
Refactoring: A First Example
Martin Fowler’s First Example of Refactoring, Adapted to Scala

follow in the footsteps of refactoring guru Martin Fowler
as he improves the design of a program in a simple yet instructive refactoring example

whose JavaScript code and associated refactoring is herein adapted to Scala
based on the second edition of ‘the’ Refactoring book

Martin Fowler
@martinfowler

@philip_schwarzslides by https://www.slideshare.net/pjschwarz

https://www.slideshare.net/pjschwarz/natural-transformations

@philip_schwarz

Neither Martin Fowler nor the Refactoring book need any introduction.

I have always been a great fan of both, and having finally found the time to study in detail the refactoring
example in the second edition of the book, I would like to share the experience of adapting to Scala such
a useful example, which happens to be written in JavaScript.

Another reason for looking in detail at the example is that it can be used as a good refactoring code kata.

While we’ll be closely following Martin Fowler’s footsteps as he works through the refactoring example,
and while those of you who don’t already own a copy of the book, will no doubt learn a lot about the
chapter containing the example, what we’ll see is obviously only a small part of what makes the book
such a must have for anyone interested in refactoring.

The next four slides consist of excerpts in which Martin Fowler introduces the program whose design he
will be improving through refactoring.

So I’m going to start this book with an example of refactoring. I’ll talk about how refactoring works and will give you a sense of the refactoring process. I can
then do the usual principles-style introduction in the next chapter.

With any introductory example, however, I run into a problem. If I pick a large program, describing it and how it is refactored is too complicated for a mortal
reader to work through. (I tried this with the original book—and ended up throwing away two examples, which were still pretty small but took over a hundred
pages each to describe.) However, if I pick a program that is small enough to be comprehensible, refactoring does not look like it is worthwhile.

I’m thus in the classic bind of anyone who wants to describe techniques that are useful for real-world programs.

Frankly, it is not worth the effort to do all the refactoring that I’m going to show you on the small program I will be using.

But if the code I’m showing you is part of a larger system, then the refactoring becomes important. Just look at my example and imagine it in the context of a
much larger system.

I chose JavaScript to illustrate these refactorings, as I felt that this language would be readable by the most amount of people.

You shouldn’t find it difficult, however, to adapt the refactorings to whatever language you are currently using.

I try not to use any of the more complicated bits of the language, so you should be able to follow the refactorings with only a cursory knowledge of JavaScript.

My use of JavaScript is certainly not an endorsement of the language.

Although I use JavaScript for my examples, that doesn’t mean the techniques in this book are confined to JavaScript.

The first edition of this book used Java, and many programmers found it useful even though they never wrote a single Java class.

I did toy with illustrating this generality by using a dozen different languages for the examples, but I felt that would be too confusing for the reader.

Still, this book is written for programmers in any language.

Outside of the example sections, I’m not making any assumptions about the language.

I expect the reader to absorb my general comments and apply them to the language they are using.

Indeed, I expect readers to take the JavaScript examples and adapt them to their language.

Martin Fowler
@martinfowler

Image a company of theatrical players who go out to various events performing plays.

Typically, a customer will request a few plays and the company charges them based on the size of the audience and the kind of play they perform.

There are currently two kinds of plays that the company performs: tragedies and comedies.

As well as providing a bill for the performance, the company gives its customers “volume credits” which they can use for discounts on future
performances—think of it as a customer loyalty mechanism.

The data for their bills also comes in a JSON file:

invoices.json…

[
{
"customer": "BigCo",
"performances": [
{
"playID": "hamlet",
"audience": 55

},
{
"playID": "as-like",
"audience": 35

},
{
"playID": "othello",
"audience": 40

}
]

}
]

The performers store data about their plays in a simple JSON file that looks something like this:

plays.json…

{
"hamlet": {"name": "Hamlet", "type": "tragedy"},
"as-like": {"name": "As You Like It", "type": "comedy"},
"othello": {"name": "Othello", "type": "tragedy"}

}

Martin Fowler
@martinfowler

function statement (invoice, plays) {
let totalAmount = 0;
let volumeCredits = 0;
let result = `Statement for ${invoice.customer}\n`;
const format = new Intl.NumberFormat("en-US",

{ style: "currency", currency: "USD", minimumFractionDigits: 2 }).format;

for (let perf of invoice.performances) {
const play = plays[perf.playID];
let thisAmount = 0;

switch (play.type) {

case "tragedy":
thisAmount = 40000;
if (perf.audience > 30)

thisAmount += 1000 * (perf.audience - 30);
break;

case "comedy":
thisAmount = 30000;
if (perf.audience > 20)

thisAmount += 10000 + 500 * (perf.audience - 20);
thisAmount += 300 * perf.audience;
break;

default:
throw new Error(`unknown type: ${play.type}`);

}

// add volume credits
volumeCredits += Math.max(perf.audience - 30, 0);
// add extra credit for every ten comedy attendees
if ("comedy" === play.type) volumeCredits += Math.floor(perf.audience / 5);

// print line for this order
result += ` ${play.name}: ${format(thisAmount/100)} (${perf.audience} seats)\n`;
totalAmount += thisAmount;

}

result += `Amount owed is ${format(totalAmount/100)}\n`;
result += `You earned ${volumeCredits} credits\n`;
return result;

}

The code that prints the bill is this simple function.

What are your thoughts on the design of this program? The first thing I’d say is that it’s tolerable
as it is—a program so short doesn’t require any deep structure to be comprehensible. But
remember my earlier point that I have to keep examples small. Imagine this program on a larger
scale—perhaps hundreds of lines long. At that size, a single inline function is hard to understand.

Given that the program works, isn’t any statement about its structure merely an aesthetic
judgment, a dislike of “ugly” code? After all, the compiler doesn’t care whether the code is ugly
or clean. But when I change the system, there is a human involved, and humans do care. A poorly
designed system is hard to change—because it is difficult to figure out what to change and how
these changes will interact with the existing code to get the behavior I want. And if it is hard to
figure out what to change, there is a good chance that I will make mistakes and introduce bugs.

Thus, if I’m faced with modifying a program with hundreds of lines of code, I’d rather it be
structured into a set of functions and other program elements that allow me to understand more
easily what the program is doing. If the program lacks structure, it’s usually easier for me to add
structure to the program first, and then make the change I need.

Martin Fowler
@martinfowler

function statement (invoice, plays) {
let totalAmount = 0;
let volumeCredits = 0;
let result = `Statement for ${invoice.customer}\n`;
const format = new Intl.NumberFormat("en-US",

{ style: "currency", currency: "USD", minimumFractionDigits: 2 }).format;

for (let perf of invoice.performances) {
const play = plays[perf.playID];
let thisAmount = 0;

switch (play.type) {

case "tragedy":
thisAmount = 40000;
if (perf.audience > 30)

thisAmount += 1000 * (perf.audience - 30);
break;

case "comedy":
thisAmount = 30000;
if (perf.audience > 20)

thisAmount += 10000 + 500 * (perf.audience - 20);
thisAmount += 300 * perf.audience;
break;

default:
throw new Error(`unknown type: ${play.type}`);

}

// add volume credits
volumeCredits += Math.max(perf.audience - 30, 0);
// add extra credit for every ten comedy attendees
if ("comedy" === play.type) volumeCredits += Math.floor(perf.audience / 5);

// print line for this order
result += ` ${play.name}: ${format(thisAmount/100)} (${perf.audience} seats)\n`;
totalAmount += thisAmount;

}

result += `Amount owed is ${format(totalAmount/100)}\n`;
result += `You earned ${volumeCredits} credits\n`;
return result;

}

In this case, I have a couple of changes that the users would like to make. First, they want a
statement printed in HTML. Consider what impact this change would have. I’m faced with adding
conditional statements around every statement that adds a string to the result. That will add a host
of complexity to the function. Faced with that, most people prefer to copy the method and change
it to emit HTML. Making a copy may not seem too onerous a task, but it sets up all sorts of
problems for the future. Any changes to the charging logic would force me to update both
methods—and to ensure they are updated consistently. If I’m writing a program that will never
change again, this kind of copy-and-paste is fine. But if it’s a long-lived program, then
duplication is a menace.

