in his generalisation of Bird and Meerten’s theory of lists (Bird, 
1989; Meertens, 1983) to arbitrary regular datatypes. For finite lists, the universal property of	𝒇𝒐𝒍𝒅 can be stated as the following 
equivalence between two definitions for a function 𝑔  that processes lists: 

𝑔	 	 = 	𝑣	 	  ⟺	 	 𝑔	 = 	𝑓𝑜𝑙𝑑	𝑓	𝑣	
𝑔 𝑥 ∶ 𝑥𝑠 	= 𝑓	𝑥 𝑔	𝑥𝑠

In the right-to-left direction, substituting 𝑔	 = 	𝑓𝑜𝑙𝑑	𝑓	𝑣 into the two equations for 𝑔	gives the recursive definition for 𝑓𝑜𝑙𝑑. Conversely, 
in the left-to-right direction the two equations for g are precisely the assumptions required to show that 𝑔	 = 	𝑓𝑜𝑙𝑑	𝑓	𝑣	 using a simple 
proof by induction on finite lists (Bird, 1998). Taken as a whole, the universal property states that for finite lists the function 𝑓𝑜𝑙𝑑	𝑓	𝑣	is 
not just a solution to its defining equations, but in fact the unique solution…. The universal property of 𝒇𝒐𝒍𝒅 can be generalised to 
handle partial and infinite lists (Bird, 1998), but for simplicity we only consider finite lists in this article.

Graham Hutton
   @haskellhutt



3.3 Universality as a definition principle 

As well as being used as a proof principle, the universal property of	𝒇𝒐𝒍𝒅	can also be used as a definition principle that guides the 
transformation of recursive functions into definitions using 𝑓𝑜𝑙𝑑. As a simple first example, consider the recursively defined function 
𝑠𝑢𝑚 that calculates the sum of a list of numbers: 

	 	 	 	 𝑠𝑢𝑚	 ∷ 𝐼𝑛𝑡 → 𝐼𝑛𝑡
	 	 	 	 𝑠𝑢𝑚	 	 = 0	
	 	 	 	 𝑠𝑢𝑚 𝑥 ∶ 𝑥𝑠 	= 𝑥 + 𝑠𝑢𝑚	𝑥𝑠

Suppose now that we want to redefine 𝑠𝑢𝑚 using 𝑓𝑜𝑙𝑑. That is, we want to solve the equation 𝑠𝑢𝑚	 = 	𝑓𝑜𝑙𝑑	𝑓	𝑣	 for a function f and a 
value 𝑣. We begin by observing that the equation matches the right-hand side of the universal property, from which we conclude that 
the equation is equivalent to the following two equations:

𝑠𝑢𝑚	 	 = 𝑣
𝑠𝑢𝑚 𝑥 ∶ 𝑥𝑠 = 𝑓	𝑥	(𝑠𝑢𝑚	𝑥𝑠)

From the first equation and the definition of 𝑠𝑢𝑚, it is immediate that 𝑣 = 0.

𝑔	 	 = 	𝑣	 									⟺	 𝑔	 = 	𝑓𝑜𝑙𝑑	𝑓	𝑣	
𝑔 𝑥 ∶ 𝑥𝑠 	= 𝑓	𝑥 𝑔	𝑥𝑠

Graham Hutton
   @haskellhutt
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From the second equation, we calculate a definition for 𝑓 as follows: 

                    𝑠𝑢𝑚 𝑥 ∶ 𝑥𝑠 	= 𝑓	𝑥	(𝑠𝑢𝑚	𝑥𝑠)
⇔	 								{	Definition	of	𝑠𝑢𝑚	}	

	  𝑥 + 𝑠𝑢𝑚	𝑥𝑠	 = 𝑓	𝑥	(𝑠𝑢𝑚	𝑥𝑠)
⇐	 								{	†	Generalising	(𝑠𝑢𝑚	𝑥𝑠)	to	𝑦	}	
	  𝑥 + 𝑦 = 𝑓	𝑥	𝑦
⇔	 								{	Functions	}	
	  𝑓 = (+)

That is, using the universal property we have calculated that: 

  𝑠𝑢𝑚 = 𝑓𝑜𝑙𝑑 + 	0

Note that the key step (†) above in calculating a definition for 𝑓 is the generalisation of the expression 𝑠𝑢𝑚	𝑥𝑠 to a fresh variable 𝑦. In fact, 
such a generalisation step is not specific to the 𝑠𝑢𝑚 function, but will be a key step in the transformation of any recursive function into a 
definition using 𝑓𝑜𝑙𝑑 in this manner.

