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As promised at the end of Part 3, let’s now resume looking at Tony’s talk. 
We last saw him using foldr to implement the fla/en func:on. In the 
next slide he uses foldr to implement the filter func:on.



Filter is a li:le bit ugly. Who’s never heard of the filter func@on? Everyone has heard of it. They are talking about it outside 
right now. Filter. We are going to take a predicate and keep the elements that match that predicate. It gets a bit tricky. 

What are we going to replace 𝑪𝒐𝒏𝒔 with? We want to take the head at that 𝑪𝒐𝒏𝒔, the A or the B or the C or whatever, and 
we want to check if it matches a predicate. And if it does, we are going to 𝑪𝒐𝒏𝒔 that value back on again. If it doesn’t, we are 
just going to leave it off and then move on to the next 𝑪𝒐𝒏𝒔 cell. 

So we want to say, given x, the element that I am visi@ng, if it matches the predicate, then 𝑪𝒐𝒏𝒔 x, otherwise do nothing, id, 
the iden2ty func2on. And replace 𝑵𝒊𝒍 with 𝑵𝒊𝒍. 

filter a list on predicate (p)

Supposing 
list = 𝑪𝒐𝒏𝒔 A (𝑪𝒐𝒏𝒔 B (𝑪𝒐𝒏𝒔 C (𝑪𝒐𝒏𝒔 D 𝑵𝒊𝒍)))
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right folds replace constructors

Let’s filter a list on predicate

filter a list on predicate (p)
• let 𝑪𝒐𝒏𝒔 = \x -> if p x then 𝑪𝒐𝒏𝒔 x else id
• let 𝑵𝒊𝒍	 = 𝑵𝒊𝒍 



So, if you ever see this code, you’ll know that it is filtering a list. Replace 𝑪𝒐𝒏𝒔 with (\x -> if p x then 𝑪𝒐𝒏𝒔 x 
else id) and 𝑵𝒊𝒍 with 𝑵𝒊𝒍.

I happen to have a par@cular aversion to the if then else construct by the way. I wish it would die. It takes three arguments 
for a start.  And for those who a:ended yesterday, what are my favourite func@ons? How many arguments do those take?  
One. So I don’t like that one. 

There is a func@on that does if then else that does take one argument. It is called bool. I have used it here. And it does if 
then else with the arguments the right way.  There is a right way. It says, if (p x), then (𝑪𝒐𝒏𝒔 x), else id. 

That takes one argument. The reason I like that func@on is because I can get down to that point there (last line above), and 
that point means I don’t have to name so many iden@fiers. That’s just my goal in life. That’s not really the point. The point is 
that I can do that. I can look at this code and I can say: replace 𝑪𝒐𝒏𝒔 with (bool id . 𝑪𝒐𝒏𝒔 <*> p) and 𝑵𝒊𝒍 with 
𝑵𝒊𝒍. What is it going to do? It is going to filter the list on p. OK?

filter a list on predicate (p)

Supposing 
applyp = if p x then 𝑪𝒐𝒏𝒔 x else id  
list = applyp A (applyp B (applyp C (applyp D 𝑵𝒊𝒍)))

filter p list = foldr (\x -> if p x then 𝑪𝒐𝒏𝒔 x else id) 𝑵𝒊𝒍 list
filter p = foldr (\x -> if p x then 𝑪𝒐𝒏𝒔 x else id) 𝑵𝒊𝒍 
filter p = foldr (\x -> bool id (𝑪𝒐𝒏𝒔 x) (p x)) 𝑵𝒊𝒍 
filter p = foldr (bool id . 𝑪𝒐𝒏𝒔 <*> p) 𝑵𝒊𝒍 
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If you found it challenging at all to understand how that last refactoring of the defini@on of filter works, i.e. what the <*> 
operator is doing in the refactored defini@on, then you are not alone.

  filter p = foldr (\x -> bool id (𝑪𝒐𝒏𝒔 x) (p x)) 𝑵𝒊𝒍 
  filter p = foldr (bool id . 𝑪𝒐𝒏𝒔 <*> p) 𝑵𝒊𝒍 

I am familiar with <*> as Applicative’s apply func@on, which takes a func@on in a context and the func@on’s argument in that 
context and returns the result of applying the func@on to its argument, also in that context.  

e.g. if I define func@on inc x = x + 1, then if inc is in a Maybe context and 3 is also in a Maybe context, I can use <*> to 
apply inc to 3 and return the result 4 in a Maybe context:

  > Just inc <*> Just 3
  Just 4

Similarly for a List context:

  > [inc] <*> [3]
  [4]

Well, it turns out that a func@on is also an Applicative, so if I have a func@on f::a->b->c and a func@on g::a->b then I can 
use <*> to create a func@on h::a->c which passes its argument a to both f and g as follows:  f a (g a).

e.g.

  > ((+) <*> inc) 3
  7

instance Functor ((->) a) where 
  fmap = (.)                (a -> b) -> (r -> a) -> r -> b

instance Applicative ((->) a) where 
  pure = const               a -> r -> a
  (<*>) f g z = f x (g x)   (r -> (a -> b)) -> (r -> a) -> r -> b
  …

<*>  :: (r -> (a -> b)) -> (r -> a) -> r -> b
inc :: Num a => a -> a
(+)  :: Num a => a -> a -> a

<*> is called apply or ap, but is also known as the 
advanced 2e fighter (|+| being the plain 2e 
fighter), the angry parent, and the sad Pikachu.

Tie fighter

advanced 
Tie fighter
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We are using <*> to produce the 𝛼	 → 𝛽	 → 𝛽 	 func@on that we need to pass to 𝒇𝒐𝒍𝒅𝒓 

	 𝒇𝒐𝒍𝒅𝒓	 ∷ 𝛼	 → 𝛽	 → 𝛽 → 𝛽 → 𝛼 → 𝛽

to be able to implement filter as follows

  filter p = 𝒇𝒐𝒍𝒅𝒓 (bool id . (:) <*> p) [] 

If we take the signature of <*> 

  <*> ::(r -> (a -> b)) -> (r -> a) -> r -> b

and make the following subs@tu@ons

  a = Bool
  b = [a] -> [a] 
  r = a

we can understand the signature in our context and see the types that <*> is opera@ng on

  <*> ::(a -> (Bool -> [a] -> [a])) -> (a -> Bool) -> a -> [a] -> [a]
        ---------------------------    -----------    ---------------
              bool id . (:)                even             f

That’s why we are able to refactor

  \x -> bool id ((:) x) (p x)

to 

  bool id . (:) <*> p

> :type bool id
bool id :: (a -> a) -> Bool -> a -> a

𝒇𝒐𝒍𝒅𝒓	 ∷ 𝛼	 → 𝛽	 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝒇𝒐𝒍𝒅𝒓	𝑓	𝑒 	 = 𝑒
𝒇𝒐𝒍𝒅𝒓	𝑓	𝑒 𝑥: 𝑥𝑠 	 = 𝑓	𝑥 𝒇𝒐𝒍𝒅𝒓	𝑓	𝑒	𝑥𝑠

> :type (:)
(:) :: a -> [a] -> [a]

> :type (bool id) . (:)
(bool id) . (:) :: a -> Bool -> [a] -> [a]

bool :: a -> a -> Bool -> a

Case analysis for the Bool type. bool x y p evaluates to x when p is False and evaluates 
to y when p is True. 

This is equivalent to if p then y else x; that is, one can think of it as an if-then-else 
construct with its arguments reordered.

> inc x = x + 1
> Just inc <*> Just 3
Just 4
> [inc] <*> [3]
[4] 
> ((+) <*> inc) 3
7
> ((+) <*> inc) 3  == (+) 3 (inc 
3)
True
> 



true  = λx.λy.x  

if C then P else Q  à  λc.λp.λq.cpq

Condi&onal Execu&on in the Lambda Calculus

false = λx.λy.y

true  3 4 ----β---> 3

false 3 4 ----β---> 4 

For what it is worth, the order of the arguments of a condi@onal if C then P else Q does not 
look so ‘wrong’ to me if I think that in the lambda calculus, true is a binary selector func2on 
returning its first argument, false is a binary selector func2on returning its second argument, 
and the condi2onal func2on is one that takes a truth-valued condi2onal expression and two 
other alterna2ve expressions and applies the selector func2on that is the result of the first 
expression to the two other expressions, which results in the selector func2on selec@ng one 
of the alterna2ve expressions for evalua@on.

NOTE: Lazy evalua2on is required to stop alterna2ve expressions P and Q from both being 
evaluated before they are passed to the selector func@on that is the value of the condi2onal 
expression.



Tony’s talk now turns to a very interes:ng subject which is a bit advanced and which we are 
going to cover separately in an upcoming part of this series, so we are now going to skip the next 
sec:on of his talk and jump to its final part, in which he uses foldr to implement a func:on 
called heador and also recaps on some of the key things that we have learned in his talk.



I find this one quite interes@ng. So what this func@on does, is it takes an element a, and a list of as, and it returns the first 
element out of the list. The first element.  But it could be 𝑵𝒊𝒍. And if it’s 𝑵𝒊𝒍 return the other element that I passed in as an 
argument. OK, so if this list is 𝑵𝒊𝒍, return the a that is the first argument, otherwise return the first a in the list.

What am I going to replace 𝑪𝒐𝒏𝒔 with? const. const the first argument. I agree. And 𝑵𝒊𝒍? That value there, that’s the thing 
that we are returning if 𝑵𝒊𝒍, right? So given an en@re list, if you ever see 𝑵𝒊𝒍, return that value, but if you see 𝑪𝒐𝒏𝒔, then 
return the value that is si_ng right at the head of that 𝑪𝒐𝒏𝒔. That will do exactly what our requirements is for this func@on. 
So given this list

I want to return A, that’s the first element of that list. Here is a func@on that given the A, and then the rest of the stuff a`er 
the 𝑪𝒐𝒏𝒔, just returns A. Replace 𝑪𝒐𝒏𝒔, with that. And replace 𝑵𝒊𝒍, with that default value that came in as an argument. 
That will do what it is we need to do.

The head of a list, or default for no head

Supposing 
list = 𝑪𝒐𝒏𝒔 A (𝑪𝒐𝒏𝒔 B (𝑪𝒐𝒏𝒔 C (𝑪𝒐𝒏𝒔 D 𝑵𝒊𝒍)))
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right folds replace constructors

Let’s get the head of a list, or a default for no head
:: a -> List[a] -> a

The head of a list, or default for no head
• let 𝑪𝒐𝒏𝒔 = \x _ -> x 
• let 𝑵𝒊𝒍	 = the default 



So there is the code. 