This brings me to a second change. The players are looking to perform more kinds of plays: they
hope to add history, pastoral, pastoral-comical, historical-pastoral, tragical-historical, tragical-
comical-historical-pastoral, scene individable, and poem unlimited to their repertoire. They
haven’t exactly decided yet what they want to do and when. This change will affect both the way
their plays are charged for and the way volume credits are calculated. As an experienced
developer I can be sure that whatever scheme they come up with, they will change it again within
six months. After all, when feature requests come, they come not as single spies but in battalions.

Martin Fowler
@martinfowler

@philip_schwarz

In this slide deck we are going to
1. Translate Martin Fowler’s initial Javascript program into Scala
2. Follow in his refactoring footsteps, transforming our Scala program so that it is easier to

understand and easier to change.

On the very few occasions when a decision is made that turns out not to be a good fit in a Scala
context, we’ll make an alternative decision that is more suitable for the Scala version of the program.

To keep the pace snappy, we’ll sometimes coalesce a few of Martin’s refactoring nanosteps or
microsteps into one (see next slide for a definition of these two types of refactoring step).

https://blog.thecodewhisperer.com/permalink/breaking-through-your-refactoring-rut

Some Helpful Terms

In my lexicon, a nanostep is something like adding a new field to a class. Another nanostep is finding
code that wrote to an existing field and adding code that writes the corresponding value to the new
field, keeping their values synchronized with each other. Yet another is remembering the keystroke for
“extract variable” so that you can simply type the expression (right-hand value) that you have in mind
first, then assign it to a new variable (and let the computer compute the type of the variable for you).

A microstep is a collection of related nanosteps, like introducing an interface and changing a few
classes to implement that interface, adding empty/default method implementations to the classes that
now need it. Another is pushing a value up out of the constructor into its parameter list. Yet another is
remembering that you can either extract a value to a variable before extracting code into a method or
you can extract the method first, then introduce the value as a parameter, and which keystrokes in
NetBeans make that happen.

A move is a collection of related microsteps, like inverting the dependency between A and B, where A
used to invoke B, but now A fires an event which B subscribes to and handles.

J. B. Rainsberger
 @jbrains

https://blog.thecodewhisperer.com/permalink/breaking-through-your-refactoring-rut

invoices.json…
[

{
"customer": "BigCo",
"performances": [

{
"playID": "hamlet",
"audience": 55

},
{

"playID": "as-like",
"audience": 35

},
{

"playID": "othello",
"audience": 40

}
]

}
]

plays.json…
{

"hamlet": {"name": "Hamlet", "type": "tragedy"},
"as-like": {"name": "As You Like It", "type": "comedy"},
"othello": {"name": "Othello", "type": "tragedy"}

}

case class Invoice(customer: String, performances: List[Performance])

case class Performance(playID: String, audience: Int)

case class Play(name: String, `type`: String)

val invoices: List[Invoice] = List(
Invoice(customer = "BigCo",

performances = List(
Performance(playID = "hamlet",

audience = 55),
Performance(playID = "as-like",

audience = 35),
Performance(playID = "othello",

audience = 40)))
)

val plays: Map[String, Play] = Map (
"hamlet" -> Play(name = "Hamlet", `type` = "tragedy"),
"as-like" -> Play(name = "As You Like It", `type` = "comedy"),
"othello" -> Play(name = "Othello", `type` = "tragedy")

)

Let’s knock up some Scala data structures
for plays, invoices and performances.

function statement (invoice, plays) {
let totalAmount = 0;
let volumeCredits = 0;
let result = `Statement for ${invoice.customer}\n`;
const format = new Intl.NumberFormat("en-US",

{ style: "currency", currency: "USD", minimumFractionDigits: 2 }).format;

for (let perf of invoice.performances) {
const play = plays[perf.playID];
let thisAmount = 0;

switch (play.type) {

case "tragedy":
thisAmount = 40000;
if (perf.audience > 30)

thisAmount += 1000 * (perf.audience - 30);
break;

case "comedy":
thisAmount = 30000;
if (perf.audience > 20)

thisAmount += 10000 + 500 * (perf.audience - 20);
thisAmount += 300 * perf.audience;
break;

default:
throw new Error(`unknown type: ${play.type}`);

}

// add volume credits
volumeCredits += Math.max(perf.audience - 30, 0);
// add extra credit for every ten comedy attendees
if ("comedy" === play.type) volumeCredits += Math.floor(perf.audience / 5);

// print line for this order
result += ` ${play.name}: ${format(thisAmount/100)} (${perf.audience} seats)\n`;
totalAmount += thisAmount;

}

result += `Amount owed is ${format(totalAmount/100)}\n`;
result += `You earned ${volumeCredits} credits\n`;
return result;

}

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
val play = plays(perf.playID)
var thisAmount = 0

play.`type` match

case "tragedy" =>

thisAmount = 40_000
if perf.audience > 30
then thisAmount += 1_000 * (perf.audience - 30)

case "comedy" =>

thisAmount = 30_000
if perf.audience > 20
then thisAmount += 10_000 + 500 * (perf.audience - 20)
thisAmount += 300 * perf.audience

case other =>

throw IllegalArgumentException(s"unknown type ${play.`type`}")

// add volume credits
volumeCredits += math.max(perf.audience - 30, 0)
// add extra credit for every ten comedy attendees
if "comedy" == play.`type` then volumeCredits += math.floor(perf.audience / 5).toInt

// print line for this order
result += s" ${play.name}: ${formatter.format(thisAmount/100)} (${perf.audience} seats)\n"
totalAmount += thisAmount

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

Here is a literal
translation of the
Javascript program
into Scala.

case class Performance(playID: String, audience: Int)

case class Invoice(customer: String, performances: List[Performance])

case class Play(name: String, `type`: String)

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
val play = plays(perf.playID)
var thisAmount = 0

play.`type` match

case "tragedy" =>
thisAmount = 40_000
if perf.audience > 30
then thisAmount += 1_000 * (perf.audience - 30)

case "comedy" =>
thisAmount = 30_000
if perf.audience > 20
then thisAmount += 10_000 + 500 * (perf.audience - 20)
thisAmount += 300 * perf.audience

case other =>
throw IllegalArgumentException(s"unknown type ${play.`type`}")

// add volume credits
volumeCredits += math.max(perf.audience - 30, 0)
// add extra credit for every ten comedy attendees
if "comedy" == play.`type` then volumeCredits += math.floor(perf.audience / 5).toInt

// print line for this order
result += s" ${play.name}: ${formatter.format(thisAmount/100)} (${perf.audience} seats)\n"
totalAmount += thisAmount

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

val invoices: List[Invoice] = List(
Invoice(customer = "BigCo",

performances = List(Performance(playID = "hamlet",
audience = 55),

Performance(playID = "as-like",
audience = 35),

Performance(playID = "othello",
audience = 40)))

)

val plays = Map (
"hamlet" -> Play(name = "Hamlet", `type` = "tragedy"),
"as-like" -> Play(name = "As You Like It", `type` = "comedy"),
"othello" -> Play(name = "Othello", `type` = "tragedy")

)

@main def main: Unit =
assert(
statement(invoices(0), plays)
==
"""|Statement for BigCo

| Hamlet: $650.00 (55 seats)
| As You Like It: $580.00 (35 seats)
| Othello: $500.00 (40 seats)
|Amount owed is $1,730.00
|You earned 47 credits
|""".stripMargin

)

Here is the Scala code again, together with the data
structures we created earlier, and also a simple
regression test consisting of a single assertion.