𝑠𝑢𝑚	 ∷ 𝐼𝑛𝑡 → 𝐼𝑛𝑡
𝑠𝑢𝑚	 	 = 0	
𝑠𝑢𝑚 𝑥 ∶ 𝑥𝑠 	= 𝑥 + 𝑠𝑢𝑚	𝑥𝑠

𝑠𝑢𝑚	 	 = 𝑣
𝑠𝑢𝑚 𝑥 ∶ 𝑥𝑠 	= 𝑓	𝑥	(𝑠𝑢𝑚	𝑥𝑠)

Graham Hutton
   @haskellhutt



Of course, the 𝑠𝑢𝑚 example above is rather artificial, because the definition of 𝑠𝑢𝑚 using 𝑓𝑜𝑙𝑑 is immediate. However, there are many 
examples of functions whose definition using 𝑓𝑜𝑙𝑑 is not so immediate. For example, consider the recursively defined function 𝑚𝑎𝑝 𝑓 that 
applies a function 𝑓 to each element of a list:

𝑚𝑎𝑝	 ∷ 𝛼	 → 𝛽 → 𝛼 → 𝛽
𝑚𝑎𝑝	𝑓	 	 = 	
𝑚𝑎𝑝	𝑓 𝑥 ∶ 𝑥𝑠 	= 	𝑓	𝑥 ∶ 𝑚𝑎𝑝	𝑓	𝑥𝑠

To redefine 𝑚𝑎𝑝	𝑓 using 𝑓𝑜𝑙𝑑 we must solve the equation 𝑚𝑎𝑝	𝑓 = 𝑓𝑜𝑙𝑑	𝑣	𝑔	 for a function 𝑔 and a value 𝑣. By appealing to the 
universal property, we conclude that this equation is equivalent to the following two equations:

𝑚𝑎𝑝	𝑓	 	 = 	𝑣
𝑚𝑎𝑝	𝑓 𝑥 ∶ 𝑥𝑠 	= 	𝑔	𝑥	(𝑚𝑎𝑝	𝑓	𝑥𝑠)

From the first equation and the definition of 𝑚𝑎𝑝 it is immediate that 𝑣 = [	].

Graham Hutton
   @haskellhutt

𝑔	 	 = 	𝑣	 									⟺	 𝑔	 = 	𝑓𝑜𝑙𝑑	𝑓	𝑣	
𝑔 𝑥 ∶ 𝑥𝑠 	= 𝑓	𝑥 𝑔	𝑥𝑠

substitute 𝑚𝑎𝑝	𝑓	for 𝑔 and 𝑔	for 𝑓

universal property of	𝒇𝒐𝒍𝒅



From the second equation, we calculate a definition for 𝑔 as follows:

        𝑚𝑎𝑝	𝑓 𝑥 ∶ 𝑥𝑠 	= 	𝑔	𝑥	(𝑚𝑎𝑝	𝑓	𝑥𝑠)
	 ⇔												{	Definition	of	𝑚𝑎𝑝	}
 	 𝑓	𝑥 ∶ 𝑚𝑎𝑝	𝑓	𝑥𝑠 = 	𝑔	𝑥	(𝑚𝑎𝑝	𝑓	𝑥𝑠)
	 ⟸											{	Generalising	 (𝑚𝑎𝑝	𝑓	𝑥𝑠)	 to	𝑦𝑠	}
 	 𝑓	𝑥 ∶ 𝑦𝑠 = 	𝑔	𝑥	𝑦𝑠
	 ⇔												{	Functions	}
 	 𝑔 = 𝜆𝑥	𝑦𝑠 → 𝑓	𝑥 ∶ 𝑦𝑠

That is, using the universal property we have calculated that

𝑚𝑎𝑝	𝑓 = 𝑓𝑜𝑙𝑑 𝜆𝑥	𝑦𝑠	 → 𝑓	𝑥 ∶ 𝑦𝑠 	[	]

In general, any function on lists that can be expressed using the 𝑓𝑜𝑙𝑑 operator can be transformed into such a definition using the 
universal property of 𝑓𝑜𝑙𝑑.

Graham Hutton
   @haskellhutt

𝑚𝑎𝑝	 ∷ 𝛼	 → 𝛽 → 𝛼 → 𝛽
𝑚𝑎𝑝	𝑓	 	 = 	𝑣
𝑚𝑎𝑝	𝑓 𝑥 ∶ 𝑥𝑠 	= 	𝑔	𝑥	(𝑚𝑎𝑝	𝑓	𝑥𝑠)



There are several other interesting things in TUEF that we’ll be looking at. 