So who remembers wri@ng heador yesterday, in the workshop? We wrote heador, right? This is heador. And we did it with 
pa:ern matching and all of that. We could have just wri:en this: fold right, const, or constant, with that argument. 

Tony Morris
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The head of a list, or default for no head

Supposing 
constant x _ = x
list = 𝑪𝒐𝒏𝒔 A (𝑪𝒐𝒏𝒔 B (𝑪𝒐𝒏𝒔 C (𝑪𝒐𝒏𝒔 D 𝑵𝒊𝒍)))

heador thedefault list = foldr constant thedefault list
heador thedefault = foldr constant thedefault
heador = foldr constant

From https://hoogle.haskell.org/?hoogle=const: 

const x is a unary function which evaluates to x for all inputs. 

>>> const 42 "hello" 
42 

>>> map (const 42) [0..3] 
[42,42,42,42]

https://hoogle.haskell.org/?hoogle=const


Fold right may work on an infinite list. So if I had the list from zero to infinity, and I said, call that heador func@on back 
here

So here is a list, zero to infinity, and I say OK, pass some number in here, say four, I should get back zero, right? Because that 
is the first element of the list zero to infinity. OK? Do you want to see some code? This is an infinite list of ones:

You might not believe me, in which case, do you believe me now?

Observa:ons
• There is no order specified, however, there is associa:vity.
• foldr may work on an infinite list.

• ?

Tony Morris
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heador thedefault list = foldr constant thedefault list
heador thedefault = foldr constant thedefault
heador = foldr constant

$ infinity
[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
etc, etc

$ infinity = 1 : infinity



OK, so, heador 99 infinity. 

This will not go all the way to the right of that list, because when it gets there, there is just a 𝑪𝒐𝒏𝒔 all the way. So I should 
get 1. And I do:

Fold right just worked on an infinite list. What’s the complexity of heador? O(1). So, whether or not fold right will work on 
an infinite list depends on the strictness of the function that we are replacing 𝑪𝒐𝒏𝒔 with. 

const, the function I just used, is lazy, it ignores the second argument, and therefore it works on an infinite list.

Tony Morris
@dibblego

$ heador a = foldr const a

$ heador 99 infinity
1
$

$ heador 99 infinity

Observa:ons
• foldr may work on an infinite list.

• There is no order specified, however, there is associa:vity.
• Depends on the strictness of the given func:on.
• ?



It only replaces 𝑵𝒊𝒍 if 𝑵𝒊𝒍 ever comes to exist. It doesn’t exist in infinity.

How about this func@on: foldr 𝑪𝒐𝒏𝒔 𝑵𝒊𝒍	?  Leave the list alone. Replace 𝑪𝒐𝒏𝒔 with 𝑪𝒐𝒏𝒔 and 𝑵𝒊𝒍 with 𝑵𝒊𝒍. It does 
nothing to the list. It’s an iden2ty func2on. What’s the func@on that gives me an iden@ty for bool? That’s an interes@ng 
ques@on? I just showed it to you. I’ll let you think about that.

Tony Morris
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Observa:ons
• foldr may work on an infinite list.

• There is no order specified, however, there is associa:vity.
• Depends on the strictness of the given func:on.
• Replaces the 𝑵𝒊𝒍 constructor if it ever comes to exist

?

Observa:ons
• foldr may work on an infinite list.

• There is no order specified, however, there is associa:vity.
• Depends on the strictness of the given func:on.
• Replaces the	𝑵𝒊𝒍	constructor if it ever comes to exist

• The expression foldr 𝑪𝒐𝒏𝒔 𝑵𝒊𝒍 leaves the list unchanged.
• In other words, passing the list  constructors to foldr produces an iden%ty func:on 



Tony just explained that doing a right fold with 𝑪𝒐𝒏𝒔 and 𝑵𝒊𝒍	
produces the iden2ty func2on. 

In Parts 1 and 3 we saw that doing a leG fold with a flipped 𝑪𝒐𝒏𝒔 
and with 𝑵𝒊𝒍 produces the reverse func@on.

The next slide illustrates the above.

@philip_schwarz



∶
   /  \
	𝑥1	 ∶
       /  \ 
	 𝑥2	 ∶
          /  \ 
	 𝑥3	 ∶
              /  \
	 𝑥4 	

‥
               /   \
	 ‥	 𝑥4

           /   \ 
       ‥  𝑥3	
       /   \ 
    ‥	 𝑥2
   /   \
	[	]	 𝑥1

∶
   /  \
	𝑥4	 ∶
       /  \ 
	 𝑥3	 ∶
          /  \ 
	 𝑥2	 ∶
              /  \
	 𝑥1 	

𝑥4 ∶ (𝑥3 ∶ 𝑥2 ∶ 𝑥1 ∶ 	 )

∶
   /  \
	𝑥1	 ∶
       /  \ 
	 𝑥2	 ∶
          /  \ 
	 𝑥3	 ∶
              /  \
	 𝑥4 	

𝑥1: (𝑥2: 𝑥3: 𝑥4: 	 )

(( 	 ‥𝑥1 ‥𝑥2)‥𝑥3)‥𝑥4

var	acc	 =	[	]	
foreach(x		in	xs)
		acc		=	acc	‥x)
return	acc	

𝑓𝑜𝑙𝑑𝑟 ∶ 	 𝑥𝑠

𝑓𝑜𝑙𝑑𝑙 ‥ 	 𝑥𝑠

𝑥𝑠 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]
𝑓𝑜𝑙𝑑𝑟 	∶	 	 = 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 = 	𝑓𝑜𝑙𝑑𝑟 λ𝑥. λ𝑦. 𝑥 ∶ 𝑦 	
𝑓𝑜𝑙𝑑𝑙 ‥ 	 = 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 = 	𝑓𝑜𝑙𝑑𝑙	 λ𝑥. λ𝑦. 𝑦 ∶ 𝑥 	

𝑓𝑜𝑙𝑑𝑟	 ∷ 𝛼	 → 𝛽	 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒 	 = 𝑒
𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒 𝑥: 𝑥𝑠 	 = 𝑓	𝑥 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒	𝑥𝑠

𝑓𝑜𝑙𝑑𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → 𝛽	
𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 	 = 𝑒
𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 𝑥: 𝑥𝑠 = 𝑓𝑜𝑙𝑑𝑙	𝑓 𝑓	𝑒	𝑥 	𝑥𝑠

	∶	 = λ𝑥. λ𝑦. 𝑥 ∶ 𝑦
‥ = λ𝑥. λ𝑦. 𝑦 ∶ 𝑥
‥ = 𝑓𝑙𝑖𝑝 	∶	

              𝑤ℎ𝑒𝑟𝑒 𝑓𝑙𝑖𝑝	𝑓	𝑥	𝑦 = 𝑓	𝑦	𝑥

∶
 /  \
ℎ	 𝑡

. . 
 /   \ 
𝑡	 ℎ

equivalent	to

[𝑥4, 𝑥3, 𝑥2, 𝑥1]
𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦

𝑟𝑒𝑣𝑒𝑟𝑠𝑒
[𝑥1, 𝑥2, 𝑥3, 𝑥4]

> id  = foldr (:) []
> rev = foldl (flip (:)) 
[]
> id [1,2,3,4]
[1,2,3,4]
> rev [1,2,3,4]
[4,3,2,1]

> id  = foldr (\x y -> x:y) []
> rev = foldl (\x y -> y:x) []
> id [1,2,3,4]
[1,2,3,4]
> rev [1,2,3,4]
[4,3,2,1]

𝑟𝑒𝑝𝑙𝑎𝑐𝑒:	
∶ 	𝑤𝑖𝑡ℎ ∶
	 𝑤𝑖𝑡ℎ 	

𝑟𝑒𝑝𝑙𝑎𝑐𝑒:	
∶ 	𝑤𝑖𝑡ℎ	𝑓
	 𝑤𝑖𝑡ℎ	𝑒

var	acc	=	e
foreach(x		in	xs)
		acc		=	f	(acc,	x)
return	acc	

folding a list right and le5 using Cons and Nil results in the iden6ty and reverse func:ons



The key intui@on is, the thing to take aways is, a leG fold does a loop, and a right fold does constructor replacement. 

If you always remember those two things you’ll never go wrong.

LeG fold will never work on an infinite list. We can see that in the loop. Right fold might. And these are just independent 
observa@ons. They have nothing to do with programming languages. I have used Haskell as the example. These things are 
independent of the programming language. 

So we could solve all these problems, as we just did. 

Tony Morris
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the key intui:on
• leK fold performs a loop, just like we are familiar with
• right fold performs constructor replacement 

from this we derive some observa:ons
• leK fold will never work on an infinite list
• right fold may work on an infinite list

from this we also solve problems

• product 
• append
• map
• length
• …

product = foldl (*) 1
append = flip (foldr 𝑪𝒐𝒏𝒔)
map f = foldr (𝑪𝒐𝒏𝒔 . f) 𝑵𝒊𝒍
length = foldl (const . (+ 1)) 0 

Summary



I just want to be very clear on this: fold leG does a loop, fold right does constructor replacement, and there are no footnotes 
required, this is precise. 

I don’t want you to ring me up next week and say ‘you told me it does constructor replacement and it didn’t this @me’. Yes it did. It 
always will. OK. There are no footnotes required. 

Tony Morris
@dibblego

• intui:vely, this is what list folds do
• foldl performs a loop
• foldr performs constructor replacement

• this intui:on is precise and requires no footnotes

𝑵𝒊𝒍

The End

Thanks!

Summary



In the last part of his talk, Tony explained that whether or not fold right will work on an infinite list depends on the 
strictness of the func@on that we are replacing 𝑪𝒐𝒏𝒔 with. 

What about in Scala? Is there a no@on of an infinite list? Can a fold right func@on be wri:en which, when used  to 
replace 𝑪𝒐𝒏𝒔	with a suitable func@on, is able to handle an infinite list? 

In Part 1 I said that we weren’t going to be modelling infinity in any of the Scala code in this series of slide decks. I 
have changed my mind about that. I do want to look at how to do right folds over large and infinite lists. And the 
technique that we’ll be using to do that is also used to address limita@ons in the accumulator technique. So I want 
to use it for that too.