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
val play = plays(perf.playID)
var thisAmount = 0

play.`type` match

case "tragedy" =>
thisAmount = 40_000
if perf.audience > 30
then thisAmount += 1_000 * (perf.audience - 30)

case "comedy" =>
thisAmount = 30_000
if perf.audience > 20
then thisAmount += 10_000 + 500 * (perf.audience - 20)
thisAmount += 300 * perf.audience

case other =>
throw IllegalArgumentException(s"unknown type ${play.`type`}")

// add volume credits
volumeCredits += math.max(perf.audience - 30, 0)
// add extra credit for every ten comedy attendees
if "comedy" == play.`type` then volumeCredits += math.floor(perf.audience / 5).toInt

// print line for this order
result += s" ${play.name}: ${formatter.format(thisAmount/100)} (${perf.audience} seats)\n"
totalAmount += thisAmount

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

Yes, I hear you! Using mutable variables is very
uncommon in Scala.

We are only using such variables in order to be
faithful to Martin Fowler’s initial Javascript
program.

Don’t worry: as we refactor the code, we’ll slowly
but surely eliminate such mutability.

Martin Fowler
@martinfowler

Decomposing the statement Function

When refactoring a long function like this, I
mentally try to identify points that
separate different parts of the overall
behaviour.

The first chunk that leaps to my eye is the
switch statement in the middle.

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
val play = plays(perf.playID)
var thisAmount = 0

play.`type` match

case "tragedy" =>
thisAmount = 40_000
if perf.audience > 30
then thisAmount += 1_000 * (perf.audience - 30)

case "comedy" =>
thisAmount = 30_000
if perf.audience > 20
then thisAmount += 10_000 + 500 * (perf.audience - 20)
thisAmount += 300 * perf.audience

case other =>
throw IllegalArgumentException(s"unknown type ${play.`type`}")

// add volume credits
volumeCredits += math.max(perf.audience - 30, 0)
// add extra credit for every ten comedy attendees
if "comedy" == play.`type` then volumeCredits += math.floor(perf.audience / 5).toInt

// print line for this order
result += s" ${play.name}: ${formatter.format(thisAmount/100)} (${perf.audience} seats)\n"
totalAmount += thisAmount

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

Martin Fowler
@martinfowler

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
val play = plays(perf.playID)
var thisAmount = 0

play.`type` match

case "tragedy" =>

thisAmount = 40_000
if perf.audience > 30
then thisAmount += 1_000 * (perf.audience - 30)

case "comedy" =>

thisAmount = 30_000
if perf.audience > 20
then thisAmount += 10_000 + 500 * (perf.audience - 20)
thisAmount += 300 * perf.audience

case other =>

throw IllegalArgumentException(s"unknown type ${play.`type`}")

// add volume credits
volumeCredits += math.max(perf.audience - 30, 0)
// add extra credit for every ten comedy attendees
if "comedy" == play.`type`
then volumeCredits += math.floor(perf.audience / 5).toInt

// print line for this order
result += s" ${play.name}: ${formatter.format(thisAmount/100)} (${perf.audience} seats)\n"
totalAmount += thisAmount

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

def amountFor(aPerformance: Performance, play: Play): Int =
var result = 0
play.`type` match

case "tragedy" =>
result = 40_000
if aPerformance.audience > 30
then result += 1_000 * (aPerformance.audience - 30)

case "comedy" =>
result = 30_000
if aPerformance.audience > 20
then result += 10_000 + 500 * (aPerformance.audience - 20)
result += 300 * aPerformance.audience

case other =>
throw IllegalArgumentException(s"unknown type ${play.`type`}")

result

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
val play = plays(perf.playID)
var thisAmount = amountFor(perf,play)

// add volume credits
volumeCredits += math.max(perf.audience - 30, 0)
// add extra credit for every ten comedy attendees
if "comedy" == play.`type`
then volumeCredits += math.floor(perf.audience / 5).toInt

// print line for this order
result += s" ${play.name}: ${formatter.format(thisAmount/100)} (${perf.audience} seats)\n"
totalAmount += thisAmount

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

• Extract Function amountFor
• In amountFor function:

• rename perf arg to aPerformance
• rename thisAmount arg to result

It makes sense for subordinate functions extracted from the
statement function to be nested inside it.

However, in the interest of clarity and brevity, I will at times
show the statement function without also showing such
subordinate functions.

In the previous slide for example, although the amountFor
function was extracted from statement, it is shown outside
statement rather than nested inside it.

In the statement function on the left however, we do see
amountFor nested inside statement.

def statement(invoice: Invoice, plays: Map[String, Play]): String =

def amountFor(aPerformance: Performance, play: Play): Int =
var result = 0
playFor(perf).`type` match

case "tragedy" =>
result = 40_000
if aPerformance.audience > 30
then result += 1_000 * (aPerformance.audience - 30)

case "comedy" =>
result = 30_000
if aPerformance.audience > 20
then result += 10_000 + 500 * (aPerformance.audience - 20)
result += 300 * aPerformance.audience

case other =>
throw new IllegalArgumentException(s"unknown type ${playFor(perf).`type`}")

result

var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
val play = plays(perf.playID)
var thisAmount = amountFor(perf,play)

// add volume credits
volumeCredits += math.max(perf.audience - 30, 0)
// add extra credit for every ten comedy attendees
if "comedy" == play.`type`
then volumeCredits += math.floor(perf.audience / 5).toInt

// print line for this order
result += s" ${play.name}: ${formatter.format(thisAmount/100)} (${perf.audience} seats)\n"
totalAmount += thisAmount

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

@philip_schwarz

Martin Fowler
@martinfowler

The next item to consider for renaming is the play
parameter, but I have a different fate for that.

def amountFor(aPerformance: Performance, play: Play): Int =
var result = 0
play.`type` match
case "tragedy" =>
result = 40_000
if aPerformance.audience > 30
then result += 1_000 * (aPerformance.audience - 30)

case "comedy" =>
result = 30_000
if aPerformance.audience > 20
then result += 10_000 + 500 * (aPerformance.audience - 20)
result += 300 * aPerformance.audience

case other =>
throw new IllegalArgumentException(s"unknown type ${play.`type`}")

result

• Decomposing the statement Function
• Removing the play Variable

Martin Fowler
@martinfowler

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
val play = plays(perf.playID)
var thisAmount = amountFor(perf,play)

// add volume credits
volumeCredits += math.max(perf.audience - 30, 0)
// add extra credit for every ten comedy attendees
if "comedy" == play.`type`
then volumeCredits += math.floor(perf.audience / 5).toInt

// print line for this order
result += s" ${play.name}: ${formatter.format(thisAmount/100)} (${perf.audience} seats)\n"
totalAmount += thisAmount

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

The next two slides perform a Replace Temp with Query refactoring on the play variable.