I like its description of 𝑓𝑜𝑙𝑑𝑟 (see right), because it reiterates a key point (see left) made by Richard Bird about recursive functions on lists.

Consider	the	following	definition	of	a	function	ℎ	:

								ℎ	[	] 	 = 	 𝑒
        ℎ 𝑥: 𝑥𝑠 	 = 	 𝑥 ⊕ ℎ	𝑥𝑠

The function ℎ works by taking a list, replacing [	]	 by 𝑒 and ∶  by	⊕, and evaluating 
the result. For example, ℎ converts the list

	 𝑥1 ∶ (𝑥2 ∶ 𝑥3 ∶ 𝑥4 ∶ 	 )

to the value

	 𝑥1⊕ (𝑥2⊕ (𝑥3⊕ 𝑥4⊕ 𝑒 ))

Since ∶ 	associates to the right, there is no need to put in parentheses in the first 
expression. However,  we do need to put in parentheses in the second expression 
because we do not assume that	⊕ associates to the right.

The pattern of definition given by ℎ is captured in a function 𝑓𝑜𝑙𝑑𝑟 (pronounced ‘fold 
right’) defined as follows:

 𝑓𝑜𝑙𝑑𝑟	 ∷ 𝛼	 → 𝛽	 → 𝛽 → 𝛽 → 𝛼 → 𝛽	
 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒 	 = 𝑒
 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒 𝑥: 𝑥𝑠 	= 𝑓	𝑥 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒	𝑥𝑠

2 The fold operator 

The fold operator has its origins in recursion theory (Kleene, 1952), while the use of fold as 
a central concept in a programming language dates back to the reduction operator of APL 
(Iverson, 1962), and later to the insertion operator of FP (Backus, 1978). In Haskell, the fold 
operator for lists can be defined as follows: 

𝑓𝑜𝑙𝑑                        :: 𝛼	 → 𝛽 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑓𝑜𝑙𝑑	𝑓	𝑣 	 = 𝑣
𝑓𝑜𝑙𝑑	𝑓	𝑣 𝑥 ∶ 𝑥𝑠 	= 𝑓	𝑥 𝑓𝑜𝑙𝑑	𝑓	𝑣	𝑥𝑠

That is, given a function f of type 𝛼	 → 𝛽 → 𝛽 and a value 𝑣 of type 𝛽, the function 
𝑓𝑜𝑙𝑑	𝑓	𝑣 processes a list of type 𝛼 to give a value of type 𝛽 by replacing the nil 
constructor 	 at the end of the list by the value 𝑣, and each cons constructor ∶  within 
the list by the function 𝑓. In this manner, the 𝑓𝑜𝑙𝑑 operator encapsulates a simple pattern 
of recursion for processing lists, in which the two constructors for lists are simply 
replaced by other values and functions.



(⧺) 	 ∷ 	 [α] → [α] → [α] 
	 ⧺	𝑦𝑠	 = 	 𝑦𝑠
𝑥: 𝑥𝑠 	⧺	𝑦𝑠	 = 	 𝑥 ∶ (𝑥𝑠	⧺	𝑦𝑠)

Concatenation takes two lists, both of 
the same type, and produces a third 
list, again of the same type.

Remember the list concatenation function we saw earlier? 

In TUEF we find a definition of concatenation in terms of 𝑓𝑜𝑙𝑑𝑟 (which it calls 𝑓𝑜𝑙𝑑)

(⧺) 	 ∷ 	 [α] → [α] → [α] 
⧺	𝑦𝑠 	= 	 𝑓𝑜𝑙𝑑 ∶ 	𝑦𝑠

assert( concatenate(List(1,2,3))(List(4,5)) == List(1,2,3,4,5) )

def concatenate[A]: List[A] => List[A] => List[A] = 
  xs => ys => xs match {
    case Nil => ys
    case x :: xs => x :: concatenate(xs)(ys) 
  }

def concatenate[A]: List[A] => List[A] => List[A] = {
  def cons: A => List[A] => List[A] =
    x => xs => x :: xs
  xs => ys => foldr(cons)(ys)(xs)
}



Remember the £ilter  function we saw earlier? 

