
See aggregation functions defined inductively and implemented using recursion

Learn how in many cases, tail-recursion and the accumulator trick can be used to avoid stackoverflow errors

Watch as general aggregation is implemented and see duality theorems capturing the relationship between left folds and right folds

Part 2 - through the work of

Folding Unfolded
Polyglot FP for Fun and Profit

Haskell and Scala

@philip_schwarzslides by https://www.slideshare.net/pjschwarz

Sergei Winitzki
sergei-winitzki-11a6431

Richard Bird
http://www.cs.ox.ac.uk/people/richard.bird/

https://www.slideshare.net/pjschwarz/natural-transformations
http://www.cs.ox.ac.uk/people/richard.bird/

While Part 1 was centred on Richard Bird’s Introduction to Functional Programming using Haskell,
Part 2 is centred on Sergei Winitzki’s The Science of Functional Programming.

I hope Sergei will also forgive me for relying so heavily on his work, but I do not currently know of a
better, a more comprehensive, or a more thorough introduction to folding.

Sergei Winitzki
sergei-winitzki-11a6431

Sergei Winitzki
sergei-winitzki-11a6431

From the Preface:

This book is at once a reference text and a tutorial that teaches functional programmers how
to reason mathematically about types and code, in a manner directly relevant to software
practice.
…
The presentation is self-contained, defining and explaining all required ideas, notations, and
Scala language features from scratch. The aim is to make all mathematical notions and
derivations understandable.
…
The vision of this book is to explain the mathematical principles that guide the practice of
functional programming — i.e. principles that help us write code. So, all mathematical
developments in this book aremotivated and justified by practical programming issues and
are accompanied by Scala code that illustrates their usage.
…
Each concept or technique is motivated and explained to make it as simple as possible (“but
not simpler”) and also clarified via solved examples and exercises, which the readers will be
able to solve after reading the chapter.
…
A software engineer needs to know only a few fragments of mathematical theory; namely,
the fragments that answer questions arising in the practice of functional programming. So
this book keeps theoretical material at the minimum; ars longa, vita brevis.
…
Mathematical generalizations are not pursued beyond proven practical relevance or
immediate pedagogical usefulness.

https://github.com/winitzki/sofp

From the back cover:

This book is a pedagogically developed series of in-depth tutorials on functional programming.

The tutorials cover both the theory and the practice of functional programming, with the goal of building theoretical foundations that are valuable for practitioners.

Long and difficult, yet boring explanations are given in excruciating detail. Solved examples and step-by-step derivations are followed by exercises for self-study.

https://github.com/winitzki/sofp

Sergei Winitzki

A software engineer needs to know
only a few fragments of mathematical
theory; namely, the fragments that
answer questions arising in the practice
of functional programming. So this
book keeps theoretical material at the
minimum; ars longa, vita brevis.

2.2 Converting a sequence into a single value

Until this point, we have been working with sequences using methods such as .map and .zip. These techniques are powerful but still
insufficient for solving certain problems.

A simple computation that is impossible to do using .map is obtaining the sum of a sequence of numbers. The standard library method .sum
already does this; but we cannot re-implement .sum ourselves by using .map, .zip, or .filter. These operations always compute new
sequences, while we need to compute a single value (the sum of all elements) from a sequence.

We have seen a few library methods such as .count, .length, and .max that compute a single value from a sequence; but we still cannot
implement .sum using these methods. What we need is a more general way of converting a sequence to a single value, such that we could
ourselves implement .sum, .count, .max, and other similar computations.

Another task not solvable with .map, .sum, etc., is to compute a floating-point number from a given sequence of decimal digits (including
a “dot” character):

 def digitsToDouble(ds: Seq[Char]): Double = ???
 scala> digitsToDouble(Seq(’2’, ’0’, ’4’, ’.’, ’5’))
 res0: Double = 204.5

Why is it impossible to implement this function using .map, .sum, and other methods we have seen so far? In fact, the same task for
integer numbers (instead of floating-point numbers) can be implemented via .length, .map, .sum, and .zip:

 def digitsToInt(ds: Seq[Int]): Int = {
 val n = ds.length
 // Compute a sequence of powers of 10, e.g. [1000, 100, 10, 1].
 val powers: Seq[Int] = (0 to n - 1).map(k => math.pow(10, n - 1 - k).toInt)
 // Sum the powers of 10 with coefficients from ‘ds‘.
 (ds zip powers).map { case (d, p) => d * p }.sum
 }
 scala> digitsToInt(Seq(2,4,0,5))
 res0: Int = 2405

Sergei Winitzki
sergei-winitzki-11a6431

Yes, well spotted: we have already seen the
problem that is solved by digitsToInt in Part 1.

suppose we want a function 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 that takes a list of digits and returns
the corresponding decimal number; thus

 𝑑𝑒𝑐𝑖𝑚𝑎𝑙	[𝑥0, 𝑥1, … , 𝑥n] = ∑!"#$ 𝑥𝑘10($&!)

It is assumed that the most significant digit comes first in the list.

This task is doable because the required computation can be written as the formula

𝑟 = 3
!"#

$&(

𝑑𝑘 ∗ 10$&(&! .

The sequence of powers of 10 can be computed separately and “zipped” with the sequence of digits 𝑑𝑘 . However, for floating-
point numbers, the sequence of powers of 10 depends on the position of the “dot” character. Methods such as .map or .zip
cannot compute a sequence whose next elements depend on previous elements, and the dependence is described by some
custom function.

2.2.1 Inductive definitions of aggregation functions

Mathematical induction is a general way of expressing the dependence of next values on previously computed values. To define a
function from a sequence to a single value (e.g. an aggregation function f:Seq[Int] => Int) via mathematical induction, we
need to specify two computations:
• (The base case of the induction.) We need to specify what value the function f returns for an empty sequence, Seq(). The

standard method isEmpty can be used to detect empty sequences. In case the function f is only defined for non-empty
sequences, we need to specify what the function f returns for a one-element sequence such as Seq(x), with any x.

• (The inductive step.) Assuming that the function f is already computed for some sequence xs (the inductive assumption), how
to compute the function f for a sequence with one more element x? The sequence with one more element is written as xs
:+ x. So, we need to specify how to compute f(xs :+ x) assuming that f(xs) is already known.

Once these two computations are specified, the function f is defined (and can in principle be computed) for an arbitrary input
sequence. This is how induction works in mathematics, and it works in the same way in functional programming. With this
approach, the inductive definition of the method .sum looks like this:

• The sum of an empty sequence is 0. That is, Seq().sum == 0.
• If the result is already known for a sequence xs, and we have a sequence that has one more element x, the new result is equal

to xs.sum + x. In code, this is (xs :+ x).sum == xs.sum + x.
Sergei Winitzki

sergei-winitzki-11a6431

The inductive definition of the function digitsToInt is:

• For an empty sequence of digits, Seq(), the result is 0. This is a convenient base case, even if we never call digitsToInt on
an empty sequence.