Such a refactoring is itself composed of the following refactorings:
• Extract Function
• Inline Variable

Removing the play Variable

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
val play = plays(perf.playID)
var thisAmount = amountFor(perf,play)

// add volume credits
volumeCredits += math.max(perf.audience - 30, 0)
// add extra credit for every ten comedy attendees
if "comedy" == play.`type`
then volumeCredits += math.floor(perf.audience / 5).toInt

// print line for this order
result += s" ${play.name}: ${formatter.format(thisAmount/100)} (${perf.audience} seats)\n"
totalAmount += thisAmount

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
val play = playFor(perf)
var thisAmount = amountFor(perf,play)

// add volume credits
volumeCredits += math.max(perf.audience - 30, 0)
// add extra credit for every ten comedy attendees
if "comedy" == play.`type`
then volumeCredits += math.floor(perf.audience / 5).toInt

// print line for this order
result += s" ${play.name}: ${formatter.format(thisAmount/100)} (${perf.audience} seats)\n"
totalAmount += thisAmount

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

def playFor(aPerformance: Performance): Play =
plays(aPerformance.playID)

• Extract Function playFor
• rename playFor perf parameter to

aPerformance

Removing the play Variable

Inline Variable play in statement function

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
val play = playFor(perf)
var thisAmount = amountFor(perf,play)

// add volume credits
volumeCredits += math.max(perf.audience - 30, 0)
// add extra credit for every ten comedy attendees
if "comedy" == play.`type`
then volumeCredits += math.floor(perf.audience / 5).toInt

// print line for this order
result += s" ${play.name}: ${formatter.format(thisAmount/100)} (${perf.audience} seats)\n"
totalAmount += thisAmount

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
var thisAmount = amountFor(perf,playFor(perf))

// add volume credits
volumeCredits += math.max(perf.audience - 30, 0)
// add extra credit for every ten comedy attendees
if "comedy" == playFor(perf).`type`
then volumeCredits += math.floor(perf.audience / 5).toInt

// print line for this order
result += s" ${playFor(perf).name}: ${formatter.format(thisAmount/100)} (${perf.audience} seats)\n"
totalAmount += thisAmount

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

Removing the play Variable

def amountFor(aPerformance: Performance, play: Play): Int =
var result = 0
play.`type` match

case "tragedy" =>
result = 40_000
if aPerformance.audience > 30
then result += 1_000 * (aPerformance.audience - 30)

case "comedy" =>
result = 30_000
if aPerformance.audience > 20
then result += 10_000 + 500 * (aPerformance.audience - 20)
result += 300 * aPerformance.audience

case other =>
throw IllegalArgumentException(s"unknown type ${play.`type`}")

result

def amountFor(aPerformance: Performance, play: Play): Int =
var result = 0
playFor(aPerformance).`type` match

case "tragedy" =>
result = 40_000
if aPerformance.audience > 30
then result += 1_000 * (aPerformance.audience - 30)

case "comedy" =>
result = 30_000
if aPerformance.audience > 20
then result += 10_000 + 500 * (aPerformance.audience - 20)
result += 300 * aPerformance.audience

case other =>
throw IllegalArgumentException(s"unknown type ${playFor(aPerformance).`type`}")

result

in amountFor function: replace references
to play parameter with invocations of
playFor function

Removing the play Variable

def amountFor(aPerformance: Performance, play: Play): Int =
var result = 0
playFor(perf).`type` match

case "tragedy" =>
result = 40_000
if aPerformance.audience > 30
then result += 1_000 * (aPerformance.audience - 30)

case "comedy" =>
result = 30_000
if aPerformance.audience > 20
then result += 10_000 + 500 * (aPerformance.audience - 20)
result += 300 * aPerformance.audience

case other =>
throw new IllegalArgumentException(s"unknown type ${playFor(perf).`type`}")

result

def amountFor(aPerformance: Performance): Int =
var result = 0
playFor(perf).`type` match

case "tragedy" =>
result = 40_000
if aPerformance.audience > 30
then result += 1_000 * (aPerformance.audience - 30)

case "comedy" =>
result = 30_000
if aPerformance.audience > 20
then result += 10_000 + 500 * (aPerformance.audience - 20)
result += 300 * aPerformance.audience

case other =>
throw new IllegalArgumentException(s"unknown type ${playFor(perf).`type`}")

result

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
var thisAmount = amountFor(perf,playFor(perf))

// add volume credits
volumeCredits += math.max(perf.audience - 30, 0)
// add extra credit for every ten comedy attendees
if "comedy" == playFor(perf).`type`
then volumeCredits += math.floor(perf.audience / 5).toInt

// print line for this order
result += s" ${playFor(perf).name}: ${formatter.format(thisAmount/100)} (${perf.audience} seats)\n"
totalAmount += thisAmount

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
var thisAmount = amountFor(perf)

// add volume credits
volumeCredits += math.max(perf.audience - 30, 0)
// add extra credit for every ten comedy attendees
if "comedy" == playFor(perf).`type`
then volumeCredits += math.floor(perf.audience / 5).toInt

// print line for this order
result += s" ${playFor(perf).name}: ${formatter.format(thisAmount/100)} (${perf.audience} seats)\n"
totalAmount += thisAmount

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

Change Function Declaration of amountFor
by removing play parameter

Removing the play Variable

Martin Fowler
@martinfowler

Now that I am done with the arguments to
amountFor, I look back at where it’s called.

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
var thisAmount = amountFor(perf)

// add volume credits
volumeCredits += math.max(perf.audience - 30, 0)
// add extra credit for every ten comedy attendees
if "comedy" == playFor(perf).`type`
then volumeCredits += math.floor(perf.audience / 5).toInt

// print line for this order
result += s" ${playFor(perf).name}: ${formatter.format(thisAmount/100)} (${perf.audience} seats)\n"
totalAmount += thisAmount

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
var thisAmount = amountFor(perf)

// add volume credits
volumeCredits += math.max(perf.audience - 30, 0)
// add extra credit for every ten comedy attendees
if "comedy" == playFor(perf).`type`
then volumeCredits += math.floor(perf.audience / 5).toInt

// print line for this order
result += s" ${playFor(perf).name}: ${formatter.format(thisAmount/100)} (${perf.audience} seats)\n"
totalAmount += thisAmount

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
// add volume credits
volumeCredits += math.max(perf.audience - 30, 0)
// add extra credit for every ten comedy attendees
if "comedy" == playFor(perf).`type`
then volumeCredits += math.floor(perf.audience / 5).toInt

// print line for this order
result += s" ${playFor(perf).name}: ${formatter.format(amountFor(perf)/100)} (${perf.audience} seats)\n"
totalAmount += amountFor(perf)

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

Inline Variable thisAmount in statement function

Martin Fowler
@martinfowler

• Decomposing the statement Function
• Removing the play Variable
• Extracting Volume Credits

Martin Fowler
@martinfowler

Extracting Volume Credits

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
// add volume credits
volumeCredits += math.max(perf.audience - 30, 0)
// add extra credit for every ten comedy attendees
if "comedy" == playFor(perf).`type`
then volumeCredits += math.floor(perf.audience / 5).toInt

// print line for this order
result += s" ${playFor(perf).name}: ${formatter.format(amountFor(perf)/100)} (${perf.audience} seats)\n"
totalAmount += amountFor(perf)

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

Now I get the benefit from removing the play variable as it makes it
easier to extract the volume credits calculation by removing one of
the locally scoped variables. I still have to deal with the other two.

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
// add volume credits
volumeCredits += math.max(perf.audience - 30, 0)
// add extra credit for every ten comedy attendees
if "comedy" == playFor(perf).`type`
then volumeCredits += math.floor(perf.audience / 5).toInt

// print line for this order
result += s" ${playFor(perf).name}: ${formatter.format(amountFor(perf)/100)} (${perf.audience} seats)\n"
totalAmount += amountFor(perf)

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

• Extract Function volumeCreditsFor
• In volumeCreditsFor function:

• rename perf arg to aPerformance
• rename volumeCredits arg to result

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
volumeCredits += volumeCreditsFor(perf)

// print line for this order
result += s" ${playFor(perf).name}: ${formatter.format(amountFor(perf)/100)} (${perf.audience} seats)\n"
totalAmount += amountFor(perf)

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

def volumeCreditsFor(aPerformance: Performance): Int =
var result = 0
result += math.max(aPerformance.audience - 30, 0)
if "comedy" == playFor(aPerformance).`type` then result += math.floor(aPerformance.audience / 5).toInt
result

Extracting Volume Credits

Martin Fowler
@martinfowler

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
volumeCredits += volumeCreditsFor(perf)

// print line for this order
result += s" ${playFor(perf).name}: ${formatter.format(amountFor(perf)/100)} (${perf.audience} seats)\n"
totalAmount += amountFor(perf)

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

As I suggested before, temporary variables can be a
problem. They are only useful within their own routine,
and therefore encourage long, complex routines.