Which limita@ons in the accumulator technique I hear you ask? Let’s cover that in this deck. And since we are there, 
let’s cover a technique that is the dual of the accumulator trick, i.e. tupling. 

And how can an infinite list be created in Scala? We can use the iterate func@on. Let’s cover that in this deck too. 

Also, there is something closely related to folding that we have not looked at yet, i.e. scanning. Let’s also cover that 
in this deck. 

So that means the following subjects will be addressed in Part 5:
• how to do right folds over large and infinite lists
• how to get around limita@ons in the applicability of the accumulator trick



In the next four slides we see how Sergei Winitzki 
describes the iterate func@on in his book.



2.3 Converting a single value into a sequence

An aggrega2on converts (“folds”) a sequence into a single value; the opposite opera2on (“unfolding”) converts a single value into 
a sequence. An example of this task is to compute the sequence of decimal digits for a given integer:

  def digitsOf(x: Int): Seq[Int] = ???

  scala> digitsOf(2405)
  res0: Seq[Int] = List(2, 4, 0, 5)

We cannot implement digitsOf using map, zip, or foldLeft, because these methods work only if we already have a sequence; 
but the func2on digitsOf needs to create a new sequence. We could create a sequence via the expression (1 to n) if the 
required length of the sequence were known in advance. However, the func@on digitsOf must produce a sequence whose length 
is determined by a condi2on that we cannot easily evaluate in advance.

A general “unfolding” opera2on needs to build a sequence whose length is not determined in advance. This kind of sequence is 
called a stream. The elements of a stream are computed only when necessary (unlike the elements of List or Array, which are all 
computed in advance). The unfolding opera2on will compute the next element on demand; this creates a stream. We can then 
apply takeWhile to the stream, in order to stop it when a certain condi2on holds. Finally, if required, the truncated stream may 
be converted to a list or another type of sequence. In this way, we can generate a sequence of ini2ally unknown length according 
to any given requirements.

The Scala library has a general stream-producing func2on Stream.iterate. This func2on has two arguments, the ini2al value and a 
func2on that computes the next value from the previous one:

  scala> Stream.iterate(2) { x => x + 10 }
  res0: Stream[Int] = Stream(2, ?)

The stream is ready to start compu2ng the next elements of the sequence (so far, only the first element, 2, has been computed). Sergei Winitzki
sergei-winitzki-11a6431



In order to see the next elements, we need to stop the stream at a finite size and then convert the result to a list:

  scala> Stream.iterate(2) { x => x + 10 }.take(6).toList
  res1: List[Int] = List(2, 12, 22, 32, 42, 52)

If we try to evaluate toList on a stream without first limi2ng its size via take or takeWhile, the program will keep producing 
more elements of the stream un2l it runs out of memory and crashes.

Streams are similar to sequences, and methods such as map, filter, and flatMap are also defined for streams. For instance, the 
method drop skips a given number of ini2al elements:

  scala> Seq(10, 20, 30, 40, 50).drop(3)
  res2: Seq[Int] = List(40, 50)

  scala> Stream.iterate(2) { x => x + 10 }.drop(3)
  res3: Stream[Int] = Stream(32, ?)

This example shows that in order to evaluate drop(3), the stream had to compute its elements up to 32 (but the subsequent 
elements are s2ll not computed).

To figure out the code for digitsOf, we first write this func2on as a mathema2cal formula. To compute the digits for, say, n = 
2405, we need to divide n repeatedly by 10, ge_ng a sequence nk of intermediate numbers (n0 = 2405, n1 = 240, ...) and the 
corresponding sequence of last digits, nk mod 10 (in this example: 5, 0, ...). The sequence nk is defined using mathema2cal 
induc2on:

• Base case: n0 = n, where n is the given ini@al integer.
• Induc2ve step: nk+1 =  nk

10   for k = 1, 2, ...

Here nk
10 	is the mathema@cal nota@on for the integer division by 10. 

Sergei Winitzki
sergei-winitzki-11a6431



Let us tabulate the evalua@on of the sequence nk for n = 2405:
 

The numbers nk will remain all zeros a`er k = 4. It is clear that the useful part of the sequence is before it becomes all zeros. In this 
example, the sequence nk needs to be stopped at k = 4. The sequence of digits then becomes [5, 0, 4, 2], and we need to reverse it 
to obtain [2, 4, 0, 5]. For reversing a sequence, the Scala library has the standard method reverse. So, a complete implementa@on 
for digitsOf is:

  def digitsOf(n: Int): Seq[Int] =
    if (n == 0) Seq(0) else { // n == 0 is a special case.
      Stream.iterate(n) { nk => nk / 10 }
      .takeWhile { nk => nk != 0 }
      .map { nk => nk % 10 }
      .toList.reverse
  }

We can shorten the code by using the syntax such as (_ % 10) instead of { nk => nk % 10 },

  def digitsOf(n: Int): Seq[Int] =
    if (n == 0) Seq(0) else { // n == 0 is a special case.
      Stream.iterate(n) (_ / 10 )
      .takeWhile ( _ != 0 )
      .map ( _ % 10 )
      .toList.reverse
  } Sergei Winitzki

sergei-winitzki-11a6431



The type signature of the method Stream.iterate can be wriNen as

  def iterate[A](init: A)(next: A => A): Stream[A]

and shows a close correspondence to a defini6on by mathema6cal induc6on. The base case is the first value, init, and 
the induc6ve step is a func6on, next, that computes the next element from the previous one. It is a general way of 
crea6ng sequences whose length is not determined in advance.

I want to show you another example of using iterate. There is one example that I find quite interes:ng, 
which is the computa:on of fibonacci numbers using a technique which is called tupling and which is 
the dual of the accumulator technique that we have already seen. 

Before we can look at that example, we are going to do the following:
• The next two slides are from Part 2 and remind us of how the accumulator technique can 

some:mes be used to transform a program so that it becomes tail recursive. Just skip the slides if 
they are s:ll fresh in your mind.

• The two slides aKer that, remind us of how the accumulator technique can some:mes be used to 
improve the efficiency of a program.

• The subsequent slide briefly explains how the tupling technique can some:mes be used to increase 
the efficiency of a program.



The func2on body of lengthS will evaluate the induc2ve step, that is, the “else” part of the “if/else”, about 100_000 2mes. Each 
2me, the sub-expression with nested computa2ons 1+(1+(...)) will get larger.

This intermediate sub-expression needs to be held somewhere in memory, un2l at some point the func2on body goes into the 
base case and returns a value. When that happens, the en2re intermediate sub-expression will contain about 100_000_nested 
func2on calls s2ll wai2ng to be evaluated.

This sub-expression is held in a special area of memory called stack memory, where the not-yet-evaluated nested func2on calls 
are held in the order of their calls, as if on a “stack”. Due to the way computer memory is managed, the stack memory has a fixed 
size and cannot grow automa2cally. So, when the intermediate expression becomes large enough, it causes an overflow of the 
stack memory and crashes the program.

A way to avoid stack overflows is to use a trick called tail recursion. Using tail recursion means rewri2ng the code so that all 
recursive calls occur at the end posi2ons (at the “tails”) of the func2on body. In other words, each recursive call must be itself the 
last computa2on in the func2on body, rather than placed inside other computa2ons. Here is an example of tail-recursive code:

  def lengthT(s: Seq[Int], res: Int): Int =
    if (s.isEmpty)
      res
    else
      lengthT(s.tail, 1 + res)

In this code, one of the branches of the if/else returns a fixed value without doing any recursive calls, while the other branch 
returns the result of a recursive call to lengthT(...). In the code of lengthT, recursive calls never occur within any sub-
expressions.

def lengthS(s: Seq[Int]): Int =
  if (s.isEmpty) 0
  else 1 + lengthS(s.tail)

lengthS(Seq(1, 2, ..., 100000))
= 1 + lengthS(Seq(2, ..., 100000))
= 1 + (1 + lengthS(Seq(3, ..., 100000)))
= ...

Sergei Winitzki
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It is not a problem that the recursive call to lengthT has some sub-expressions such as 1 + res as its arguments, because all these 
sub-expressions will be computed before lengthT is recursively called.

The recursive call to lengthT is the last computa@on performed by this branch of the if/else. A tail-recursive func@on can have 
many if/else or match/case branches, with or without recursive calls; but all recursive calls must be always the last expressions 
returned.

The Scala compiler has a feature for checking automa@cally that a func@on’s code is tail-recursive : the @tailrec annota2on. If a 
func@on with a @tailrec annota2on is not tail-recursive, or is not recursive at all, the program will not compile.

  @tailrec def lengthT(s: Seq[Int], res: Int): Int =
  if (s.isEmpty) res
  else lengthT(s.tail, 1 + res)

Let us trace the evalua@on of this func@on on an example:

    lengthT(Seq(1,2,3), 0)
  = lengthT(Seq(2,3), 1 + 0) // = lengthT(Seq(2,3), 1)
  = lengthT(Seq(3), 1 + 1)   // = lengthT(Seq(3), 2)
  = lengthT(Seq(), 1 + 2)    // = lengthT(Seq(), 3)
  = 3

All sub-expressions such as 1 + 1 and  1 + 2  are computed before recursive calls to lengthT. Because of that, sub-expressions 
do not grow within the stack memory. This is the main benefit of tail recursion. 

How did we rewrite the code of lengthS to obtain the tail-recursive code of lengthT? An important difference between lengthS 
and lengthT is the addi@onal argument, res, called the accumulator argument. This argument is equal to an intermediate result of 
the computa2on. The next intermediate result (1 + res) is computed and passed on to the next recursive call via the 
accumulator argument. In the base case of the recursion, the func@on now returns the accumulated result, res, rather than 0, 
because at that @me the computa@on is finished. Rewri2ng code by adding an accumulator argument to achieve tail recursion is 
called the accumulator technique or the “accumulator trick”.

def lengthS(s: Seq[Int]): Int =
    if (s.isEmpty) 0
    else 1 + lengthS(s.tail)

Sergei Winitzki
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That was a reminder of how the accumulator technique can some:mes be used to transform 
a program so that it becomes tail recursive. 

The next two slides remind us of how the accumulator technique can some:mes be used to 
improve the efficiency of a program.

@philip_schwarz



If we rewrite a recursive func2on using the accumulator technique then we end up with a tail recursive func2on, i.e. one that is stack-safe. In 
Part 3 we saw that some@mes the version using the accumulator is more efficient than the version that doesn’t, but at other @mes it can be less 
efficient, or even just as efficient.
 