• If digitsToInt(xs) is already known for a sequence xs of digits, and we have a sequence xs :+ x with one more digit x,
then

 digitsToInt(xs :+ x) = digitsToInt(xs) * 10 + x

Let us write inductive definitions for methods such as .length, .max, and .count:

• The length of a sequence:
 – for an empty sequence, Seq().length == 0
 – if xs.length is known then (xs :+ x).length == xs.length + 1

• Maximum element of a sequence (undefined for empty sequences):
 – for a one-element sequence, Seq(x).max == x
 – if xs.max is known then (xs :+ x).max == math.max(xs.max, x)

• Count the sequence elements satisfying a predicate p:
 – for an empty sequence, Seq().count(p) == 0
 – if xs.count(p) is known then (xs :+ x).count(p) == xs.count(p) + c, where we set c = 1
 when p(x) == true and c = 0 otherwise

There are two main ways of translating mathematical induction into code. The first way is to write a recursive function. The
second way is to use a standard library function, such as foldLeft or reduce.

Most often it is better to use the standard library functions, but sometimes the code is more transparent when using explicit
recursion. So let us consider each of these ways in turn. Sergei Winitzki

sergei-winitzki-11a6431

2.2.2 Implementing functions by recursion

A recursive function is any function that calls itself somewhere within its own body. The call to itself is the recursive call.

When the body of a recursive function is evaluated, it may repeatedly call itself with different arguments until the result value can
be computed without any recursive calls. The last recursive call corresponds to the base case of the induction. It is an error if the
base case is never reached, as in this example:

 scala> def infiniteLoop(x: Int): Int = infiniteLoop(x+1)
 infiniteLoop : (x: Int)Int
 scala> infiniteLoop(2) // You will need to press Ctrl-C to stop this.

We translate mathematical induction into code by first writing a condition to decide whether we have the base case or the
inductive step. As an example, let us define .sum by recursion. The base case returns 0, and the inductive step returns a value
computed from the recursive call:

 def sum(s: Seq[Int]): Int = if (s.isEmpty) 0 else {
 val x = s.head // To split s = x +: xs, compute x
 val xs = s.tail // and xs.
 sum(xs) + x // Call sum(...) recursively.
 }

In this example, the if/else expression will separate the base case from the inductive step. In the inductive step, it is
convenient to split the given sequence s into its first element x, or the head of s, and the remainder tail sequence xs. So, we
split s as s = x +: xs rather than as s = xs :+ x (footnote: It is easier to remember the meaning of x +: xs and xs :+
x if we note that the colon always points to the collection).

For computing the sum of a numerical sequence, the order of summation does not matter. However, the order of operations will
matter for many other computational tasks. We need to choose whether the inductive step should split the sequence as s = x
+: xs or as s = xs :+ x, according to the task at hand.

Sergei Winitzki
sergei-winitzki-11a6431

Consider the implementation of digitsToInt according to the inductive definition shown in the previous subsection:

def digitsToInt(s: Seq[Int]): Int = if (s.isEmpty) 0 else {
 val x = s.last // To split s = xs :+ x, compute x
 val xs = s.take(s.length - 1) // and xs.
 digitsToInt(xs) * 10 + x // Call digitstoInt(...) recursively.
}

In this example, it is important to split the sequence into s = xs :+ x in this order, and not in the order x +: xs. The
reason is that digits increase their numerical value from right to left, so we need to multiply the value of the left subsequence,
digitsToInt(xs), by 10, in order to compute the correct result.

These examples show how mathematical induction is converted into recursive code. This approach often works but has two
technical problems. The first problem is that the code will fail due to a “stack overflow” when the input sequence s is long
enough. In the next subsection, we will see how this problem is solved (at least in some cases) using “tail recursion”.

The second problem is that each inductively defined function repeats the code for checking the base case and the code for
splitting the sequence s into the subsequence xs and the extra element x. This repeated common code can be put into a library
function, and the Scala library provides such functions. We will look at using them in Section 2.2.4.

The inductive definition of the function digitsToInt is:

• For an empty sequence of digits, Seq(), the result is 0. This is a convenient base case, even if we never call digitsToInt
on an empty sequence.

• If digitsToInt(xs) is already known for a sequence xs of digits, and we have a sequence xs :+ x with one more digit
x, then

 digitsToInt(xs :+ x) = digitsToInt(xs) * 10 + x

Sergei Winitzki
sergei-winitzki-11a6431

def digitsToInt(s: Seq[Int]): Int = if (s.isEmpty) 0 else {
 val x = s.last // To split s = xs :+ x, compute x
 val xs = s.take(s.length - 1) // and xs.
 digitsToInt(xs) * 10 + x // Call digitstoInt(...) recursively.
}

def sum(s: Seq[Int]): Int = if (s.isEmpty) 0 else {
 val x = s.head // To split s = x +: xs, compute x
 val xs = s.tail // and xs.
 sum(xs) + x // Call sum(...) recursively.
 }

For computing the sum of a numerical sequence, the order of summation
does not matter. However, the order of operations will matter for many
other computational tasks.

We need to choose whether the inductive step should split the sequence as

 s = x +: xs

or as

 s = xs :+ x,

according to the task at hand.

This slide, which repeats the definitions of sum and digitsToInt, is just here
to reinforce the idea that in many tasks, the order of operations matters.

Sergei Winitzki

def digitsToInt(s: Seq[Int]): Int = if (s.isEmpty) 0 else {
 val x = s.last // To split s = xs :+ x, compute x
 val xs = s.take(s.length - 1) // and xs.
 digitsToInt(xs) * 10 + x // Call digitstoInt(...) recursively.
}

To illustrate, suppose we want a function decimal that takes a list of digits and returns the corresponding
decimal number; thus

 𝑑𝑒𝑐𝑖𝑚𝑎𝑙	[𝑥0, 𝑥1, … , 𝑥n] = ∑!"#$ 𝑥𝑘10($&!)

It is assumed that the most significant digit comes first in the list. One way to compute decimal efficiently is by
a process of multiplying each digit by ten and adding in the following digit. For example

 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑥0, 𝑥1, 𝑥2 = 10	× 10	× 10	×	0 + 𝑥0 + 𝑥1 + 𝑥2

This decomposition of a sum of powers is known as Horner’s rule.

Yes, this solution is an
implementation of the rule
we saw in Part 1

2.2.3 Tail recursion

The code of lengthS will fail for large enough sequences. To see why, consider an inductive definition of the .length method as a
function lengthS:

 def lengthS(s: Seq[Int]): Int =
 if (s.isEmpty) 0
 else 1 + lengthS(s.tail)

 scala> lengthS((1 to 1000).toList)
 res0: Int = 1000

 scala> val s = (1 to 100_000).toList
 s : List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, ...

 scala> lengthS(s)
 java.lang.StackOverflowError
 at .lengthS(<console>:12)
 at .lengthS(<console>:12)
 at .lengthS(<console>:12)
 at .lengthS(<console>:12)
 ...
The problem is not due to insufficient main memory: we are able to compute and hold in memory the entire sequence s. The
problem is with the code of the function lengthS. This function calls itself inside the expression 1 + lengthS(...). So we can
visualize how the computer evaluates this code:

 lengthS(Seq(1, 2, ..., 100000))
 = 1 + lengthS(Seq(2, ..., 100000))
 = 1 + (1 + lengthS(Seq(3, ..., 100000)))
 = ...