My next move, then, is to replace some of them. The
easiest one is formatter.

Martin Fowler
@martinfowler

• Decomposing the statement Function
• Removing the play Variable
• Extracting Volume Credits
• Removing the formatter Variable

Removing the formatter Variable

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
volumeCredits += volumeCreditsFor(perf)

// print line for this order
result += s" ${playFor(perf).name}: ${formatter.format(amountFor(perf)/100)} (${perf.audience} seats)\n"
totalAmount += amountFor(perf)

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

def usd(aNumber: Int): String =
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))
formatter.format(aNumber)

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"

for (perf <- invoice.performances)
volumeCredits += volumeCreditsFor(perf)

// print line for this order
result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"
totalAmount += amountFor(perf)

end for

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

• Extract Function format
• Replace references to formatter.format with

invocations of format
• Change Function Declaration of format by

renaming function to usd

Martin Fowler
@martinfowler

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"

for (perf <- invoice.performances)
volumeCredits += volumeCreditsFor(perf)

// print line for this order
result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"
totalAmount += amountFor(perf)

end for

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

My next terget variable is volumeCredits. This is a trickier
case, as it’s built up during the iterations of the loop.

Martin Fowler
@martinfowler

• Decomposing the statement Function
• Removing the play Variable
• Extracting Volume Credits
• Removing the formatter Variable
• Removing Total Volume Credits

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"

for (perf <- invoice.performances)
volumeCredits += volumeCreditsFor(perf)

// print line for this order
result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"
totalAmount += amountFor(perf)

end for

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0

var result = s"Statement for ${invoice.customer}\n"

for (perf <- invoice.performances)

// print line for this order
result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"
totalAmount += amountFor(perf)

var volumeCredits = 0
for (perf <- invoice.performances)

volumeCredits += volumeCreditsFor(perf)

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

• Apply Split Loop to the loop on
invoice.performances

• Apply Slide Statements to the statement
initialising variable volumeCredits

Removing Total Volume Credits

The next two slides perform a Replace Temp with Query refactoring
on the volumeCredits variable.

As we saw earlier on, such a refactoring is itself composed of the
following refactorings:
• Extract Function
• Inline Variable

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0

var result = s"Statement for ${invoice.customer}\n"

for (perf <- invoice.performances)

// print line for this order
result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"
totalAmount += amountFor(perf)

var volumeCredits = 0
for (perf <- invoice.performances)

volumeCredits += volumeCreditsFor(perf)

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

Removing Total Volume Credits

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0

var result = s"Statement for ${invoice.customer}\n"

for (perf <- invoice.performances)

// print line for this order
result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"
totalAmount += amountFor(perf)

var volumeCredits = 0
for (perf <- invoice.performances)

volumeCredits += volumeCreditsFor(perf)

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

• Extract Function totalVolumeCredits
• Inline Variable volumeCredits

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0

var result = s"Statement for ${invoice.customer}\n"

for (perf <- invoice.performances)

// print line for this order
result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"
totalAmount += amountFor(perf)

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

def totalVolumeCredits: Int =
var volumeCredits = 0
for (perf <- invoice.performances)

volumeCredits += volumeCreditsFor(perf)
volumeCredits

Removing Total Volume Credits

Martin Fowler
@martinfowler

I then repeat that sequence
to remove totalAmount.

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0

var result = s"Statement for ${invoice.customer}\n"

for (perf <- invoice.performances)

// print line for this order
result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"
totalAmount += amountFor(perf)

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

Martin Fowler
@martinfowler

• Decomposing the statement Function
• Removing the play Variable
• Extracting Volume Credits
• Removing the formatter Variable
• Removing Total Volume Credits
• Removing Total Amount

Removing Total Amount

• Apply Split Loop to the loop on
invoice.performances

• Apply Slide Statements to the statement
initialising variable totalAmount

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0

var result = s"Statement for ${invoice.customer}\n"

for (perf <- invoice.performances)

// print line for this order
result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"
totalAmount += amountFor(perf)

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var result = s"Statement for ${invoice.customer}\n"
for (perf <- invoice.performances)

result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"

var totalAmount = 0
for (perf <- invoice.performances)

totalAmount += amountFor(perf)

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

• Extract Function appleSauce
• Inline Variable totalAmount

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var result = s"Statement for ${invoice.customer}\n"
for (perf <- invoice.performances)

result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"

var totalAmount = 0
for (perf <- invoice.performances)

totalAmount += amountFor(perf)

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var result = s"Statement for ${invoice.customer}\n"
for (perf <- invoice.performances)

result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(appleSauce/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

def appleSauce: Int =
var totalAmount = 0
for (perf <- invoice.performances)

totalAmount += amountFor(perf)
totalAmount

Removing Total Amount

def appleSauce: Int =
var totalAmount = 0
for (perf <- invoice.performances)

totalAmount += amountFor(perf)
totalAmount

def totalVolumeCredits: Int =
var volumeCredits = 0
for (perf <- invoice.performances)

volumeCredits += volumeCreditsFor(perf)
volumeCredits

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var result = s"Statement for ${invoice.customer}\n"
for (perf <- invoice.performances)

result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(appleSauce/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var result = s"Statement for ${invoice.customer}\n"
for (perf <- invoice.performances)

result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

def totalAmount: Int =
var result = 0
for (perf <- invoice.performances)

result += amountFor(perf)
result

def totalVolumeCredits: Int =
var result = 0
for (perf <- invoice.performances)

result += volumeCreditsFor(perf)
result

• Change Function Declaration of appleSauce
by renaming function to totalAmount

• Rename Variables volumeCredits and
totalAmount to result

Removing Total Amount

Martin Fowler
@martinfowler

• Decomposing the statement Function
• Removing the play Variable
• Extracting Volume Credits
• Removing the formatter Variable
• Removing Total Volume Credits
• Removing Total Amount
• Status: Lots of Nested Functions

Martin Fowler
@martinfowler

Now is a good time to pause and take a look at the overall state of the code.

The structure of the code is much better now.

The top-level statement function is now just six lines of code, and all it does
is laying out the printing of the statement.

All the calculation logic has been moved out to a handful of supporting
functions.

This makes it easier to understand each individual calculation as well as the
overall flow of the report.

Status: Lots of Nested Functions

def statement(invoice: Invoice, plays: Map[String, Play]): String =

def totalAmount: Int =
var result = 0
for (perf <- invoice.performances)
result += amountFor(perf)

result

def totalVolumeCredits: Int =
var result = 0
for (perf <- invoice.performances)
result += volumeCreditsFor(perf)

result

def usd(aNumber: Int): String =
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))
formatter.format(aNumber)

def volumeCreditsFor(aPerformance: Performance): Int =
var result = 0
result += math.max(aPerformance.audience - 30, 0)
if "comedy" == playFor(aPerformance).`type` then result += math.floor(aPerformance.audience / 5).toInt
result

def playFor(aPerformance: Performance) =
plays(aPerformance.playID)

def amountFor(aPerformance: Performance): Int =
var result = 0
play.`type` match
case "tragedy" =>
result = 40_000
if aPerformance.audience > 30
then result += 1_000 * (aPerformance.audience - 30)

case "comedy" =>
result = 30_000
if aPerformance.audience > 20
then result += 10_000 + 500 * (aPerformance.audience - 20)
result += 300 * aPerformance.audience

case other =>
throw IllegalArgumentException(s"unknown type ${play.`type`}")