Here is how Richard Bird expresses the case where it is more efficient: ”By adding an extra parameter to a func2on we can some2mes improve 
the running 2me. The most important use of this idea is to eliminate possibly expensive ⧺	opera2ons from a program“

T 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 𝑛 = Θ 𝑛2 T reverse′ 𝑛 = Θ 𝑛

reverse′	 ∷ 	 α → [α]
reverse′	 𝑥𝑠	 = 𝑎𝑐𝑐𝑢𝑚 	 𝑥𝑠

𝑎𝑐𝑐𝑢𝑚	𝑤𝑠 	 = 𝑤𝑠
𝑎𝑐𝑐𝑢𝑚	𝑤𝑠 𝑥 ∶ 𝑥𝑠 = 𝑎𝑐𝑐𝑢𝑚 𝑥 ∶ 𝑤𝑠 	𝑥𝑠

reverse	 ∷ 	 α → [α]
 reverse 	 = 	 	
	reverse 𝑥 ∶ 𝑥𝑠 	 = 	 𝑟𝑒𝑣𝑒𝑟𝑠𝑒	𝑥𝑠	⧺	[𝑥]

𝑇 concat 𝑚, 𝑛 = Θ(𝑚𝑛) 𝑇 concat′ 𝑚, 𝑛 = Θ(𝑚2𝑛)

append	 ∷ 	 [α] → [α] → [α] 
append	 [	] 	 = 𝑦𝑠	
append	 𝑥 ∶ 𝑥𝑠 	𝑦𝑠 = 𝑥 ∶ (𝑎𝑝𝑝𝑒𝑛𝑑	𝑥𝑠	𝑦𝑠)

append	′	 ∷ [α] → [α] → [α] 
append	′	𝑥𝑠	𝑦𝑠 = 𝑎𝑐𝑐𝑢𝑚	𝑦𝑠 𝑟𝑒𝑣𝑒𝑟𝑠𝑒	𝑥𝑠

𝑎𝑐𝑐𝑢𝑚	𝑦𝑠 	 = 𝑦𝑠
𝑎𝑐𝑐𝑢𝑚	𝑦𝑠 𝑥 ∶ 𝑥𝑠 = 𝑎𝑐𝑐𝑢𝑚 𝑥 ∶ 𝑦𝑠 	𝑥𝑠

𝑇 append 𝑚, 𝑛 = Θ(𝑚) 𝑇 append′ 𝑚, 𝑛 = Θ(𝑚)

concat′	 ∷ 	 [ α ] → [α]
concat′	 𝑥𝑠𝑠	 = 𝑎𝑐𝑐𝑢𝑚 	 𝑥𝑠𝑠

𝑎𝑐𝑐𝑢𝑚	𝑤𝑠 	 = 𝑤𝑠
𝑎𝑐𝑐𝑢𝑚	𝑤𝑠 𝑥𝑠 ∶ 𝑥𝑠𝑠 = 𝑎𝑐𝑐𝑢𝑚 𝑤𝑠	⧺	𝑥𝑠 	𝑥𝑠𝑠

concat	 ∷ 	 [ α ] → [α]
concat 	 = 	 	
concat 𝑥𝑠: 𝑥𝑠𝑠 	 = 	 𝑥𝑠	⧺	𝑐𝑜𝑛𝑐𝑎𝑡	𝑥𝑠𝑠

⧺	=	append

the accumulator version
 is more efficient

the accumulator version
 is less efficient

the accumulator version
 is just as efficient



reverse	 ∷ 	 α → [α]
reverse	 = 	 𝑓𝑜𝑙𝑑𝑟	𝑠𝑛𝑜𝑐 	
                          𝒘𝒉𝒆𝒓𝒆	𝑠𝑛𝑜𝑐	𝑥	𝑥𝑠 = append	 𝑥𝑠	[𝑥]	

reverse′	 ∷ 	 α → [α]
reverse′	 = 	 𝑓𝑜𝑙𝑑𝑙	𝑝𝑟𝑒𝑓𝑖𝑥 	
                           𝒘𝒉𝒆𝒓𝒆	𝑝𝑟𝑒𝑓𝑖𝑥	𝑥𝑠	𝑥 = 𝑥	 :	 𝑥𝑠	

append	 ∷ 	 [α] → [α] → [α] 
append	𝑥𝑠	𝑦𝑠	 = 	 𝑓𝑜𝑙𝑑𝑟 ∶ 	𝑦𝑠	xs

append′	 ∷ 	 [α] → [α] → [α] 
append′	𝑥𝑠	𝑦𝑠	 = 	 𝑓𝑜𝑙𝑑𝑙	𝑠𝑐𝑜𝑛	𝑦𝑠	(reverse′	xs)	
	 𝒘𝒉𝒆𝒓𝒆	𝑠𝑐𝑜𝑛	𝑥𝑠	𝑥 = 𝑥	 :	 𝑥𝑠	

concat′	 ∷ 	 [ α ] → [α]
concat′	 = 	 𝑓𝑜𝑙𝑑𝑙	append	 [	]

concat	 ∷ 	 [ α ] → [α]
concat	 = 	 𝑓𝑜𝑙𝑑𝑟	append	 [	]

Since we saw, also in Part 3, that eliminating foldr leads to a recursive definition of a function and eliminating 
foldl leads to a tail-recursive definition of the function, one that uses an accumulator, this slide is simply a 
restatement of the previous one in which the recursive definition has been replaced by a definition using foldr 
and the tail-recursive definition (using an accumulator) has been replaced by a definition using foldl.

T 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 𝑛 = Θ 𝑛2 T reverse′ 𝑛 = Θ 𝑛

𝑇 concat 𝑚, 𝑛 = Θ(𝑚𝑛) 𝑇 concat′ 𝑚, 𝑛 = Θ(𝑚2𝑛)

𝑇 append 𝑚, 𝑛 = Θ(𝑚) 𝑇 append′ 𝑚, 𝑛 = Θ(𝑚)

the 𝑓𝑜𝑙𝑑𝑙 version
 is more efficient

the 𝑓𝑜𝑙𝑑𝑙 version
 is less efficient

the 𝑓𝑜𝑙𝑑𝑙 version
 is just as efficient



That was a reminder of how the accumulator technique can some:mes be used to improve 
the efficiency of a program. 

The next slide briefly explains how the tupling technique can some:mes be used to increase 
the efficiency of a program.



7.4 Tupling
The technique of program op2misa2on known as tupling is dual to that of accumula2ng parameters: a func2on is generalised, 
not by including an extra argument, but by including an extra result. Our aim in this sec@on is to illustrate this important 
technique through a number of instruc@ve examples.
…
7.4.2 Fibonacci func6on
Another example where tupling can improve the order of growth of the 2me complexity of a program is provided by the Fibonacci 
func@on.

    𝑓𝑖𝑏	0	 = 0
	 𝑓𝑖𝑏	1	 = 1
	 𝑓𝑖𝑏 𝑛 + 2 = 𝑓𝑖𝑏	𝑛 + 𝑓𝑖𝑏 𝑛 + 1

The @me to evaluate 𝑓𝑖𝑏	𝑛	 by these equa@ons is given by T 𝑓𝑖𝑏 𝑛 , where

	 T 𝑓𝑖𝑏 0 = 𝑂 1
	 T 𝑓𝑖𝑏 1 = 𝑂 1
	 T 𝑓𝑖𝑏 𝑛 + 2 = T 𝑓𝑖𝑏 𝑛 +T 𝑓𝑖𝑏 𝑛 + 1 + 𝑂 1

The	 timing	 function	 T 𝑓𝑖𝑏 	 therefore	 satismies	 equations	 very	 like	 that	 of	 𝑓𝑖𝑏	itself.	 It	 is	 easy	 to	 check	 by	 induction	 that	
T 𝑓𝑖𝑏 𝑛 = Θ 𝑓𝑖𝑏	𝑛 ,	so	the	time	to	compute	𝑓𝑖𝑏	is	proportional	to	the	size	of	the	result.	Since	𝑓𝑖𝑏 𝑛 = Θ(𝜙𝑛),	where	𝜙	is	
the	golden	ratio	𝜙 = (1 + 5)/2,	the	time	is	therefore	exponential	in	𝑛.	Now	consider	the	function	𝑓𝑖𝑏𝑡𝑤𝑜	demined	by

    𝑓𝑖𝑏𝑡𝑤𝑜	𝑛 = (𝑓𝑖𝑏	𝑛, 𝑓𝑖𝑏	(𝑛 + 1))
    
Clearly, 𝑓𝑖𝑏	𝑛 = 𝑓𝑠𝑡(𝑓𝑖𝑏𝑡𝑤𝑜	𝑛). Synthesis of a recursive program for 𝑓𝑖𝑏𝑡𝑤𝑜 yields

 𝑓𝑖𝑏𝑡𝑤𝑜	0	 = (0,1)
 𝑓𝑖𝑏𝑡𝑤𝑜 𝑛 + 1 = 𝑏, 𝑎 + 𝑏 , 	where 𝑎, 𝑏 = 𝑓𝑖𝑏𝑡𝑤𝑜	𝑛

It is clear that this program takes linear 2me. In this example the tupling strategy leads to a drama2c increase in efficiency, from 
exponen2al to linear.