Sergei Winitzki
sergei-winitzki-11a6431

The function body of lengthS will evaluate the inductive step, that is, the “else” part of the “if/else”, about 100_000 times. Each
time, the sub-expression with nested computations 1+(1+(...)) will get larger.

This intermediate sub-expression needs to be held somewhere in memory, until at some point the function body goes into the
base case and returns a value. When that happens, the entire intermediate sub-expression will contain about 100_000_nested
function calls still waiting to be evaluated.

This sub-expression is held in a special area of memory called stack memory, where the not-yet-evaluated nested function calls
are held in the order of their calls, as if on a “stack”. Due to the way computer memory is managed, the stack memory has a fixed
size and cannot grow automatically. So, when the intermediate expression becomes large enough, it causes an overflow of the
stack memory and crashes the program.

A way to avoid stack overflows is to use a trick called tail recursion. Using tail recursion means rewriting the code so that all
recursive calls occur at the end positions (at the “tails”) of the function body. In other words, each recursive call must be itself the
last computation in the function body, rather than placed inside other computations. Here is an example of tail-recursive code:

 def lengthT(s: Seq[Int], res: Int): Int =
 if (s.isEmpty)
 res
 else
 lengthT(s.tail, 1 + res)

In this code, one of the branches of the if/else returns a fixed value without doing any recursive calls, while the other branch
returns the result of a recursive call to lengthT(...). In the code of lengthT, recursive calls never occur within any sub-
expressions.

def lengthS(s: Seq[Int]): Int =
 if (s.isEmpty) 0
 else 1 + lengthS(s.tail)

lengthS(Seq(1, 2, ..., 100000))
= 1 + lengthS(Seq(2, ..., 100000))
= 1 + (1 + lengthS(Seq(3, ..., 100000)))
= ...

Sergei Winitzki
sergei-winitzki-11a6431

It is not a problem that the recursive call to lengthT has some sub-expressions such as 1 + res as its arguments, because all these
sub-expressions will be computed before lengthT is recursively called.

The recursive call to lengthT is the last computation performed by this branch of the if/else. A tail-recursive function can have
many if/else or match/case branches, with or without recursive calls; but all recursive calls must be always the last expressions
returned.

The Scala compiler has a feature for checking automatically that a function’s code is tail-recursive : the @tailrec annotation. If a
function with a @tailrec annotation is not tail-recursive, or is not recursive at all, the program will not compile.

 @tailrec def lengthT(s: Seq[Int], res: Int): Int =
 if (s.isEmpty) res
 else lengthT(s.tail, 1 + res)

Let us trace the evaluation of this function on an example:

 lengthT(Seq(1,2,3), 0)
 = lengthT(Seq(2,3), 1 + 0) // = lengthT(Seq(2,3), 1)
 = lengthT(Seq(3), 1 + 1) // = lengthT(Seq(3), 2)
 = lengthT(Seq(), 1 + 2) // = lengthT(Seq(), 3)
 = 3

All sub-expressions such as 1 + 1 and 1 + 2 are computed before recursive calls to lengthT. Because of that, sub-expressions
do not grow within the stack memory. This is the main benefit of tail recursion.

How did we rewrite the code of lengthS to obtain the tail-recursive code of lengthT? An important difference between lengthS
and lengthT is the additional argument, res, called the accumulator argument. This argument is equal to an intermediate result of
the computation. The next intermediate result (1 + res) is computed and passed on to the next recursive call via the
accumulator argument. In the base case of the recursion, the function now returns the accumulated result, res, rather than 0,
because at that time the computation is finished. Rewriting code by adding an accumulator argument to achieve tail recursion is
called the accumulator technique or the “accumulator trick”.

def lengthS(s: Seq[Int]): Int =
 if (s.isEmpty) 0
 else 1 + lengthS(s.tail)

Sergei Winitzki
sergei-winitzki-11a6431

One consequence of using the accumulator trick is that the function lengthT now always needs a value for the accumulator
argument. However, our goal is to implement a function such as length(s) with just one argument, s:Seq[Int]. We can define
length(s) = lengthT(s, ???) if we supply an initial accumulator value. The correct initial value for the accumulator is 0, since
in the base case (an empty sequence s) we need to return 0.

So, a tail-recursive implementation of lengthT requires us to define two functions: the tail-recursive lengthT and an “adapter”
function that will set the initial value of the accumulator argument. To emphasize that lengthT is a helper function, one could
define it inside the adapter function:

 def length[A](s: Seq[A]): Int = {
 @tailrec def lengthT(s: Seq[A], res: Int): Int = {
 if (s.isEmpty) res
 else lengthT(s.tail, 1 + res)
 }
 lengthT(s, 0)
 }

When length is implemented like that, users will not be able to call lengthT directly, because it is only visible within the body of
the length function.

Another possibility in Scala is to use a default value for the res argument:

 @tailrec def length(s: Seq[A], res: Int = 0): Int =
 if (s.isEmpty) res
 else length(s.tail, 1 + res)

Giving a default value for a function argument is the same as defining two functions: one with that argument and one without. For
example, the syntax

 def f(x: Int, y: Boolean = false): Int = ... // Function body.
Sergei Winitzki

sergei-winitzki-11a6431

is equivalent to defining two functions (with the same name),

 def f(x: Int, y: Boolean) = ... // Function body.
 def f(x: Int): Int = f(Int, false)

Using a default argument value, we can define the tail-recursive helper function and the adapter function at once, making the
code shorter.

The accumulator trick works in a large number of cases, but it may be far from obvious how to introduce the accumulator
argument, what its initial value must be, and how to define the inductive step for the accumulator. In the example with the
lengthT function, the accumulator trick works because of the following mathematical property of the expression being computed:

1	+	(1	+	(1	+	(...	+	1)))	 =	 (((1	+	1)	+	1)	+	...)	+	1	.

This is the associativity law of addition. Due to that law, the computation can be rearranged so that additions associate to the
left. In code, it means that intermediate expressions are computed immediately before making recursive calls; this avoids the
growth of the intermediate expressions.

Usually, the accumulator trick works because some associativity law is present. In that case, we are able to rearrange the order of
recursive calls so that these calls always occur outside all other subexpressions, — that is, in tail positions. However, not all
computations obey a suitable associativity law. Even if a code rearrangement exists, it may not be immediately obvious how to find
it.