result

var result = s"Statement for ${invoice.customer}\n"
for (perf <- invoice.performances)
result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

def statement(invoice: Invoice, plays: Map[String, Play]): String =

def totalAmount: Int =
var result = 0
for (perf <- invoice.performances)
result += amountFor(perf)

result

def totalVolumeCredits: Int =
var result = 0
for (perf <- invoice.performances)
result += volumeCreditsFor(perf)

result

def usd(aNumber: Int): String =
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))
formatter.format(aNumber)

def volumeCreditsFor(aPerformance: Performance): Int =
var result = 0
result += math.max(aPerformance.audience - 30, 0)
if "comedy" == playFor(aPerformance).`type` then result += math.floor(aPerformance.audience / 5).toInt
result

def playFor(aPerformance: Performance): Play =
plays(aPerformance.playID)

def amountFor(aPerformance: Performance): Int =
var result = 0
play.`type` match
case "tragedy" =>
result = 40_000
if aPerformance.audience > 30
then result += 1_000 * (aPerformance.audience - 30)

case "comedy" =>
result = 30_000
if aPerformance.audience > 20
then result += 10_000 + 500 * (aPerformance.audience - 20)
result += 300 * aPerformance.audience

case other =>
throw IllegalArgumentException(s"unknown type ${play.`type`}")

result

var result = s"Statement for ${invoice.customer}\n"
for (perf <- invoice.performances)
result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
val play = plays(perf.playID)
var thisAmount = 0

play.`type` match
case "tragedy" =>
thisAmount = 40_000
if perf.audience > 30
then thisAmount += 1_000 * (perf.audience - 30)

case "comedy" =>
thisAmount = 30_000
if perf.audience > 20
then thisAmount += 10_000 + 500 * (perf.audience - 20)
thisAmount += 300 * perf.audience

case other =>
throw IllegalArgumentException(s"unknown type ${play.`type`}")

// add volume credits
volumeCredits += math.max(perf.audience - 30, 0)
// add extra credit for every ten comedy attendees
if "comedy" == play.`type` then volumeCredits += math.floor(perf.audience / 5).toInt

// print line for this order
result += s" ${play.name}: ${formatter.format(thisAmount/100)} (${perf.audience} seats)\n"
totalAmount += thisAmount

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

Original Program Refactored Program

Martin Fowler
@martinfowler

• Decomposing the statement Function
• Removing the play Variable
• Extracting Volume Credits
• Removing the formatter Variable
• Removing Total Volume Credits
• Removing Total Amount
• Status: Lots of Nested Functions
• Splitting the Phases of Calculation and Formatting

Martin Fowler
@martinfowler

So far, my refactoring has focused on adding enough structure to the function so that I
can understand it and see it in terms of its logical parts.

This is often the case early in refactoring. Breaking down complicated chunks into small
pieces is important, as is naming things well.

Now, I can begin to focus more on the functionality change I want to make—specifically,
providing an HTML version of this statement.

In many ways, it’s now much easier to do. With all the calculation code split out, all I
have to do is write an HTML version of the six lines of code at the bottom.

The problem is that these broken-out functions are nested within the textual statement
method, and I don’t want to copy and paste them into a new function, however well
organized.

Splitting the Phases of Calculation and Formattingdef statement(invoice: Invoice, plays: Map[String, Play]): String =

def totalAmount: Int =
var result = 0
for (perf <- invoice.performances)
result += amountFor(perf)

result

def totalVolumeCredits: Int =
var result = 0
for (perf <- invoice.performances)
result += volumeCreditsFor(perf)

result

def usd(aNumber: Int): String =
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))
formatter.format(aNumber)

def volumeCreditsFor(aPerformance: Performance): Int =
var result = 0
result += math.max(aPerformance.audience - 30, 0)
if "comedy" == playFor(aPerformance).`type`
then result += math.floor(aPerformance.audience / 5).toInt
result

def playFor(aPerformance: Performance): Play =
plays(aPerformance.playID)

def amountFor(aPerformance: Performance): Int =
var result = 0
play.`type` match
case "tragedy" =>
result = 40_000
if aPerformance.audience > 30
then result += 1_000 * (aPerformance.audience - 30)

case "comedy" =>
result = 30_000
if aPerformance.audience > 20
then result += 10_000 + 500 * (aPerformance.audience - 20)
result += 300 * aPerformance.audience

case other =>
throw IllegalArgumentException(s"unknown type ${play.`type`}")

result

var result = s"Statement for ${invoice.customer}\n"
for (perf <- invoice.performances)
result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

Martin Fowler
@martinfowler

I want the same calculation functions to be used by the text and HTML versions of the
statement.

There are various ways to do this, but one of my favorite techniques is Split Phase.

My aim here is to divide the logic into two parts: one that calculates the data required
for the statement, the other that renders it into text or HTML.

The first phase creates an intermediate data structure that it passes to the second.

I start a Split Phase by applying Extract Function to the code that makes up the second
phase.

In this case, that’s the statement printing code, which is in fact the entire content of
statement.

This, together with all the nested functions, goes into its own top-level function which I
call renderPlainText (see next slide).

Splitting the Phases of Calculation and Formattingdef statement(invoice: Invoice, plays: Map[String, Play]): String =

def totalAmount: Int =
var result = 0
for (perf <- invoice.performances)
result += amountFor(perf)

result

def totalVolumeCredits: Int =
var result = 0
for (perf <- invoice.performances)
result += volumeCreditsFor(perf)

result

def usd(aNumber: Int): String =
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))
formatter.format(aNumber)

def volumeCreditsFor(aPerformance: Performance): Int =
var result = 0
result += math.max(aPerformance.audience - 30, 0)
if "comedy" == playFor(aPerformance).`type`
then result += math.floor(aPerformance.audience / 5).toInt
result

def playFor(aPerformance: Performance): Play =
plays(aPerformance.playID)

def amountFor(aPerformance: Performance): Int =
var result = 0
play.`type` match
case "tragedy" =>
result = 40_000
if aPerformance.audience > 30
then result += 1_000 * (aPerformance.audience - 30)

case "comedy" =>
result = 30_000
if aPerformance.audience > 20
then result += 10_000 + 500 * (aPerformance.audience - 20)
result += 300 * aPerformance.audience

case other =>
throw IllegalArgumentException(s"unknown type ${play.`type`}")

result

var result = s"Statement for ${invoice.customer}\n"
for (perf <- invoice.performances)
result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

def statement(invoice: Invoice, plays: Map[String, Play]): String =

def totalAmount: Int =
var result = 0
for (perf <- invoice.performances)
result += amountFor(perf)

result

def totalVolumeCredits: Int =
var result = 0
for (perf <- invoice.performances)
result += volumeCreditsFor(perf)

result

def usd(aNumber: Int): String =
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))
formatter.format(aNumber)

def volumeCreditsFor(aPerformance: Performance) =
var result = 0
result += math.max(aPerformance.audience - 30, 0)
if "comedy" == playFor(aPerformance).`type`
then result += math.floor(aPerformance.audience / 5).toInt
result

def playFor(aPerformance: Performance): Play =
plays(aPerformance.playID)

def amountFor(aPerformance: Performance): Int =
var result = 0
play.`type` match
case "tragedy" =>
result = 40_000
if aPerformance.audience > 30
then result += 1_000 * (aPerformance.audience - 30)

case "comedy" =>
result = 30_000
if aPerformance.audience > 20
then result += 10_000 + 500 * (aPerformance.audience - 20)
result += 300 * aPerformance.audience

case other =>
throw IllegalArgumentException(s"unknown type ${play.`type`}")

result

var result = s"Statement for ${invoice.customer}\n"
for (perf <- invoice.performances)
result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