Richard Bird



𝑓𝑖𝑏	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
	 𝑓𝑖𝑏	𝒁𝒆𝒓𝒐	 = 	 𝒁𝒆𝒓𝒐
	 𝑓𝑖𝑏 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐 	 = 	 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐
	 𝑓𝑖𝑏 𝑺𝒖𝒄𝒄 𝑺𝒖𝒄𝒄	𝑛 	 = 	 𝑓𝑖𝑏 𝑺𝒖𝒄𝒄	𝑛 + 𝑓𝑖𝑏	𝑛

𝑓𝑖𝑏	 ∷ 	 𝑵𝒂𝒕 → 𝑵𝒂𝒕 
𝑓𝑖𝑏	 = 	 𝑓𝑠𝑡 ; 𝑓𝑜𝑙𝑑𝑛	𝑔	(𝒁𝒆𝒓𝒐, 𝑺𝒖𝒄𝒄	𝒁𝒆𝒓𝒐)
                  where 𝑔 𝑚, 𝑛 = (𝑛,𝑚 + 	𝑛)

𝑓𝑜𝑙𝑑𝑛	 ∷ 	 𝛼	 → 𝛼 → 𝛼 → 𝑵𝒂𝒕 → 𝛼
𝑓𝑜𝑙𝑑𝑛	ℎ	𝑐	𝒁𝒆𝒓𝒐	 = 	 𝑐
𝑓𝑜𝑙𝑑𝑛	ℎ	𝑐 𝑺𝒖𝒄𝒄	𝑛 	 = 	 ℎ 𝑓𝑜𝑙𝑑𝑛	ℎ	𝑐	𝑛

We have actually already been introduced (in Part 1) to the idea of computing Fibonacci 
numbers more efficiently by using tupling, but in a less formal way. See below for a reminder.

introduce tupling

def fib(n: Nat): Nat = {

  def fst(pair: (Nat, Nat)): Nat = 
    pair match { case (n,_) => n }

  def g(pair: (Nat, Nat)): (Nat, Nat) = 
    pair match { case (m,n) => (n, m + n) }

  fst( foldn(g, (Zero, Succ(Zero)), n) )
}

def foldn[A](h: A => A, c: A, n: Nat): A =
  n match {
    case Zero => c
    case Succ(n) => h(foldn(h,c,n))
  }

val fib: Nat => Nat = {
  case Zero          => Zero
  case Succ(Zero)    => Succ(Zero)
  case Succ(Succ(n)) => fib(Succ(n)) + fib(n)
}

introduce tupling

@philip_schwarz



On the previous slide we saw a defini8on of the fibonacci func8on that uses tupling in conjunc8on with foldn, which 
operates on the Nat type, i.e. Zero, Succ(Zero), Succ(Succ(Zero)), etc.

What if we want to use Int rather than Nat? Just for curiosity: does it make any sense to try and use foldLe# to write a 
defini8on of the fibonacci func8on that uses tupling? 

It does make some sense. Here is how we can do it:

  def fibFoldLeft(n: Int): Long =
    (1 to n).foldLeft ((0L, 1L)){  
      case ((f1, f2), _) => (f2, f1 + f2)  
    }._1

The odd thing about the above func8on is that while it creates a sequence 1 to n,  it uses the sequence purely to 
determine how many 8mes to iterate: it doesn’t actually use the values in the sequence – e.g. it would work just as well 
if the sequence were 101 to 100 + n  rather than 1 to n.

S8ll, it works. Let’s compare the 8me taken to compute a large-ish Fibonacci number using both fibFoldLe# and the 
tradi8onal defini8on of the Fibonacci func8on:

def fibonacci(n: Int): Long = n match {
  case 0 => 0L
  case 1 => 1L
  case n => 
    fibonacci(n - 1) + fibonacci(n - 2)
}



def eval[A](expression: => A): (A, Duration) = {
  def getTime = System.currentTimeMillis()
  val startTime = getTime
  val result = expression
  val endTime = getTime
  val duration = endTime - startTime
  (result, Duration(duration,"ms"))
}

def fibonacci(n: Int): Long = n match {
  case 0 => 0L
  case 1 => 1L
  case n => 
    fibonacci(n - 1) + fibonacci(n - 2)
}

def fibFoldLeft(n: Int): BigDecimal =
  (1 to n).foldLeft((BigDecimal(0), BigDecimal(1))){  
    case ((f1, f2), _) => (f2, f1 + f2)  
  }._1

scala> val (result, duration) = eval(fibonacci(50))
val result: Long = 12586269025
val duration: Duration = 82000 milliseconds

scala> val (result, duration) = 
eval(fibFoldLeft(50))
val result: BigDecimal = 12586269025
val duration: Duration = 1 millisecond

scala> fibonacci(10_000)
java.lang.StackOverflowError
 at fibonacci(<console>:1)
 at fibonacci(<console>:4)

  …

scala> val (result, duration) = eval(fibFoldLeft(10_000))
val result: BigDecimal = 3.364476487643178326662161200510745E+2089
val duration: Duration = 8 milliseconds

Here on the left is an eval function that we can use to time the 
execution of different definitions of the fibonacci function.

Compu@ng fibonacci of 50 with 
the standard recursive defini@on 
takes a stonking 82 seconds!!!.

Compu@ng fibonacci 
of 10,000 fails due to a 
stack overflow error.

Compu@ng fibonacci of 50 
with fibFoldLeft takes 
only 1 millisecond!!!

Compu@ng fibonacci 
of 10,000 takes only 
8 milliseconds!!!

Here we change the return 
type to Bigdecimal to allow 
for very large results.

@philip_schwarz



Eleven slides ago I said I wanted to show you a second example of using the iterate func@on. Now that we have gone through the following we 
are finally in a posi@on to look at that example:
• a refresher of the accumulator technique 
• a brief introduc@on to the tupling technique
• a look at how to implement a Fibonacci func@on using tupling
The example consists of implemen@ng the Fibonacci func@on using iterate. We are going to use the same tupling technique that we have just 
used in fibFoldLeft. When Sergei Winitzki introduced the iterate func@on, we saw that it is a func@on that returns a Stream, e.g. 
Stream.iterate(2) { x => x + 10 }. Since Scala 2.13 however, the Stream class is deprecated in favour of LazyList, so we are going to 
use LazyList.iterate, whose signature is otherwise iden@cal to that of Stream.iterate.
The fibIterate func@on below is similar to fibFoldLeft from the previous slide in that it uses the same tupling approach, but it is simpler 
because it doesn’t have to create a sequence whose data it doesn’t even need. It also performs the same way.

def fibIterate(n: Int) : BigDecimal =
  LazyList.iterate ((BigDecimal(0), BigDecimal(1))){ 
    case (f1, f2) => (f2, f1 + f2) 
  }(n)._1

scala> val (result, duration) = eval(fibIterate(50))
val result: BigDecimal = 12586269025
val duration: Duration = 1 millisecond

scala> val (result, duration) = eval(fibIterate(10_000))
val result: BigDecimal = 3.364476487643178326662161200510745E+2089
val duration: Duration = 7 milliseconds

/** An infinite LazyList that repeatedly applies a given function
  * to a start value.

  *  @param start the start value of the LazyList
  *  @param f     the function that's repeatedly applied
  *  @return the Stream returning the infinite sequence 
  *               of values `start, f(start), f(f(start)), ...`
  */
def iterate[A](start: A)(f: A => A): LazyList[A] = …

h+ps://www.scala-lang.org/blog/2018/06/13/scala-213-collec=ons.html

LazyList Is Preferred Over Stream

Stream is deprecated in favor of LazyList. As its name suggests, 
a  LazyList is a linked list whose elements are lazily evaluated. An 
important seman5c difference with Stream is that in LazyList both the 
head and the tail are lazy, whereas in Stream only the tail is lazy.

Instead of using LazyList’s take func@on, we 
get the nth element of the LazyList, which is a 
tuple, and take the 1st element of the la:er.

fibIterate is as fast 
as fibFoldLeft.



Here is the Haskell version fibIterate. Just 
like the Scala version, it is blazingly fast.

> fibIterate 50
12586269025
> fibIterate 10000
336447648764317832666216120051075433103021484606800639065647699746800814421666623681555955136337340255820653326808361593737
347904838652682630408924630564318873545443695598274916066020998841839338646527313000888302692356736131351175792974378544137
521305205043477016022647583189065278908551543661595829872796829875106312005754287834532155151038708182989697916131278562650
331954871402142875326981879620469360978799003509623022910263681314931952756302278376284415403605844025721143349611800230912
082870460889239623288354615057765832712525460935911282039252853934346209042452489294039017062338889910858410651831733604374
707379085526317643257339937128719375877468974799263058370657428301616374089691784263786242128352581128205163702980893320999
057079200643674262023897831114700540749984592503606335609338838319233867830561364353518921332797329081337326426526339897639
227234078829281779535805709936910491754708089318410561463223382174656373212482263830921032977016480547262438423748624114530
938122065649140327510866433945175121615265453613331113140424368548051067658434935238369596534280717687753283482343455573667
197313927462736291082106792807847180353291311767789246590899386354593278945237776744061922403376386740040213303432974969020
283281459334188268176838930720036347956231171031012919531697946076327375892535307725523759437884345040677155557790564504430
166401194625809722167297586150269684431469520346149322911059706762432685159928347098912847067408620085871350162603120719031
720860940812983215810772820763531866246112782455372085323653057759564300725177443150515396009051686032203491632226408852488
524331580515348496224348482993809050704834824493274537326245677558790891871908036620580095947431500524025327097469953187707
243768259074199396322659841474981936092852239450397071654431564213281576889080587831834049174345562705202235648464951961124
602683139709750693826487066132645076650746115126775227486215986425307112984411826226610571635150692600298617049454250474913
78115154139941550671256271197133252763631939606902895650288268608362241082050562430701794976171121233066073310059947366875
>

fibIterate n = fst (fib2 !! n) 
           where fib2 = iterate f (0,1) 
                        where f (a,b) = (b,a+b)

fib 0 = 0
fib 1 = 0
fib n = fib (n-1) + fib (n-2)

> fib 10
55
> fib 20
6765
> fib 30
832040
> fib 40 
I got bored of waiting 
so I interrupted it

Remember how the naive Scala defini@on of the fibonacci func@on 
was taking over 80 seconds to compute the 50th Fibonacci number? 
Well the Haskell version seems to be even slower!



Next, let’s look at some of the things that Richard Bird 
has to say about the iterate func@on.

@philip_schwarz



…there are three kinds of list:

• A finite list, which is built from (:) and [] ; for example, 1:2:3:[]
• A par)al list, which is built from (:) and undefined; for example, the list filter (<4) [1..] is the par2al list 

1:2:3:undefined. We know there is no integer a`er 3 that is less than 4, but Haskell is an evaluator, not a theorem prover, so 
it ploughs away without success looking for more answers.

• An infinite list, which is built from (:) alone; for example, [1..] is the infinite list of nonnega@ve integers. 

All three kinds of list arise in everyday programming. Chapter 9 is devoted to exploring the world of infinite lists and their uses. For 
example, the prelude func@on iterate returns an infinite list:

        𝑖𝑡𝑒𝑟𝑎𝑡𝑒	 ∷ 𝑎	 → 𝑎 → 𝑎	 → 𝑎
	 𝑖𝑡𝑒𝑟𝑎𝑡𝑒	𝑓	𝑥 = 𝑥 ∶ 𝑖𝑡𝑒𝑟𝑎𝑡𝑒	𝑓	(𝑓	𝑥)

In par@cular, 𝑖𝑡𝑒𝑟𝑎𝑡𝑒 +1 	1	is an infinite list of the posi@ve integers, a value we can also write as [1..].