Sergei Winitzki
sergei-winitzki-11a6431

def digitsToInt(s: Seq[Int]): Int = if (s.isEmpty) 0 else {
 val x = s.last // To split s = xs :+ x, compute x
 val xs = s.take(s.length - 1) // and xs.
 digitsToInt(xs) * 10 + x // Call digitstoInt(...) recursively.
}

As an example, consider a tail-recursive re-implementation of the function digitsToInt from the previous subsection where the
recursive call is within a sub-expression digitsToInt(xs) * 10 + x. To transform the code into a tail-recursive form, we need to
rearrange the main computation,

r	=	dn−1	+	10	∗	(dn−2	+	10	∗	(dn−3	+	10	∗	(...d0)))	

so that the operations group to the left. We can do this by rewriting r as

r	=	((d0	∗	10	+	d1)	∗	10	+	...)	∗	10	+	dn−1

It follows that the digit sequence s must be split into the leftmost digit and the rest, s = s.head +: s.tail. So, a tail-recursive
implementation of the above formula is

 @tailrec def fromDigits(s: Seq[Int], res: Int = 0): Int =
 // ‘res‘ is the accumulator.
 if (s.isEmtpy) res
 else fromDigits(s.tail, 10 * res + s.head)

Despite a certain similarity between this code and the code of digitsToInt from the previous subsection, the implementation
fromDigits cannot be directly derived from the inductive definition of digitsToInt. One needs a separate proof that
fromDigits(s, 0) computes the same result as digitsToInt(s). The proof follows from the following property.
Statement 2.2.3.1 For any xs: Seq[Int] and r: Int, we have

 fromDigits(xs, r) = digitsToInt(xs) + r * math.pow(10, s.length)

Proof We prove this by induction. <…proof omitted…>

Sergei Winitzki
sergei-winitzki-11a6431

not tail-recursive

To illustrate, suppose we want a function decimal that takes a list of digits and returns the
corresponding decimal number; thus

 𝑑𝑒𝑐𝑖𝑚𝑎𝑙	[𝑥0, 𝑥1, … , 𝑥n] = ∑!"#$ 𝑥𝑘10($&!)

It is assumed that the most significant digit comes first in the list. One way to compute decimal
efficiently is by a process of multiplying each digit by ten and adding in the following digit. For
example

 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑥0, 𝑥1, 𝑥2 = 10	× 10	× 10	×	0 + 𝑥0 + 𝑥1 + 𝑥2

This decomposition of a sum of powers is known as Horner’s rule.

Suppose we define ⊕	by 𝑛 ⊕ 𝑥 = 10	×	𝑛 + 𝑥. Then we can rephrase the above equation as

 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑥0, 𝑥1, 𝑥2 = (0⊕ 𝑥0) ⊕ 𝑥1 ⊕𝑥2

@tailrec def fromDigits(s: Seq[Int], res: Int = 0): Int =
 // ‘res‘ is the accumulator.
 if (s.isEmpty) res
 else fromDigits(s.tail, 10 * res + s.head)

Yes, this solution uses the ⊕
function and the ‘rephrased’
equation we saw in Part 1

2.2.4 Implementing general aggregation (foldLeft)
An aggregation converts a sequence of values into a single value. In general, the type of the result may be
different from the type of sequence elements. To describe that general situation, we introduce type parameters, A
and B, so that the input sequence is of type Seq[A] and the aggregated value is of type B. Then an inductive
definition of any aggregation function f: Seq[A] => B looks like this:
• (Base case.) For an empty sequence, f(Seq()) = b0 where b0:B is a given value.
• (Inductive step.) Assuming that f(xs) = b is already computed, we define f(xs :+ x) = g(x, b) where g is a

given function with type signature g:(A, B) => B.
The code implementing f is written using recursion:

 def f[A, B](s: Seq[A]): B =
 if (s.isEmpty) b0
 else g(s.last, f(s.take(s.length - 1)))

We can now refactor this code into a generic utility function, by making b0 and g into parameters. A possible
implementation is

 def f[A, B](s: Seq[A], b: B, g: (A, B) => B): B =
 if (s.isEmpty) b
 else g(s.last, f(s.take(s.length - 1), b, g)

However, this implementation is not tail-recursive.

Sergei Winitzki
sergei-winitzki-11a6431

Applying f to a sequence of, say, three elements, Seq(x, y, z), will create an intermediate expression g(z, g(y, g(x, b))).
This expression will grow with the length of s, which is not acceptable.

To rearrange the computation into a tail-recursive form, we need to start the base case at the innermost call g(x, b), then
compute g(y, g(x, b)) and continue. In other words, we need to traverse the sequence starting from its leftmost element x,
rather than starting from the right. So, instead of splitting the sequence s into s.take(s.length - 1) :+ s.last as we did in
the code of f, we need to split s into s.head :+ s.tail. Let us also exchange the order of the arguments of g, in order to be
more consistent with the way this code is implemented in the Scala library. The resulting code is tail-recursive:

 @tailrec def leftFold[A, B](s: Seq[A], b: B, g: (B, A) => B): B =
 if (s.isEmpty) b
 else leftFold(s.tail, g(b, s.head), g)

We call this function a “left fold” because it aggregates (or “folds”) the sequence starting from the leftmost element.

In this way, we have defined a general method of computing any inductively defined aggregation function on a sequence. The
function leftFold implements the logic of aggregation defined via mathematical induction. Using leftFold, we can write
concise implementations of methods such as .sum, .max, and many other aggregation functions. The method leftFold already
contains all the code necessary to set up the base case and the inductive step. The programmer just needs to specify the
expressions for the initial value b and for the updater function g.

def f[A, B](s: Seq[A], b: B, g: (A, B) => B): B =
 if (s.isEmpty) b
 else g(s.last, f(s.take(s.length - 1), b, g)

Sergei Winitzki
sergei-winitzki-11a6431

I think it is worth repeating some of what we just
saw on the previous slide, so it sinks in better

Sergei Winitzki

 @tailrec def leftFold[A, B](s: Seq[A], b: B, g: (B, A) => B): B =
 if (s.isEmpty) b
 else leftFold(s.tail, g(b, s.head), g)

We call this function a “left fold” because it aggregates (or “folds”) the sequence starting from
the leftmost element.

In this way, we have defined a general method of computing any inductively defined
aggregation function on a sequence.

The function leftFold implements the logic of aggregation defined via mathematical induction.

Using leftFold, we can write concise implementations of methods such as .sum, .max, and many
other aggregation functions.

The method leftFold already contains all the code necessary to set up the base case and the
inductive step. The programmer just needs to specify the expressions for the initial value b and
for the updater function g.