In TUEF we find a definition of £ilter  in terms of 𝑓𝑜𝑙𝑑𝑟	(which as we saw, it calls 𝑓𝑜𝑙𝑑)

£ilter	 ∷ 	 (α → 𝐵𝑜𝑜𝑙) → [α] → [α] 
£ilter  p 	 = 	 	
£ilter  p 𝑥 ∶ 𝑥𝑠 	 = 	 𝐢𝐟	𝑝	𝑥	𝐭𝐡𝐞𝐧	𝑥 ∶ £ilter	p	 𝑥𝑠	𝐞𝐥𝐬𝐞	£ilter	p	 𝑥𝑠

£ilter	 ∷ 	 (α → 𝐵𝑜𝑜𝑙) → [α] → [α] 
£ilter  p    = 	 𝑓𝑜𝑙𝑑	(𝜆𝑥	𝑥𝑠	 → 	𝐢𝐟	𝑝	𝑥	𝐭𝐡𝐞𝐧	𝑥 ∶ 𝑥𝑠	𝐞𝐥𝐬𝐞	𝑥𝑠)	 [	]

def filter[A]: (A => Boolean) => List[A] => List[A] = p => {
  case Nil     => Nil
  case x :: xs => if (p(x)) x :: filter(p)(xs) else filter(p)(xs)
}

def filter[A]: (A => Boolean) => List[A] => List[A] = p => 
  foldr((x:A) => (xs:List[A]) => if (p(x)) (x::xs) else xs)(Nil)

val gt: Int => Int => Boolean = x => y => y > x
assert(filter(gt(5))(List(10,2,8,5,3,6)) == List(10,8,6))



Not every function on lists can be defined as an instance of 𝑓𝑜𝑙𝑑𝑟. For example, zip cannot be so defined. Even for those that 
can, an alternative definition may be more efficient. To illustrate, suppose we want a function decimal that takes a list of digits 
and returns the corresponding decimal number; thus  
 
 𝑑𝑒𝑐𝑖𝑚𝑎𝑙	[𝑥0, 𝑥1, … , 𝑥n] = ∑&'() 𝑥𝑘10()+&)

It is assumed that the most significant digit comes first in the list. One way to compute decimal efficiently is by a process of 
multiplying each digit by ten and adding in the following digit. For example

 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑥0, 𝑥1, 𝑥2 = 10	× 10	× 10	×	0 + 𝑥0 + 𝑥1 + 𝑥2

This decomposition of a sum of powers is known as Horner’s rule.

Suppose we define ⊕	by 𝑛 ⊕ 𝑥 = 10	×	𝑛 + 𝑥. Then we can rephrase the above equation as

 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑥0, 𝑥1, 𝑥2 = (0⊕ 𝑥0) ⊕ 𝑥1 ⊕𝑥2

This is almost like an instance of 𝑓𝑜𝑙𝑑𝑟, except that the grouping is the other way round, and the starting value appears on the 
left, not on the right. In fact the computation is dual: instead of processing from right to left, the computation processes from 
left to right.

This example motivates the introduction of a second fold operator called 𝑓𝑜𝑙𝑑𝑙 (pronounced ‘fold left’). Informally:

 𝑓𝑜𝑙𝑑𝑙 ⊕ 	𝑒 𝑥0, 𝑥1, … , 𝑥𝑛 − 1 = …((𝑒 ⊕ 𝑥0) ⊕ 𝑥1)… ⊕ 𝑥𝑛 − 1

The parentheses group from the left, which is the reason for the name. The full definition of	𝑓𝑜𝑙𝑑𝑙 is 

	 𝑓𝑜𝑙𝑑𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → 𝛽	
	 𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 	 = 𝑒
	 𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 𝑥: 𝑥𝑠 = 𝑓𝑜𝑙𝑑𝑙	𝑓 𝑓	𝑒	𝑥 	𝑥𝑠	 Richard Bird



For example

	 𝑓𝑜𝑙𝑑𝑙	 ⊕ 	 𝑒	 𝑥0, 𝑥1, 𝑥2
    = 	 𝑓𝑜𝑙𝑑𝑙	 ⊕ 	 𝑒 ⊕ 𝑥0 	 𝑥1, 𝑥2
    = 	 𝑓𝑜𝑙𝑑𝑙	 ⊕ 	 𝑒 ⊕ 𝑥0 ⊕𝑥1 	 𝑥2
    = 	 𝑓𝑜𝑙𝑑𝑙	 ⊕ 	 (( 𝑒 ⊕ 𝑥0 ⊕𝑥1) ⊕ 𝑥2)	 [	]
	 = 	 ((𝑒 ⊕ 𝑥0) ⊕ 𝑥1) ⊕ 𝑥2

If ⊕	is associative with unit 𝑒, then 𝑓𝑜𝑙𝑑𝑟 ⊕ 	 𝑒	 and 𝑓𝑜𝑙𝑑𝑙 ⊕ 	 𝑒	 define the same function on finite lists, as we will see in 
the following section. 