Richard Bird

The type of   1 `div` 0  is an integral number. 

  ghci> :type 1 `div` 0
  1 `div` 0 :: Integral a => a

The expression 1 `div` 0 is therefore well-formed and 
possesses a value.

  ghci> 1 `div` 0
  *** Exception: divide by zero

GHCi returns an error message. So what is the type of 1 `div` 
0? The answer is that it is a special value, wri:en 
mathema@cally as ⊥	and pronounced ‘bobom’. 

In fact, Haskell provides a predefined name for this value, 
except that it is called undefined, not ⊥.

  ghci> :type undefined
  undefined :: a

  ghci> undefined
  *** Exception: Prelude.undefined

Haskell is not expected to produce the value ⊥.  It may return 
with an error message, or remain perpetually silent, 
compu@ng an infinite loop, un@l we interrupt the 
computa@on. It may even cause GHCi to crash.



…consider the following three defini@ons of the standard prelude func@on 𝑖𝑡𝑒𝑟𝑎𝑡𝑒:

	 𝑖𝑡𝑒𝑟𝑎𝑡𝑒1	𝑓	𝑥 = 𝑥 ∶ 𝑖𝑡𝑒𝑟𝑎𝑡𝑒1	𝑓 𝑓	𝑥
        𝑖𝑡𝑒𝑟𝑎𝑡𝑒2	𝑓	𝑥 = 𝑥𝑠	 𝑤ℎ𝑒𝑟𝑒	𝑥𝑠 = 𝑥 ∶ 𝑚𝑎𝑝	𝑓	𝑥𝑠
        𝑖𝑡𝑒𝑟𝑎𝑡𝑒3	𝑓	𝑥 = 𝑥 ∶ 𝑚𝑎𝑝	𝑓	(𝑖𝑡𝑒𝑟𝑎𝑡𝑒3	𝑓	𝑥)

All three func@ons have type 𝑎	 → 𝑎 → 𝑎	 → 𝑎 	 and produce an infinite list of iterates of 𝑓 applied to 𝑥. The three func@ons are 
equal… The first defini@on is the one used in the standard prelude, but it does not create a cyclic list. The second defini@on does, 
and the third is obtained from the second by elimina@ng the	𝑤ℎ𝑒𝑟𝑒 clause. 

Assuming 𝑓	𝑥 can be computed in constant @me, the first defini@on takes 𝛩 𝑛 	steps to compute the first 𝑛 elements of the result, 
but the third takes 𝛩 𝑛2 	steps:

        𝑖𝑡𝑒𝑟𝑎𝑡𝑒3 2 ∗ 	1
	 = 1 ∶ 𝑚𝑎𝑝 2 ∗ 𝑖𝑡𝑒𝑟𝑎𝑡𝑒3 2 ∗ 1
	 = 1 ∶ 2 ∶ 𝑚𝑎𝑝 2 ∗ 	(𝑚𝑎𝑝 2 ∗ 	(𝑖𝑡𝑒𝑟𝑎𝑡𝑒3 2 ∗ 1) )
	 = 1 ∶ 2 ∶ 4 ∶ 𝑚𝑎𝑝 2 ∗ 	(𝑚𝑎𝑝 2 ∗ 	(𝑚𝑎𝑝 2 ∗ 	(𝑖𝑡𝑒𝑟𝑎𝑡𝑒3 2 ∗ 1) ))

Evalua@ng the 𝑛th element requires 𝑛 applica@ons of 2 ∗ , so it takes 𝛩 𝑛2 	to produce the first 𝑛 elements.

That leaves the second defini@on. Does it take linear or quadra2c @me? The evalua@on of 𝑖𝑡𝑒𝑟𝑎𝑡𝑒2 2 ∗ 	1	proceeds as follows:

	 𝑥𝑠	 𝑤ℎ𝑒𝑟𝑒	𝑥𝑠 = 1 ∶ 𝑚𝑎𝑝	 2 ∗ 	 𝑥𝑠
	 1: 𝑦𝑠	 𝑤ℎ𝑒𝑟𝑒	𝑦𝑠 = 𝑚𝑎𝑝	 2 ∗ 	 (1: 𝑦𝑠)
	 1: 2: 𝑧𝑠	 𝑤ℎ𝑒𝑟𝑒	𝑧𝑠 = 𝑚𝑎𝑝	 2 ∗ 	 (2: 𝑧𝑠)
	 1: 2: 4: 𝑡𝑠	 𝑤ℎ𝑒𝑟𝑒	𝑡𝑠 = 𝑚𝑎𝑝	 2 ∗ 	 (4: 𝑧𝑠)

Each element of the result is produced in constant @me, so 𝑖𝑡𝑒𝑟𝑎𝑡𝑒2 2 ∗ 	1	takes 𝛩 𝑛 	steps to produce 𝑛 elements. Richard Bird



Now that we have covered the iterate func@on and the tupling technique, let’s turn 
to the subject of scanning. 

  In the next two slides we see how Sergei Winitzki describes scanning in his book. 



2.4 Transforming a sequence into another sequence

We have seen methods such as map and zip that transform sequences into sequences. However, these methods cannot express a 
general transforma2on where the elements of the new sequence are defined by induc2on and depend on previous elements. 

An example of this kind is compu@ng the par2al sums of a given sequence 𝑥𝑖, say 𝑏𝑘 = ∑!"#$%& 𝑥𝑖 . This formula defines 𝑏0 = 0, 𝑏1 =
𝑥0, 𝑏2 = 𝑥0 + 𝑥1, 𝑏3 = 𝑥0 + 𝑥1 + 𝑥2, etc. A defini@on via mathema2cal induc2on may be wri:en like this:

• Base case: 𝑏0 = 0
• Induc2ve step: Given 𝑏𝑘, we define 𝑏𝑘 + 1 = 𝑏𝑘 + 𝑥𝑘  for 𝑘 = 0,1,2, …

The Scala library method scanLeft implements a general, sequence to sequence transforma@on defined in this way. The code 
implemen@ng the par@al sums is 

  def partialSums(xs: Seq[Int]): Seq[Int] = 
    xs.scanLeft(0){ (x, y) => x + y }

  scala> partialSums(Seq(1, 2, 3, 4))
  val res0: Seq[Int] = List(0, 1, 3, 6, 10)

The first argument of scanLeft is the base case, and the second argument is an updater func2on describing the induc2ve step. In 
general, the type of elements of the second sequence is different from that of the first sequence. The updater func2on takes an 
element of the first sequence and a previous element of the second sequence, and returns the next element of the second 
sequence. Note that the result of scanLeft is one element longer than the original sequence, because the base case provides an 
ini2al value.

Un@l now, we have seen that foldLeft is sufficient to re-implement almost every method that works on sequences, such as map, 
filter, or flaben. Let us show, as an illustra2on, how to implement the method scanLeft via foldLeft. 

Sergei Winitzki
sergei-winitzki-11a6431



In the implementa@on, the accumulator contains the previous element of the second sequence together with a growing fragment 
of that sequence, which is updated as we iterate over the first sequence. The code is

  def scanLeft[A, B](xs: Seq[A])(b0: B)(next: (B, A) => B): Seq[B] = {
    val init: (B, Seq[B]) = (b0, Seq(b0))
    val (_, result) = xs.foldLeft(init) {
      case ((b, seq), x) =>
        val newB = next(b, x)
        (newB, seq :+ newB)
    }
    result
  }

To implement the (nameless) updater func2on for foldLeft we used the Scala feature that makes it easier to define func@ons with 
several arguments containing tuples. In our case, the updater func2on in foldLeft has two arguments: the first is a tuple (B, 
Seq[B]), the second is a value of type A. The pa:ern expression case ((b, seq), x) => appears to match a nested tuple. In 
reality, this expression matches the two arguments of the updater func2on and, at the same @me, destructures the tuple argument 
as (b, seq).

Sergei Winitzki
sergei-winitzki-11a6431



  def scanLeft[A, B](xs: Seq[A])(b0: B)(next: (B, A) => B): Seq[B] = {
    val init: (B, Seq[B]) = (b0, Seq(b0))
    val (_, result) = xs.foldLeft(init) {
      case ((b, seq), x) =>
        val newB = next(b, x)
        (newB, seq :+ newB)
    }
    result
  }

While in his explana@on of the scanLeG func@on, Sergei showed us (for illustra@on only) that it is possible to 
implement scanLeG using foldLeG,  I was a bit surprised by the fact that he did not men@on that the meaning 
of the scanLeG func@on is very closely related to that of foldLeG. 

That close rela@onship is one of the things we are going to learn in the next five slides, in which Richard Bird 
explains le` and right scans.