As a first example, let us use leftFold for implementing the .sum method:

 def sum(s: Seq[Int]): Int = leftFold(s, 0, { (x, y) => x + y })

To understand in detail how leftFold works, let us trace the evaluation of this function when applied to Seq(1, 2, 3):

 // Here, g = { (x, y) => x + y }, so g(x, y) = x + y.
 == leftFold(Seq(2, 3), g(0, 1), g) // g (0, 1) = 1.
 == leftFold(Seq(2, 3), 1, g) // Now expand the code of ‘leftFold‘.
 == leftFold(Seq(3), g(1, 2), g) // g(1, 2) = 3; expand the code.
 == leftFold(Seq(), g(3, 3), g) // g(3, 3) = 6; expand the code.
 == 6

The second argument of leftFold is the accumulator argument. The initial value of the accumulator is specified when first calling
leftFold. At each iteration, the new accumulator value is computed by calling the updater function g, which uses the previous
accumulator value and the value of the next sequence element. To visualize the process of recursive evaluation, it is convenient to
write a table showing the sequence elements and the accumulator values as they are updated:

We implemented leftFold only as an illustration. Scala’s library has a method called .foldLeft implementing the same logic
using a slightly different type signature. To see this difference, compare the implementation of sum using our leftFold function
and using the standard .foldLeft method:

 def sum(s: Seq[Int]): Int = leftFold(s, 0, { (x, y) => x + y })
 def sum(s: Seq[Int]): Int = s.foldLeft(0) { (x, y) => x + y }

Current element x Old accumulator value New accumulator value

1 0 1

2 1 3

3 3 6

Sergei Winitzki
sergei-winitzki-11a6431

The syntax of .foldLeft makes it more convenient to use a nameless function as the updater argument of .foldLeft, since curly
braces separate that argument from others. We will use the standard .foldLeft method from now on.

In general, the type of the accumulator value can be different from the type of the sequence elements. An example is an
implementation of count:

 def count[A](s: Seq[A], p: A => Boolean): Int =
 s.foldLeft(0) { (x, y) => x + (if (p(y)) 1 else 0) }

The accumulator is of type Int, while the sequence elements can have an arbitrary type, parameterized by A. The .foldLeft
method works in the same way for all types of accumulators and all types of sequence elements.

The method .foldLeft is available in the Scala library for all collections, including dictionaries and sets. Since .foldLeft is tail-
recursive, no stack overflows will occur even for very large sequences.

The Scala library contains several other methods similar to .foldLeft, such as .foldRight and .reduce. (However, .foldRight
is not tail-recursive!)

def sum(s: Seq[Int]): Int = leftFold(s, 0, { (x, y) => x + y })
def sum(s: Seq[Int]): Int = s.foldLeft(0) { (x, y) => x + y }

Sergei Winitzki
sergei-winitzki-11a6431

In Introduction to Functional Programming using Haskell, there is a section
covering the laws of fold, which include three duality theorems.

4.6 Laws of fold
There are a number of important laws concerning 𝑓𝑜𝑙𝑑𝑟 and its relationship with 𝑓𝑜𝑙𝑑𝑙. As we saw in section 3.3, instead of
having to prove a property of a recursive function over a recursive datatype by writing down an explicit induction proof, one can
often phrase the property as an instance of one of the laws of the 𝑓𝑜𝑙𝑑 operator for the datatype.

4.6.1 Duality theorems
The first three laws are called duality theorems and concern the relationship between 𝑓𝑜𝑙𝑑𝑟 and 𝑓𝑜𝑙𝑑𝑙.

What we are going to do in the next seven slides is look back at three of the
functions that Sergei Winitzki discussed in his book, and relate them to the three
duality theorems.

@philip_schwarz

We translate mathematical induction into code by first writing a condition to decide whether we have the base case or the
inductive step. As an example, let us define .sum by recursion. The base case returns 0, and the inductive step returns a value
computed from the recursive call:

 def sum(s: Seq[Int]): Int = if (s.isEmpty) 0 else {
 val x = s.head // To split s = x +: xs, compute x
 val xs = s.tail // and xs.
 sum(xs) + x // Call sum(...) recursively.
 }

In this example, the if/else expression will separate the base case from the inductive step. In the inductive step, it is
convenient to split the given sequence s into its first element x, or the head of s, and the remainder tail sequence xs. So, we
split s as s = x +: xs rather than as s = xs :+ x

For computing the sum of a numerical sequence, the order of summation does not matter.

Remember earlier when Sergei Winitzki explained that for computing the
sum of a numerical sequence, the order of summation does not matter?

If the order of summation doesn’t matter, does that mean that it is possible
to implement the sum function both using a right fold and using a left fold?
The answer is yes, but with the qualification mentioned on the nexts slide.

Sergei Winitzki

def foldr[A,B](f: (A,B) => B)(e: B)(s: List[A]): B = s match {
 case Nil => e
 case x::xs => f(x,foldr(f)(e)(xs))
}

def foldl[A,B](f: (B,A) => B)(e: B) (s: List[A]): B = s match {
 case Nil => e
 case x::xs => foldl(f)(f(e,x))(xs)
}

def add(x: Int, y: Int): Int = x + y

def sumr(s: List[Int]): Int = foldr(add)(0)(s)

def suml(s: List[Int]): Int = foldl(add)(0)(s)

assert(sumr(List(1,2,3,4,5)) == 15)
assert(suml(List(1,2,3,4,5)) == 15)That works: we get the same result.

But if we pass foldr a sufficiently
large sequence, it encounters a
stack overflow error, since foldr is
not tail-recursive.

val oneTo40K = List.range(1,40_000)
assert(suml(oneTo40K) == 799_980_000)
assert(
 try {
 sumr(oneTo40K)
 false
 } catch {
 case _:StackOverflowError => true
 }
)

First, let’s define foldr and foldl.

Yes we are using List[A] rather
than Seq[A], simply to be
consistent with the foldr and foldl
definitions seen in in Part 1 (we’ll be
doing so throughout the slides on
the duality theorems).

Next, let’s define sumr using
foldr and suml using foldl.

@philip_schwarz

We had already seen the
Scala version of foldr in
Part1, but not of foldl.

First duality theorem. Suppose ⊕ 	is associative with unit 𝑒. Then

	 𝑓𝑜𝑙𝑑𝑟 ⊕ 	𝑒	𝑥𝑠	 = 𝑓𝑜𝑙𝑑𝑙 ⊕ 	𝑒	𝑥𝑠

For all finite lists 𝑥𝑠.

For example, we could have defined

	 𝑠𝑢𝑚	 = 	 𝑓𝑜𝑙𝑑𝑙 + 	0
	 and	 = 	 𝑓𝑜𝑙𝑑𝑙	(⋀)	𝑇𝑟𝑢𝑒
	 concat	 = 	 𝑓𝑜𝑙𝑑𝑙	(⧺)	[]

However, as we will elaborate in chapter 7, it is sometimes more efficient to implement
a function using 𝑓𝑜𝑙𝑑𝑙, and sometimes more efficient to use 𝑓𝑜𝑙𝑑𝑟.

The reason why foldr(add)(0)(s) produces the same result as foldl(add)(0)(s) (except when
foldr overflows the stack, of course), is that addition, 0 and s satisfy the constraints of the first duality
theorem, in that addition is an associative operation, 0 is the unit of addition, and s is a finite sequence.

e.g. see the slide after next for how the efficiency of 𝑟𝑒𝑣𝑒𝑟𝑠𝑒
is affected by whether it is implemented using 𝑓𝑜𝑙𝑑𝑟 or 𝑓𝑜𝑙𝑑𝑙.