def statement(invoice: Invoice, plays: Map[String, Play]): String =
renderPlainText(invoice, plays)

def renderPlainText(invoice: Invoice, plays: Map[String, Play]): String =

def totalAmount: Int =
var result = 0
for (perf <- invoice.performances)
result += amountFor(perf)

result

def totalVolumeCredits: Int =
var result = 0
for (perf <- invoice.performances)
result += volumeCreditsFor(perf)

result

def usd(aNumber: Int): String =
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))
formatter.format(aNumber)

def volumeCreditsFor(aPerformance: Performance) =
var result = 0
result += math.max(aPerformance.audience - 30, 0)
if "comedy" == playFor(aPerformance).`type`
then result += math.floor(aPerformance.audience / 5).toInt
result

def playFor(aPerformance: Performance): Play =
plays(aPerformance.playID)

def amountFor(aPerformance: Performance): Int =
var result = 0
play.`type` match
case "tragedy" =>
result = 40_000
if aPerformance.audience > 30
then result += 1_000 * (aPerformance.audience - 30)

case "comedy" =>
result = 30_000
if aPerformance.audience > 20
then result += 10_000 + 500 * (aPerformance.audience - 20)
result += 300 * aPerformance.audience

case other =>
throw IllegalArgumentException(s"unknown type ${play.`type`}")

result

var result = s"Statement for ${invoice.customer}\n"
for (perf <- invoice.performances)
result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

Extract Function renderPlainText

In upcoming slides, Martin Fowler will be using the concept of a
Javascript Object, which he creates and then adds fields to:

const foo = {};
foo.bar = abc;
foo.baz = def

What we’ll be doing instead in Scala is introduce a case class:

case class Foo(bar: Bar, baz: Baz)

Martin Fowler
@martinfowler

I do my usual compile-test-commit, then create an object that will act
as my intermediate data structure between the two phases. I pass this
data object in as an argument to renderPlainText.

def statement(invoice: Invoice, plays: Map[String, Play]): String =
renderPlainText(invoice, plays)

def renderPlainText(invoice: Invoice, plays: Map[String, Play]): String =
var result = s"Statement for ${invoice.customer}\n"
for (perf <- invoice.performances)

result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"
result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

def statement(invoice: Invoice, plays: Map[String, Play]): String =
val statementData = StatementData()
renderPlainText(statementData, invoice, plays)

def renderPlainText(data: StatementData, invoice: Invoice, plays: Map[String, Play]): String =
var result = s"Statement for ${invoice.customer}\n"
for (perf <- invoice.performances)

result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"
result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

case class StatementData()

Splitting the Phases of Calculation and Formatting

Martin Fowler
@martinfowler

I now examine the other arguments used by renderPlainText. I want to move the data that comes from them
into the intermediate data structure, so that all the calculation code moves into the statement function and
renderPlainText operates solely on data passed to it through the data parameter.

My first move is to take the customer and add it to the intermediate object.

Splitting the Phases of Calculation and Formatting

case class StatementData(customer: String)

def statement(invoice: Invoice, plays: Map[String, Play]): String =
val statementData = StatementData(invoice.customer)
renderPlainText(statementData, invoice, plays)

def renderPlainText(data: StatementData, invoice: Invoice, plays: Map[String, Play]): String =
var result = s"Statement for ${data.customer}\n"
for (perf <- invoice.performances)

result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"
result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

def statement(invoice: Invoice, plays: Map[String, Play]): String =
val statementData = StatementData()
renderPlainText(statementData, invoice, plays)

def renderPlainText(data: StatementData, invoice: Invoice, plays: Map[String, Play]): String =
var result = s"Statement for ${invoice.customer}\n"
for (perf <- invoice.performances)

result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"
result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

case class StatementData()

case class StatementData(customer: String)

def statement(invoice: Invoice, plays: Map[String, Play]): String =
val statementData = StatementData(invoice.customer)
renderPlainText(statementData, invoice, plays)

def renderPlainText(data: StatementData, invoice: Invoice, plays: Map[String, Play]): String =
var result = s"Statement for ${data.customer}\n"
for (perf <- invoice.performances)

result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"
result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

Similarly, I add the performances, which allows me
to delete the invoice parameter to renderPlainText.

Martin Fowler
 @martinfowler

Splitting the Phases of Calculation and Formatting

case class StatementData(customer: String, performances: List[Performance])

def statement(invoice: Invoice, plays: Map[String, Play]): String =
val statementData = StatementData(invoice.customer, invoice.performances)
renderPlainText(statementData, invoice, plays)

def renderPlainText(data: StatementData, plays: Map[String, Play]): String =
var result = s"Statement for ${data.customer}\n"
for (perf <- data.performances)

result += s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"
result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

def totalAmount: Int =
var result = 0
for (perf <- invoice.performances)

result += amountFor(perf)
result

def totalVolumeCredits: Int =
var result = 0
for (perf <- invoice.performances)

result += volumeCreditsFor(perf)
result

def totalAmount: Int =
var result = 0
for (perf <- data.performances)

result += amountFor(perf)
result

def totalVolumeCredits: Int =
var result = 0
for (perf <- data.performances)

result += volumeCreditsFor(perf)
result

In upcoming slides, Martin Fowler introduces the notion of ‘enriching’
Performance objects (during the calculation phase) with additional fields
(that are to be used during the formatting phase).

Whilst in Scala we’ll ultimately aim to have both a Performance case class
and an EnrichedPerformance case class, we’ll have to start off by ‘enriching’
the Performance case class with optional fields, and only later remove the
optional fields in favour of a new EnrichedPerformance case class.

@philip_schwarz

def statement(invoice: Invoice, plays: Map[String, Play]): String =
val statementData = StatementData(invoice.customer, invoice.performances)
renderPlainText(statementData, invoice, plays)

def renderPlainText(data: StatementData, plays: Map[String, Play]): String =
def amountFor(aPerformance: Performance): Int =

var result = 0
play.`type` match

case "tragedy" =>
result = 40_000
if aPerformance.audience > 30
then result += 1_000 * (aPerformance.audience - 30)

case "comedy" =>
result = 30_000
if aPerformance.audience > 20
then result += 10_000 + 500 * (aPerformance.audience - 20)
result += 300 * aPerformance.audience

case other =>
throw IllegalArgumentException(s"unknown type ${play.`type`}")

result

def volumeCreditsFor(aPerformance: Performance) =
var result = 0
result += math.max(aPerformance.audience - 30, 0)
if "comedy" == playFor(aPerformance).`type`
then result += math.floor(aPerformance.audience / 5).toInt
result

def playFor(aPerformance: Performance) =
plays(aPerformance.playID)

var result = s"Statement for ${data.customer}\n"
for (perf <- data.performances)

result +=
s" ${playFor(perf).name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

case class Performance(playID: String, audience: Int)

Martin Fowler @martinfowler

def statement(invoice: Invoice, plays: Map[String, Play]): String =

def enrichPerformance(aPerformance: Performance): Performance =
Performance(aPerformance.playID, Some(playFor(aPerformance)), aPerformance.audience)

def playFor(aPerformance: Performance): Play =
plays(aPerformance.playID)

val statementData =
StatementData(invoice.customer,invoice.performances.map(enrichPerformance))
renderPlainText(statementData, invoice, plays)

def renderPlainText(data: StatementData, plays: Map[String, Play]): String =
def amountFor(aPerformance: Performance): Int =

var result = 0
aPerformance.play.get.`type` match

case "tragedy" =>
result = 40_000
if aPerformance.audience > 30
then result += 1_000 * (aPerformance.audience - 30)

case "comedy" =>
result = 30_000
if aPerformance.audience > 20
then result += 10_000 + 500 * (aPerformance.audience - 20)
result += 300 * aPerformance.audience

case other =>
throw IllegalArgumentException(s"unknown type ${aPerformance.play.get.`type`}")

result

def volumeCreditsFor(aPerformance: Performance) =
var result = 0
result += math.max(aPerformance.audience - 30, 0)
if "comedy" == aPerformance.play.get.`type`
then result += math.floor(aPerformance.audience / 5).toInt
result

var result = s"Statement for ${data.customer}\n"
for (perf <- data.performances)

result +=
s" ${perf.play.get.name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