Before we do that, I am just going to have a go at a Haskell version of Sergei’s implementa@on of scanLeG in 
terms of foldLeG (again, for illustra@on only).

scanleft f e xs = snd (foldl g (e, [e]) xs) 
                  where g (e, res) x = (next, res ++ [next]) 
                                       where next = f e x

Haskell> scanleft (+) 0 
[1,2,3,4]
[0,1,3,6,10]
>

scala> scanleft(List(1,2,3,4))(0)(_+_)
val res0: Seq[Int] = List(0, 1, 3, 6, 10)
scala>

@philip_schwarz



4.5.2 Scan le#
Some@mes it is convenient to apply a 𝑓𝑜𝑙𝑑𝑙	opera@on to every ini@al segment of a list. This is done by a func@on	 𝑠𝑐𝑎𝑛𝑙	
pronounced ‘scan leG’. For example,

	 𝑠𝑐𝑎𝑛𝑙 ⊕ 	𝑒 𝑥0, 𝑥1, 𝑥2 = [𝑒, 𝑒 ⊕ 𝑥0, (𝑒 ⊕ 𝑥0) ⊕ 𝑥1, ((𝑒 ⊕ 𝑥0) ⊕ 𝑥1) ⊕ 𝑥2]

In par@cular,	𝑠𝑐𝑎𝑛𝑙 + 	0	computes the list of accumulated sums of a list of numbers, and	𝑠𝑐𝑎𝑛𝑙 × 	1	[1. . 𝑛]	computes a list of 
the first 𝑛 factorial numbers.		…	We will give two programs for	𝑠𝑐𝑎𝑛𝑙; the first is the clearest, while the second is more efficient.
For the first program we will need the func@on inits  that returns the list of all ini2al segments of a list. For Example,	

        𝑖𝑛𝑖𝑡𝑠 𝑥0, 𝑥1, 𝑥2 = [[	], 𝑥0 , 𝑥0, 𝑥1 , 𝑥0, 𝑥1, 𝑥2 ]

The empty list has only one segment, namely the empty list itself; A list 𝑥: 𝑥𝑠 	has the empty list as its shortest ini2al segment, 
and all the other ini2al segments begin with 𝑥 and are followed by an ini2al segment of 𝑥𝑠. Hence

	 𝑖𝑛𝑖𝑡𝑠	 ∷ α → α
	 𝑖𝑛𝑖𝑡𝑠 	 = [ 	 ]
	 𝑖𝑛𝑖𝑡𝑠 𝑥: 𝑥𝑠 = 	 ∶ 𝑚𝑎𝑝	(𝑥: )(𝑖𝑛𝑖𝑡𝑠	𝑥𝑠)	

The func@on 𝑖𝑛𝑖𝑡𝑠	can be defined more succinctly as an instance of 𝑓𝑜𝑙𝑑𝑟	:

	 𝑖𝑛𝑖𝑡𝑠 = 𝑓𝑜𝑙𝑑𝑟	𝑓 [	] 	𝑤ℎ𝑒𝑟𝑒	𝑓	𝑥	𝑥𝑠𝑠 = 	 ∶ 𝑚𝑎𝑝 𝑥: 	𝑥𝑠𝑠

Now we define

	 𝑠𝑐𝑎𝑛𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → [𝛽]
	 𝑠𝑐𝑎𝑛𝑙	𝑓	𝑒	 = 𝑚𝑎𝑝 𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 	. 𝑖𝑛𝑖𝑡𝑠

This is the clearest defini@on of 𝑠𝑐𝑎𝑛𝑙 but it leads to an inefficient program. The func@on 𝑓 is applied k	 @mes in the evalua@on of Richard Bird



𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒	 on a list of length k and, since the ini2al segments of a list of length n are lists with lengths 0,1,…,n, the func@on 𝑓 is 
applied about n2/2 @mes in total.

Let us now synthesise a more efficient program. The synthesis is by an induc2on argument on 𝑥𝑠 so we lay out the calcula@on in 
the same way.

<…not shown…>

In summary, we have derived 

	 𝑠𝑐𝑎𝑛𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → [𝛽]
	 𝑠𝑐𝑎𝑛𝑙	𝑓	𝑒 	 = [𝑒]
        𝑠𝑐𝑎𝑛𝑙 𝑓	𝑒 𝑥: 𝑥𝑠 	= 𝑒 ∶ 	𝑠𝑐𝑎𝑛𝑙	𝑓 𝑓	𝑒	𝑥 	𝑥𝑠 

This program is more efficient in that func@on 𝑓 is applied exactly n  @mes on a list of length n.

Richard Bird

𝑠𝑐𝑎𝑛𝑙 ⊕ 	𝑒 𝑥0, 𝑥1, 𝑥2
⬇

[𝑒, 𝑒 ⊕ 𝑥0, (𝑒 ⊕ 𝑥0) ⊕ 𝑥1, ((𝑒 ⊕ 𝑥0) ⊕ 𝑥1) ⊕ 𝑥2]

𝑓𝑜𝑙𝑑𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 	 = 𝑒
𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 𝑥: 𝑥𝑠 = 𝑓𝑜𝑙𝑑𝑙	𝑓 𝑓	𝑒	𝑥 	𝑥𝑠	

Note the similarities and differences between 𝑠𝑐𝑎𝑛𝑙 and 𝑓𝑜𝑙𝑑𝑙, e.g. the left hand sides of their equations are the 
same, and their signatures are very similar, but	𝑠𝑐𝑎𝑛𝑙 returns [𝛽]	rather than 𝛽 and while 𝑓𝑜𝑙𝑑𝑙 is tail recursive, 
𝑠𝑐𝑎𝑛𝑙 isn’t.

𝑠𝑐𝑎𝑛𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → [𝛽]
𝑠𝑐𝑎𝑛𝑙	𝑓	𝑒 	 = [𝑒]
𝑠𝑐𝑎𝑛𝑙 𝑓	𝑒 𝑥: 𝑥𝑠 	= 𝑒 ∶ 	𝑠𝑐𝑎𝑛𝑙	𝑓 𝑓	𝑒	𝑥 	𝑥𝑠 

𝑓𝑜𝑙𝑑𝑙 ⊕ 	𝑒 𝑥0, 𝑥1, 𝑥2
⬇

((𝑒 ⊕ 𝑥0) ⊕ 𝑥1) ⊕ 𝑥2



𝑠𝑐𝑎𝑛𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → [𝛽]
𝑠𝑐𝑎𝑛𝑙 𝑓	𝑒	𝑥𝑠 = 𝑒 ∶ 	𝑠𝑐𝑎𝑛𝑙'𝑓	𝑒	𝑥𝑠
	 where	𝑠𝑐𝑎𝑛𝑙'	𝑓	𝑒 	 = 	
                                          𝑠𝑐𝑎𝑛𝑙'	𝑓	𝑒 𝑦: 𝑦𝑠 = 𝑠𝑐𝑎𝑛𝑙	𝑓 𝑓	𝑒	𝑦 	𝑦𝑠

𝑠𝑐𝑎𝑛𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → [𝛽]
𝑠𝑐𝑎𝑛𝑙	𝑓	𝑒 	 = [𝑒]
𝑠𝑐𝑎𝑛𝑙 𝑓	𝑒 𝑥: 𝑥𝑠 	= 𝑒 ∶ 	𝑠𝑐𝑎𝑛𝑙	𝑓 𝑓	𝑒	𝑥 	𝑥𝑠 

𝑠𝑐𝑎𝑛𝑙 ⊕ 	𝑒 𝑥0, 𝑥1, 𝑥2
⬇

[𝑒, 𝑒 ⊕ 𝑥0, (𝑒 ⊕ 𝑥0) ⊕ 𝑥1, ((𝑒 ⊕ 𝑥0) ⊕ 𝑥1) ⊕ 𝑥2]

By the way, just for completeness, the appendix of Richard Bird’s 
book, contains the following addi@onal defini@on of 𝑠𝑐𝑎𝑛𝑙 

And just for comparison, here are the other defini@ons of 𝑠𝑐𝑎𝑛𝑙

𝑖𝑛𝑖𝑡𝑠	 ∷ α → α
𝑖𝑛𝑖𝑡𝑠 	 = [ 	 ]
𝑖𝑛𝑖𝑡𝑠 𝑥: 𝑥𝑠 = 	 ∶ 𝑚𝑎𝑝	(𝑥: )(𝑖𝑛𝑖𝑡𝑠	𝑥𝑠)	

𝑠𝑐𝑎𝑛𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → [𝛽]
𝑠𝑐𝑎𝑛𝑙	𝑓	𝑒	 = 𝑚𝑎𝑝 𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 	. 𝑖𝑛𝑖𝑡𝑠



4.5.3 Scan right
The dual computa@on is given by scanr.

	 𝑠𝑐𝑎𝑛𝑟	 ∷ 𝛼	 → 𝛽 → 𝛽 → 𝛽 → 𝛼 → [𝛽]
	 𝑠𝑐𝑎𝑛𝑟	𝑓	𝑒	 = 𝑚𝑎𝑝 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒 	. 𝑡𝑎𝑖𝑙𝑠

The func@on 𝑡𝑎𝑖𝑙𝑠 returns the tail segments of a list. For example,

        𝑡𝑎𝑖𝑙𝑠 𝑥0, 𝑥1, 𝑥2 = [ 𝑥0, 𝑥1, 𝑥2 , 𝑥1, 𝑥2 , 𝑥2 , [	]]

Note that while 𝑖𝑛𝑖𝑡𝑠 produces a list of ini2al segments in increasing order of length, tails produces the tail segments in 
decreasing order of length. We can define 𝑡𝑎𝑖𝑙𝑠 by

	 𝑡𝑎𝑖𝑙𝑠	 ∷ α → α
	 𝑡𝑎𝑖𝑙𝑠 	 = [ 	 ]
	 𝑡𝑎𝑖𝑙𝑠 𝑥: 𝑥𝑠 = 𝑥: 𝑥𝑠 ∶ 𝑡𝑎𝑖𝑙𝑠	𝑥𝑠

The corresponding efficient program for 𝑠𝑐𝑎𝑛𝑟 is given by

	 𝑠𝑐𝑎𝑛𝑟	 ∷ 𝛼	 → 𝛽 → 𝛽 → 𝛽 → 𝛼 → [𝛽]
	 𝑠𝑐𝑎𝑛𝑟	𝑓	𝑒 	 = [𝑒]
	 𝑠𝑐𝑎𝑛𝑟 𝑓	𝑒 𝑥: 𝑥𝑠 	= 𝑓	𝑥 ℎ𝑒𝑎𝑑	𝑦𝑠 	:	ys
                                               where	𝑦𝑠 = 𝑠𝑐𝑎𝑛𝑟	𝑓	𝑒	𝑥𝑠

Richard Bird

𝑠𝑐𝑎𝑛𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → [𝛽]
𝑠𝑐𝑎𝑛𝑙	𝑓	𝑒	 = 𝑚𝑎𝑝 𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 	. 𝑖𝑛𝑖𝑡𝑠

𝑖𝑛𝑖𝑡𝑠 𝑥0, 𝑥1, 𝑥2 = [[	], 𝑥0 , 𝑥0, 𝑥1 , 𝑥0, 𝑥1, 𝑥2 ]

𝑖𝑛𝑖𝑡𝑠	 ∷ α → α
𝑖𝑛𝑖𝑡𝑠	 	 = [ 	 ]
𝑖𝑛𝑖𝑡𝑠 𝑥: 𝑥𝑠 = 	 ∶ 𝑚𝑎𝑝	(𝑥: )(𝑖𝑛𝑖𝑡𝑠	𝑥𝑠)	

𝑠𝑐𝑎𝑛𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → [𝛽]
𝑠𝑐𝑎𝑛𝑙	𝑓	𝑒 	 = [𝑒]
𝑠𝑐𝑎𝑛𝑙 𝑓	𝑒 𝑥: 𝑥𝑠 	= 𝑒 ∶ 	𝑠𝑐𝑎𝑛𝑙	𝑓 𝑓	𝑒	𝑥 	𝑥𝑠 