𝑓𝑜𝑙𝑑𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → 𝛽	
𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 	 = 𝑒
𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 𝑥 ∶ 𝑥𝑠 	= 𝑓𝑜𝑙𝑑𝑙	𝑓 𝑓	𝑒	𝑥 	𝑥𝑠	

𝑓𝑜𝑙𝑑𝑟	 ∷ 𝛼	 → 𝛽	 → 𝛽 → 𝛽 → 𝛼 → 𝛽	
𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒 	 = 𝑒
𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒 𝑥 ∶ 𝑥𝑠 	= 𝑓	𝑥 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒	𝑥𝑠

def foldr[A,B](f: (A,B) => B)(e: B)(s: List[A]): B =
 s match {
 case Nil => e
 case x::xs => f(x,foldr(f)(e)(xs)) }

def foldl[A,B](f: (B,A) => B)(e: B) (s: List[A]): B =
 s match {
 case Nil => e
 case x::xs => foldl(f)(f(e,x))(xs) }

def lengthS(s: Seq[Int]): Int =
 if (s.isEmpty) 0
 else 1 + lengthS(s.tail)

@tailrec def length(s: Seq[A], res: Int = 0): Int =
 if (s.isEmpty) res
 else length(s.tail, 1 + res)

Remember earlier when Sergei Winitzki first
implemented a lengthS function that was not
tail-recursive and then implemented a length
function that was tail recursive?

Let’s implement the first function using foldr
and the second function using foldl.

def lengthr[A](s: List[A]): Int = {
 def onePlus(a: A, n: Int): Int = 1 + n
 foldr(onePlus)(0)(s)
}

def lengthl[A](s: List[A]): Int = {
 def plusOne(n: Int, a: A): Int = 1 + n
 foldl(plusOne)(0)(s)
}

That works: we get the same result.
assert(lengthr(List(1,2,3,4,5)) == 5)
assert(lengthl(List(1,2,3,4,5)) == 5)

The reason why foldr(onePlus)(0)(s) produces the same result as foldl(plusOne)(0)(s) (except when
foldr overflows the stack, of course), is that onePlus, plusOne, 0, and s satisfy the constraints of the second
duality theorem.

Second duality theorem. This is a generalization of the first. Suppose	⊕, ⊗, and 𝑒 are such that for all 𝑥, 𝑦, and 𝑧 we have

 𝑥 ⊕ 𝑦	⊗	𝑧 	= 𝑥 ⊕ 𝑦 	⊗	𝑧
 𝑥 ⊕ 𝑒 = 𝑒	⊗	𝑥

In other words, ⊕ and ⊗ associate with each other, and 𝑒 on the right of	⊕ is equivalent to	𝑒	on the left of ⊗. Then

	 𝑓𝑜𝑙𝑑𝑟 ⊕ 	𝑒	𝑥𝑠	 = 𝑓𝑜𝑙𝑑𝑙 ⊗ 	𝑒	𝑥𝑠

For all finite lists 𝑥𝑠.
…
The second duality theorem has the first duality theorem as a special case, namely when

	 ⊕ = ⊗

To illustrate the second duality theorem, consider the following definitions

 𝑙𝑒𝑛𝑔𝑡ℎ	 ∷ 	 [α] → 𝑰𝒏𝒕
	 𝑙𝑒𝑛𝑔𝑡ℎ	 = 	 𝑓𝑜𝑙𝑑𝑟	𝑜𝑛𝑒𝑝𝑙𝑢𝑠	0, 	 𝒘𝒉𝒆𝒓𝒆	𝑜𝑛𝑒𝑝𝑙𝑢𝑠	𝑥	𝑛 = 1 + 𝑛
	 𝑙𝑒𝑛𝑔𝑡ℎ	 = 	 𝑓𝑜𝑙𝑑𝑙	𝑝𝑙𝑢𝑠𝑜𝑛𝑒	0, 	 𝒘𝒉𝒆𝒓𝒆	𝑝𝑙𝑢𝑠𝑜𝑛𝑒	𝑛	𝑥 = 𝑛 + 1

	 reverse	 ∷ 	 α → [α]
	 reverse	 = 	 𝑓𝑜𝑙𝑑𝑟	𝑠𝑛𝑜𝑐 	 , 	 𝒘𝒉𝒆𝒓𝒆	𝑠𝑛𝑜𝑐	𝑥	𝑥𝑠 = 𝑥𝑠	⧺	[𝑥]	
	 reverse	 = 	 𝑓𝑜𝑙𝑑𝑙	𝑐𝑜𝑛𝑠 	 , 	 𝒘𝒉𝒆𝒓𝒆	𝑐𝑜𝑛𝑠	𝑥𝑠	𝑥 = 𝑥	 :	 𝑥𝑠	

The functions 𝑜𝑛𝑒𝑝𝑙𝑢𝑠, 𝑝𝑙𝑢𝑠𝑜𝑛𝑒, and 0 meet the conditions of the second duality theorem, as do 𝑠𝑛𝑜𝑐, 𝑐𝑜𝑛𝑠, and 	 . We leave the verification as an exercise.
Hence the two definitions of 𝑙𝑒𝑛𝑔𝑡ℎ and reverse are equivalent on all finite lists.
It is not obvious whether there is any practical difference between the two definitions of 𝑙𝑒𝑛𝑔𝑡ℎ, but the second program for reverse is the more efficient of the two.

Earlier Sergei Winitzki implemented
digitsToInt as a function that did
not use recursion.

def digitsToInt(ds: Seq[Int]): Int = {
 val n = ds.length
 // Compute a sequence of powers of 10, e.g. [1000, 100, 10, 1].
 val powers: Seq[Int] = (0 to n - 1).map(k => math.pow(10, n - 1 - k).toInt)
 // Sum the powers of 10 with coefficients from ‘ds‘.
 (ds zip powers).map { case (d, p) => d * p }.sum
}

def digitsToInt(s: Seq[Int]): Int = if (s.isEmpty) 0 else {
 val x = s.last // To split s = xs :+ x, compute x
 val xs = s.take(s.length - 1) // and xs.
 digitsToInt(xs) * 10 + x // Call digitstoInt(...) recursively.
}

@tailrec def fromDigits(s: Seq[Int], res: Int = 0): Int =
 // ‘res‘ is the accumulator.
 if (s.isEmpty) res
 else fromDigits(s.tail, 10 * res + s.head)

Then he reimplemented it as a recursive
function. Note that the function
processes digits from right to left.

Next he reimplemented it
as a tail-recursive function.