As another example of the use of 𝑓𝑜𝑙𝑑𝑙, consider the following definition:

reverse′	 ∷ 	 α → [α]
reverse′	 = 	 𝑓𝑜𝑙𝑑𝑙	𝑐𝑜𝑛𝑠 	
																											𝒘𝒉𝒆𝒓𝒆	𝑐𝑜𝑛𝑠	𝑥𝑠	𝑥 = 𝑥	 :	 𝑥𝑠	

Note the order of the arguments to cons; we have 𝑐𝑜𝑛𝑠 = 𝑓𝑙𝑖𝑝	(∶), where the standard function	𝑓𝑙𝑖𝑝 is defined by	𝑓𝑙𝑖𝑝𝑓	𝑥	𝑦 =
𝑓	𝑦	𝑥. The function reverse′	, reverses a finite list. For example:

	 reverse′	 𝑥0, 𝑥1, 𝑥2
= 	 𝑐𝑜𝑛𝑠(𝑐𝑜𝑛𝑠(𝑐𝑜𝑛𝑠	[	]	𝑥0)	𝑥1)	𝑥2
= 	 𝑐𝑜𝑛𝑠(𝑐𝑜𝑛𝑠 𝑥1 	𝑥0)	𝑥2
= 	 𝑐𝑜𝑛𝑠 𝑥1, 𝑥0 	𝑥2
= 𝑥2, 𝑥1, 𝑥0

One can prove that reverse′	 = 	reverse	 by induction, or as an instance of a more general result in the following section. Of 
greater importance than the mere fact that reverse can be defined in a different way, is that reverse′	 gives a much more 
efficient program: reverse′	 takes time proportional to 𝑛 on a list of length 𝑛, while reverse	 takes time proportional to 𝑛2.

reverse	 ∷ 	 α → [α]
reverse	 = 	 𝑓𝑜𝑙𝑑𝑟	𝑠𝑛𝑜𝑐 	
																											𝒘𝒉𝒆𝒓𝒆	𝑠𝑛𝑜𝑐	𝑥	𝑥𝑠 = 𝑥𝑠	⧺	[𝑥]	

Richard Bird



def reverse'[A]: List[A] => List[A] = {
  def cons: List[A] => A => List[A] = 
    xs => x => x :: xs
  foldl(cons)(Nil)
}

assert( reverse'(List(1,2,3,4,5)) == List(5,4,3,2,1) )

def reverse[A]: List[A] => List[A] = {
  def snoc[A]: A => List[A] => List[A] = 
    x => xs => concatenate(xs)(List(x))
  foldr(snoc[A])(Nil)
}

def concatenate[A]: List[A] => List[A] => List[A] = {
  def cons: A => List[A] => List[A] = 
    x => xs => x :: xs
  xs => ys => foldr(cons)(ys)(xs)
}

assert( reverse(List(1,2,3,4,5)) == List(5,4,3,2,1) )

(⧺) 	 ∷ 	 [α] → [α]	→	[α]	
⧺	𝑦𝑠 	= 	 𝑓𝑜𝑙𝑑 ∶ 	𝑦𝑠

reverse′	 ∷ 	 α → [α]
reverse′	 = 	 𝑓𝑜𝑙𝑑𝑙	𝑐𝑜𝑛𝑠 	
																											𝒘𝒉𝒆𝒓𝒆	𝑐𝑜𝑛𝑠	𝑥𝑠	𝑥 = 𝑥	 :	 𝑥𝑠	

reverse	 ∷ 	 α → [α]
reverse	 = 	 𝑓𝑜𝑙𝑑𝑟	𝑠𝑛𝑜𝑐 	
																											𝒘𝒉𝒆𝒓𝒆	𝑠𝑛𝑜𝑐	𝑥	𝑥𝑠 = 𝑥𝑠	⧺	[𝑥]	

Here we can see the Scala version of  
reverse’, and how it compares with  reverse

@philip_schwarz



That’s it for part 1. I hope you enjoyed that.

There is still a lot to cover of course, so I’ll see you in part 2.