𝑠𝑐𝑎𝑛𝑟 ⊕ 	𝑒 𝑥0, 𝑥1, 𝑥2
⬇

[(𝑥0⊕ (𝑥1⊕ (𝑥2⊕𝑒))), 𝑥1⊕ (𝑥2⊕𝑒), 𝑥2⊕𝑒, 𝑒]

𝑠𝑐𝑎𝑛𝑙 ⊕ 	𝑒 𝑥0, 𝑥1, 𝑥2
⬇

[𝑒, 𝑒 ⊕ 𝑥0, (𝑒 ⊕ 𝑥0) ⊕ 𝑥1, ((𝑒 ⊕ 𝑥0) ⊕ 𝑥1) ⊕ 𝑥2]

for reference: a reminder of what 𝑠𝑐𝑎𝑛𝑟 and 𝑠𝑐𝑎𝑛𝑙 do



𝑠𝑐𝑎𝑛𝑟	 ∷ 𝛼	 → 𝛽 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑠𝑐𝑎𝑛𝑟	𝑓	𝑒	 = 𝑚𝑎𝑝 𝑓𝑜𝑙𝑑𝑟	𝑓	𝑒 	. 𝑡𝑎𝑖𝑙𝑠

𝑠𝑐𝑎𝑛𝑟 ⊕ 	𝑒 𝑥0, 𝑥1, 𝑥2
⬇

[(𝑥0⊕ (𝑥1⊕ (𝑥2⊕𝑒))), 𝑥1⊕ (𝑥2⊕𝑒), 𝑥2⊕𝑒, 𝑒]

𝑠𝑐𝑎𝑛𝑙 ⊕ 	𝑒 𝑥0, 𝑥1, 𝑥2
⬇

[𝑒, 𝑒 ⊕ 𝑥0, (𝑒 ⊕ 𝑥0) ⊕ 𝑥1, ((𝑒 ⊕ 𝑥0) ⊕ 𝑥1) ⊕ 𝑥2]

𝑡𝑎𝑖𝑙𝑠 𝑥0, 𝑥1, 𝑥2 = [ 𝑥0, 𝑥1, 𝑥2 , 𝑥1, 𝑥2 , 𝑥2 , [	]]𝑖𝑛𝑖𝑡𝑠 𝑥0, 𝑥1, 𝑥2 = [[	], 𝑥0 , 𝑥0, 𝑥1 , 𝑥0, 𝑥1, 𝑥2 ]

𝑠𝑐𝑎𝑛𝑙	 ∷ 𝛽	 → 𝛼	 → 𝛽 → 𝛽 → 𝛼 → [𝛽]
𝑠𝑐𝑎𝑛𝑙	𝑓	𝑒	 = 𝑚𝑎𝑝 𝑓𝑜𝑙𝑑𝑙	𝑓	𝑒 	. 𝑖𝑛𝑖𝑡𝑠

𝑖𝑛𝑖𝑡𝑠	 ∷ α → α
𝑖𝑛𝑖𝑡𝑠 	 = [ 	 ]
𝑖𝑛𝑖𝑡𝑠 𝑥: 𝑥𝑠 = 	 ∶ 𝑚𝑎𝑝 𝑥: 	(𝑖𝑛𝑖𝑡𝑠	𝑥𝑠)	

𝑡𝑎𝑖𝑙𝑠	 ∷ α → α
𝑡𝑎𝑖𝑙𝑠 	 = [ 	 ]
𝑡𝑎𝑖𝑙𝑠 𝑥: 𝑥𝑠 = 𝑥: 𝑥𝑠 ∶ 𝑡𝑎𝑖𝑙𝑠	𝑥𝑠

𝑖𝑛𝑖𝑡𝑠 2,3,4 = [[	], 2 , 2,3 , 2,3,4 ] 𝑡𝑎𝑖𝑙𝑠 2,3,4 = [ 2,3,4 , 3,4 , 4 , [	]]

𝑠𝑐𝑎𝑛𝑙 + 	0 2,3,4 = [0, 2, 5, 9] 𝑠𝑐𝑎𝑛𝑟 + 	0 2,3,4 = [9, 7, 4, 0]

𝑓𝑜𝑙𝑑𝑙 + 	0	[	] =0	
𝑓𝑜𝑙𝑑𝑙 + 	0 2 = 2
𝑓𝑜𝑙𝑑𝑙 + 	0 2,3 = 5
𝑓𝑜𝑙𝑑𝑙 + 	0 2,3,4 = 9

𝑓𝑜𝑙𝑑𝑟 + 	0 2,3,4 = 9
𝑓𝑜𝑙𝑑𝑟 + 	0 3,4 = 7
𝑓𝑜𝑙𝑑𝑟 + 	0 4 = 4
𝑓𝑜𝑙𝑑𝑟 + 	0	[	] =0	

𝑠𝑐𝑎𝑛𝑟 + 	0 2,3,4
⬇

[(2 + (3 + (4 + 0))), 3 + (4 + 0), 4 + 0, 0]

𝑠𝑐𝑎𝑛𝑙 + 	0 2,3,4
⬇

[0, 0 + 2, 0 + 2 + 3, 0 + 2 + 3 + 4]

Let’s try out 𝑠𝑐𝑎𝑛𝑙 and 
𝑠𝑐𝑎𝑛𝑟 with (+) and 0

𝑠𝑐𝑎𝑛𝑙

    applies 𝑓𝑜𝑙𝑑𝑙 to every 
    ini2al segment of a list

𝑠𝑐𝑎𝑛𝑟

    applies 𝑓𝑜𝑙𝑑𝑟 to every 
    tail segment of a list

@philip_schwarz



Now that we have seen the iterate func@on and the scanning func@ons, let’s see 
how Sergei Winitzki describes that fact that folding, itera2ng and scanning are 
what we use in func2onal programming to implement mathema2cal induc2on.  



2.5 Summary

We have seen a broad overview of transla@ng mathema2cal induc2on into Scala code.

What problems can we solve now?
• Compute mathema2cal expressions involving arbitrary recursion.
• Use the accumulator trick to enforce tail recursion.
• Implement func@ons with type parameters.
• Use arbitrary induc2ve (i.e., recursive) formulas to:

• convert sequences to single values (aggrega2on or “folding”);
• create new sequences from single values (“unfolding”);
• transform exis@ng sequences into new sequences.

Table 2.1: Implemen@ng mathema2cal induc2on

Table 2.1 shows Scala code implemen2ng those tasks. Itera2ve calcula2ons are implemented by transla2ng mathema2cal 
induc2on directly into code. In the func2onal programming paradigm, the programmer does not need to write any loops or use 
array indices. Instead, the programmer reasons about sequences as mathema2cal values: “Star2ng from this value, we get that 
sequence, then transform it into this other sequence,” etc. This is a powerful way of working with sequences, dic2onaries, and 
sets. Many kinds of programming errors (such as an incorrect array index) are avoided from the outset, and the code is shorter 
and easier to read than conven2onal code wriben using loops.

Sergei Winitzki
sergei-winitzki-11a6431



The next slide is a reminder of the Func2onal Programming triad of folding, scanning 
and itera2on, with some very simple examples of their usage in Scala and Haskell. 



fold

λ

Haskell> foldl (+) 0 [1,2,3,4]
10

Haskell> take 4 (iterate (+ 1) 1)
[1,2,3,4]

Haskell> scanl (+) 0 [1,2,3,4]
[0,1,3,6,10]

Haskell>

scala> List(1,2,3,4).foldLeft(0)(_+_)
val res0: Int = 10

scala> Stream.iterate(1)(_ + 1).take(4).toList
val res1: List[Int] = List(1, 2, 3, 4)

scala> List(1,2,3,4).scanLeft(0)(_+_)
val res2: List[Int] = List(0, 1, 3, 6, 10)

scala>

Implementing	mathematical	induction



Remember when we tried to compute the ten-thousandth Fibonacci number using the tradi@onal recursive defini@on of the 
fibonacci func@on, and we got a stack overflow error?

With a func@on like Factorial, which makes a single recursive call, we can address the problem simply by using the accumulator 
technique to write a tail recursive version of the func@on. 

But some@mes it is not possible to do that. E.g. if a func@on makes more than one recursive call to itself, it is not possible to rewrite 
those two calls as one.

In the par@cular case of the Fibonacci func@on, which calls itself recursively twice, we can get round the problem by complemen@ng 
the accumulator technique with tupling: 

On the next slide we conclude this part with Sergei Winitzki describing the limita@ons of the accumulator technique. 

def fibonacci(n: Int): Long = n match {
  case 0 => 0L
  case 1 => 1L
  case n => 
    fibonacci(n - 1) + fibonacci(n - 2)
}

scala> fibonacci(10_000)
java.lang.StackOverflowError
 at fibonacci(<console>:1)
 at fibonacci(<console>:4)

  …

def factorial(n: Int): Long = {
    if (n == 0) 1L
    else n * factorial(n – 1L)
  }

faciter 0 acc = acc
faciter n acc = faciter (n - 1) (n * acc)

fac n = faciter n 1 > map fac [0..10]
[1,1,2,6,24,120,720,5040,40320,362880,3628800]

fibiter 0 (a,b) = a
fibiter n (a,b) = fibiter (n-1) (b,a+b)

fib n = fibiter n (0,1)

> map fib [0..10]
[0,1,1,2,3,5,8,13,21,34,55]

@philip_schwarz



Sergei Winitzki
sergei-winitzki-11a6431

We cannot implement a non-tail-recursive func2on without stack overflow 
(i.e., without unlimited growth of intermediate expressions). 

The accumulator trick does not always work! In some cases, it is 
impossible to implement tail recursion in a given recursive computa2on. 
An example of such a computa2on is the “merge-sort” algorithm where 
the func2on body must contain two recursive calls within a single 
expression. (It is impossible to rewrite two recursive calls as one.)

What if our recursive code cannot be transformed into tail-recursive code 
via the accumulator trick, but the recursion depth is so large that stack 
overflows occur? There exist special tricks (e.g., “con2nua2ons”” and 
“trampolines”) that convert non-tail-recursive code into itera2ve code 
without stack overflows. Those techniques are beyond the scope of this 
chapter.



That’s all for Part 4.  See you in Part 5.