And later on, we’ll see that he’ll reimplement
it using a left fold. Note that the function
processes digits from left to right.

def digitsToInt(d: Seq[Int]): Int =
 d.foldLeft(0){ (n, x) => n * 10 + x }

The second implementation can
be rewitten using a right fold.

def digitsToInt(d: Seq[Int]): Int =
 d.foldRight(0){ (x, n) => n * 10 + x }

Why is it that the last two implementations produce the same results?
Note that the parameters of the lambda passed to foldLeft are in the
opposite order to those of the lambda passed to foldRight.

@philip_schwarz

The reason why d.foldLeft(0){ (n, x) => n * 10 + x } produces the same result as
d.foldRight(0){ (x, n) => n * 10 + x } (except when foldRight overflows the stack	†), is
the existence of the third duality theorem.

Third duality theorem. For all finite lists 𝑥𝑠,

	 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒	𝑥𝑠	 = 𝑓𝑜𝑙𝑑𝑙 𝑓𝑙𝑖𝑝	𝑓 	𝑒	(𝑟𝑒𝑣𝑒𝑟𝑠𝑒	𝑥𝑠)
	 𝒘𝒉𝒆𝒓𝒆	𝑓𝑙𝑖𝑝	𝑓	𝑥	𝑦 = 𝑓	𝑦	𝑥

To illustrate the third duality theorem, consider

	 𝑓𝑜𝑙𝑑𝑟 ∶ 	 𝑥𝑠	 = 𝑓𝑜𝑙𝑑𝑙 𝑓𝑙𝑖𝑝	(∶) 	[]	(𝑟𝑒𝑣𝑒𝑟𝑠𝑒	𝑥𝑠)

Since 𝑓𝑜𝑙𝑑𝑟 ∶ 	 = 	𝑖𝑑 and 𝑓𝑜𝑙𝑑𝑙 𝑓𝑙𝑖𝑝	(∶) 	[] = 𝑟𝑒𝑣𝑒𝑟𝑠𝑒, we obtain

 𝑥𝑠	 = 𝑟𝑒𝑣𝑒𝑟𝑠𝑒	(𝑟𝑒𝑣𝑒𝑟𝑠𝑒	𝑥𝑠)

For all finite lists 𝑥𝑠, a result we have already proved directly.

def f(n: Int, x: Int): Int =
 n * 10 + x

def flip[A,B,C](f: (A,B) => C): (B,A) => C =
 (b, a) => f(a, b)

def digitsToIntl(d: List[Int]): Int =
 foldl(f)(0)(d)

def digitsToIntr(d: List[Int]): Int =
 foldr(flip(f))(0)(d.reverse)

assert(digitsToIntl(List(1,2,3,4,5)) == 12345)
assert(digitsToIntr(List(1,2,3,4,5)) == 12345)

† actually, in the case of the Scala standard library’s foldRight function, this proviso does not seem to apply – see the next slide.

def add(x: Int, y: Int): Int = x + y

def sumr(s: List[Int]): Int =
 foldr(add)(0)(s)

def suml(s: List[Int]): Int =
 foldl(add)(0)(s)

Remember, when we looked at the
first duality theorem, how the
implementation of sumr in terms of
foldr would crash if we passed it a
sufficiently large sequence, because
foldr is not tail-recursive and so
encounters a stack overflow error?

val oneTo40K = List.range(1,40_000)
assert(suml(oneTo40K) == 799_980_000)
assert(
 try {
 sumr(oneTo40K)
 false
 } catch {
 case _:StackOverflowError => true
 }
)

def sumL(s: List[Int]): Int =
 s.foldLeft(0)(_+_)

def sumR(s: List[Int]): Int =
 s.foldRight(0)(_+_)

assert(sumL(oneTo40K) == 799_980_000)
assert(sumR(oneTo40K) == 799_980_000)

Well, it turns out that there is no
stack overflow if we implement
sumr using the foldRight function in
the Scala standard library.

val oneTo1M = List.range(1,1_000_000)
assert(sumL(oneTo1M) == 1_783_293_664)
assert(sumR(oneTo1M) == 1_783_293_664)

def foldRight[B](z: B)(op: (A, B) => B): B =
 reversed.foldLeft(z)((b, a) => op(a, b))

final override def foldRight[B](z: B)(op: (A, B) => B): B = {
 var acc = z
 var these: List[A] = reverse
 while (!these.isEmpty) {
 acc = op(these.head, acc)
 these = these.tail
 }
 acc
}

override def foldLeft[B](z: B)(op: (B, A) => B): B = {
 var acc = z
 var these: LinearSeq[A] = coll
 while (!these.isEmpty) {
 acc = op(acc, these.head)
 these = these.tail
 }
 acc
}

The reason is that the foldRight function is implemented by code that reverses the sequence,
flips the function that it is passed, and then calls foldLeft!

While this is not so obvious when we look at the code for foldRight
in List, because it effectively inlines the call to foldRight…

…it is plain to see in the
foldRight function for Seq

Third duality theorem. For all finite lists 𝑥𝑠,

	 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒	𝑥𝑠	 = 𝑓𝑜𝑙𝑑𝑙 𝑓𝑙𝑖𝑝	𝑓 	𝑒	(𝑟𝑒𝑣𝑒𝑟𝑠𝑒	𝑥𝑠)
	 𝒘𝒉𝒆𝒓𝒆	𝑓𝑙𝑖𝑝	𝑓	𝑥	𝑦 = 𝑓	𝑦	𝑥

This is the third duality
theorem in action

@philip_schwarz

def foldRight[A,B](as: List[A], z: B)(f: (A, B) => B): B =
as match {
case Nil => z
case Cons(x, xs) => f(x, foldRight(xs, z)(f))

}

Functional Programming in Scala

(by Paul Chiusano and Runar Bjarnason)
@pchiusano @runarorama

sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]

def foldRightViaFoldLeft[A,B](l: List[A], z: B)(f: (A,B) => B): B =
 foldLeft(reverse(l), z)((b,a) => f(a,b))

@annotation.tailrec
def foldLeft[A,B](l: List[A], z: B)(f: (B, A) => B): B = l match{
 case Nil => z
 case Cons(h,t) => foldLeft(t, f(z,h))(f) }

Implementing foldRight via foldLeft is useful because it lets us implement
foldRight tail-recursively, which means it works even for large lists without overflowing
the stack.

Our implementation of foldRight is not tail-recursive and will result
in a StackOverflowError for large lists (we say it’s not stack-safe).
Convince yourself that this is the case, and then write another general list-
recursion function, foldLeft, that is tail-recursive

foldRight(Cons(1, Cons(2, Cons(3, Nil))), 0)((x,y) => x + y)
1 + foldRight(Cons(2, Cons(3, Nil)), 0)((x,y) => x + y)
1 + (2 + foldRight(Cons(3, Nil), 0)((x,y) => x + y))
1 + (2 + (3 + (foldRight(Nil, 0)((x,y) => x + y))))
1 + (2 + (3 + (0)))
6

At the bottom of this slide is where Functional
Programming in Scala shows that foldRight can be
defined in terms of foldLeft.

The third duality theorem in action.

https://twitter.com/pchiusano
https://twitter.com/runarorama

It looks like it was none other than Paul Chiusano (co-author of FP in Scala),
back in 2010, who suggested that List’s foldRight(z)(f) be
implemented as reverse.foldLeft(z)(flip(f))!

It also looks like the change was made in 2013 (see next slide) and that it was in 2018
that foldRight was reimplemented as a while loop (see slide after that).

And now, for completeness, we conclude Part 2 by looking
at some of Sergei Winitzki‘s solved foldLeft examples.

2.2.5 Solved examples: using foldLeft

It is important to gain experience using the .foldLeft method.

Example 2.2.5.1 Use .foldLeft for implementing the max function for integer sequences. Return the special value Int.MinValue for
empty sequences.

Solution Write an inductive formulation of the max function:
• (Base case.) For an empty sequence, return Int.MinValue.
• (Inductive step.) If max is already computed on a sequence xs, say max(xs) = b, the value of max on a sequence xs :+ x is

math.max(b,x).

Now we can write the code:

 def max(s: Seq[Int]): Int = s.foldLeft(Int.MinValue) { (b, x) => math.max(b, x) }

If we are sure that the function will never be called on empty sequences, we can implement max in a simpler way by using the
.reduce method:

 def max(s: Seq[Int]): Int = s.reduce { (x, y) => math.max(x, y) }

Sergei Winitzki
sergei-winitzki-11a6431

Example 2.2.5.2 Implement the count method on sequences of type Seq[A].

Solution Using the inductive definition of the function count as shown in Section 2.2.1

Count the sequence elements satisfying a predicate p:
 – for an empty sequence, Seq().count(p) == 0
 – if xs.count(p) is known then (xs :+ x).count(p) == xs.count(p) + c, where we set c = 1
 when p(x) == true and c = 0 otherwise

we can write the code as

 def count[A](s: Seq[A], p: A => Boolean): Int =
 s.foldLeft(0){ (b, x) => b + (if (p(x)) 1 else 0) }

Example 2.2.5.3 Implement the function digitsToInt using .foldLeft.

Solution The inductive definition of digitsToInt

• For an empty sequence of digits, Seq(), the result is 0. This is a convenient base case, even if we never call digitsToInt on an
empty sequence.

• If digitsToInt(xs) is already known for a sequence xs of digits, and we have a sequence xs :+ x with one more digit x,
then

is directly translated into code:

 def digitsToInt(d: Seq[Int]): Int = d.foldLeft(0){ (n, x) => n * 10 + x }

Sergei Winitzki
sergei-winitzki-11a6431

def digitsToInt(d: Seq[Int]): Int =
 d.foldLeft(0){ (n, x) => n * 10 + x }

Yes, this solution is the
one sketched out in Part 1.

Example 2.2.5.4 For a given non-empty sequence xs: Seq[Double], compute the minimum, the maximum,
and the mean as a tuple (xmin, xmax, xmean). … <skipping this one>

Example 2.2.5.5* Implement the function digitsToDouble using .foldLeft. The argument is of type Seq[Char]. As a test, the
expression digitsToDouble(Seq(’3’,’4’,’.’,’2’,’5’)) must evaluate to 34.25. Assume that all input characters are either
digits or a dot (so, negative numbers are not supported).

Solution The evaluation of a .foldLeft on a sequence of digits will visit the sequence from left to right. The updating function
should work the same as in digitsToInt until a dot character is found. After that, we need to change the updating function. So,
we need to remember whether a dot character has been seen. The only way for .foldLeft to “remember” any data is to hold that
data in the accumulator value. We can choose the type of the accumulator according to our needs. So, for this task we can choose
the accumulator to be a tuple that contains, for instance, the floating-point result constructed so far and a Boolean flag showing
whether we have already seen the dot character.

To see what digitsToDouble must do, let us consider how the evaluation of digitsToDouble(Seq(’3’,’4’,’.’,’2’,’5’))
should go. We can write a table showing the intermediate result at each iteration. This will hopefully help us figure out what the
accumulator and the updater function g(...) must be:

While the dot character was not yet seen, the updater function multiplies the previous result by 10 and adds the current digit. After
the dot character, the updater function must add to the previous result the current digit divided by a factor that represents
increasing powers of 10.

Current digit c Previous result n New result n’ = g(n,c)

‘3’ 0.0 3.0

‘4’ 3.0 34.0

‘.’ 34.0 34.0

‘2’ 34.0 34.2

‘5’ 34.2 34.25

Sergei Winitzki
sergei-winitzki-11a6431

In other words, the update computation nʹ = g(n, c) must be defined by these formulas:

1. Before the dot character: g(n, c) = n ∗ 10 + c.
2. After the dot character: g(n, c) = n + c/f , where f is 10, 100, 1000, ..., for each new digit.

The updater function g has only two arguments: the current digit and the previous accumulator value. So, the changing factor f
must be part of the accumulator value, and must be multiplied by 10 at each digit after the dot. If the factor f is not a part of the
accumulator value, the function g will not have enough information for computing the next accumulator value correctly. So, the
updater computation must be nʹ = g(n, c, f), not nʹ = g(n, c).

For this reason, we choose the accumulator type as a tuple (Double, Boolean, Double) where the first number is the result n
computed so far, the Boolean flag indicates whether the dot was already seen, and the third number is f , that is, the power of 10
by which the current digit will be divided if the dot was already seen. Initially, the accumulator tuple will be equal to (0.0, false,
10.0). Then the updater function is implemented like this:

def update(acc: (Double, Boolean, Double), c: Char): (Double, Boolean, Double) =
 acc match { case (n, flag, factor) =>
 if (c == ’.’) (n, true, factor) // Set flag to ‘true‘ after a dot character was seen.
 else {
 val digit = c - ’0’
 if (flag) // This digit is after the dot. Update ‘factor‘.
 (n + digit/factor, flag, factor * 10)
 else // This digit is before the dot.
 (n * 10 + digit, flag, factor)
 }
 }

Sergei Winitzki
sergei-winitzki-11a6431

Now we can implement digitsToDouble as follows,

def digitsToDouble(d: Seq[Char]): Double = {
 val initAccumulator = (0.0, false, 10.0)
 val (n, _, _) =
 d.foldLeft(initAccumulator)(update)
 n
}

scala> digitsToDouble(Seq(’3’, ’4’, ’.’, ’2’,’5’))
res0: Double = 34.25

The result of calling d.foldLeft is a tuple (n, flag, factor), in which only the first part, n, is needed.

In Scala’s pattern matching expressions, the underscore symbol is used to denote the pattern variables whose values are not
needed in the subsequent code. We could extract the first part using the accessor method ._1, but the code will be more readable if
we show all parts of the tuple by writing (n, _, _).

Sergei Winitzki
sergei-winitzki-11a6431

That’s all for Part 2. I hope you enjoyed that.

There is still a plenty to cover, so I’ll see you in Part 3.