Now I’d like the play name to come from the
intermediate data. To do this, I need to enrich the
performance record with data from the play.

case class Performance(playID: String, play: Option[Play] = None , audience: Int)

def statement(invoice: Invoice, plays: Map[String, Play]): String =

def enrichPerformance(aPerformance: Performance): Performance =
Performance(

aPerformance.playID,
Some(playFor(aPerformance)),
aPerformance.audience)

def playFor(aPerformance: Performance): Play =
plays(aPerformance.playID)

val statementData =
StatementData(invoice.customer,invoice.performances.map(enrichPerformance))

renderPlainText(statementData, plays)

def renderPlainText(data: StatementData, plays: Map[String, Play]): String =
def amountFor(aPerformance: Performance): Int =

var result = 0
aPerformance.play.get.`type` match

case "tragedy" =>
result = 40_000
if aPerformance.audience > 30
then result += 1_000 * (aPerformance.audience - 30)

case "comedy" =>
result = 30_000
if aPerformance.audience > 20
then result += 10_000 + 500 * (aPerformance.audience - 20)
result += 300 * aPerformance.audience

case other =>
throw new IllegalArgumentException(s"unknown type ${aPerformance.play.get.`type`}")

result

def totalAmount: Int =
var result = 0
for (perf <- data.performances)

result += amountFor(perf)
result

var result = s"Statement for ${data.customer}\n"
for (perf <- data.performances)

result +=
s" ${perf.play.get name}: ${usd(amountFor(perf)/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

def statement(invoice: Invoice, plays: Map[String, Play]): String =

def enrichPerformance(aPerformance: Performance): Performance =
Performance(

aPerformance.playID,
Some(playFor(aPerformance)),
aPerformance.audience,
Some(amountFor(aPerformance)))

def playFor(aPerformance: Performance): Play =
plays(aPerformance.playID)

def amountFor(aPerformance: Performance): Int =
var result = 0
playFor(aPerformance).`type` match

case "tragedy" =>
result = 40_000
if aPerformance.audience > 30
then result += 1_000 * (aPerformance.audience - 30)

case "comedy" =>
result = 30_000
if aPerformance.audience > 20
then result += 10_000 + 500 * (aPerformance.audience - 20)
result += 300 * aPerformance.audience

case other =>
throw IllegalArgumentException(s"unknown type ${playFor(aPerformance).`type`}")

result

val statementData =
StatementData(invoice.customer,invoice.performances.map(enrichPerformance))

renderPlainText(statementData)

def renderPlainText(data: StatementData): String =

def totalAmount: Int =
var result = 0
for (perf <- data.performances)

result += perf.amount.get
result

var result = s"Statement for ${data.customer}\n"
for (perf <- data.performances)

result +=
s" ${perf.play.get name}: ${usd(perf.amount.get/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

case class Performance(
playID: String,
play: Option[Play] = None,
audience: Int)

case class Performance(
playID: String,
play: Option[Play] = None,
audience: Int,
amount: Option[Int] = None)

I then move amountFor
in a similar way.

Martin Fowler

Note that, on the previous slide, I have already removed the
plays parameter of renderPlainText, since it is no longer used.
In the book, this doesn’t happen till later in this section.

def statement(invoice: Invoice, plays: Map[String, Play]): String =

def enrichPerformance(aPerformance: Performance): Performance =
Performance(

aPerformance.playID,
Some(playFor(aPerformance)),
aPerformance.audience,
Some(amountFor(aPerformance)))

val statementData =
StatementData(invoice.customer,invoice.performances.map(enrichPerformance))

renderPlainText(statementData)

def renderPlainText(data: StatementData): String =

def volumeCreditsFor(aPerformance: Performance) =
var result = 0
result += math.max(aPerformance.audience - 30, 0)
if "comedy" == aPerformance.play.get.`type`
then result += math.floor(aPerformance.audience / 5).toInt
result

def totalVolumeCredits: Int =
var result = 0
for (perf <- data.performances)

result += volumeCreditsFor(perf)
result

var result = s"Statement for ${data.customer}\n"
for (perf <- data.performances)

result +=
s" ${perf.play.get name}: ${usd(perf.amount.get/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

Martin Fowler
@martinfowler
Martin Fowler

@martinfowler

case class Performance(
playID: String,
play: Option[Play] = None,
audience: Int,
amount: Option[Int] = None)

def statement(invoice: Invoice, plays: Map[String, Play]): String =

def enrichPerformance(aPerformance: Performance): Performance =
Performance(

aPerformance.playID,
Some(playFor(aPerformance)),
aPerformance.audience,
Some(amountFor(aPerformance)),
Some(volumeCreditsFor(aPerformance)))

def volumeCreditsFor(aPerformance: Performance) =
var result = 0
result += math.max(aPerformance.audience - 30, 0)
if "comedy" == playFor(aPerformance).`type`
then result += math.floor(aPerformance.audience / 5).toInt
result

val statementData =
StatementData(invoice.customer,invoice.performances.map(enrichPerformance))

renderPlainText(statementData)

def renderPlainText(data: StatementData): String =

def totalVolumeCredits: Int =
var result = 0
for (perf <- data.performances)

result += perf.volumeCredits.get
result

var result = s"Statement for ${data.customer}\n"
for (perf <- data.performances)

result +=
s" ${perf.play.get name}: ${usd(perf.amount.get/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

case class Performance(
playID: String,
play: Option[Play] = None,
audience: Int,
amount: Option[Int] = None,
volumeCredits: Option[Int] = None)

Next, I move the
volumeCreditsFor
calculation.

Splitting the Phases of Calculation and Formatting

def statement(invoice: Invoice, plays: Map[String, Play]): String =

def enrichPerformance(aPerformance: Performance): Performance =
Performance(

aPerformance.playID,
Some(playFor(aPerformance)),
aPerformance.audience,
Some(amountFor(aPerformance)),
Some(volumeCreditsFor(aPerformance)))

val statementData =
StatementData(invoice.customer,invoice.performances.map(enrichPerformance))

renderPlainText(statementData)

def renderPlainText(data: StatementData): String =

def totalVolumeCredits: Int =
var result = 0
for (perf <- data.performances)

result += perf.volumeCredits.get
result

def totalAmount: Int =
var result = 0
for (perf <- data.performances)

result += perf.amount.get
result

var result = s"Statement for ${data.customer}\n"
for (perf <- data.performances)

result +=
s" ${perf.play.get.name}: ${usd(perf.amount.get/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

def statement(invoice: Invoice, plays: Map[String, Play]): String =

def enrichPerformance(aPerformance: Performance): EnrichedPerformance =
EnrichedPerformance(

aPerformance.playID,
playFor(aPerformance),
aPerformance.audience,
amountFor(aPerformance),
volumeCreditsFor(aPerformance))

val statementData =
StatementData(invoice.customer,invoice.performances.map(enrichPerformance))

renderPlainText(statementData)

def renderPlainText(data: StatementData): String =

def totalVolumeCredits: Int =
var result = 0
for (perf <- data.performances)

result += perf.volumeCredits
result

def totalAmount: Int =
var result = 0
for (perf <- data.performances)

result += perf.amount
result

var result = s"Statement for ${data.customer}\n"
for (perf <- data.performances)

result +=
s" ${perf.play.name}: ${usd(perf.amount/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

case class StatementData(customer: String, performances: List[Performance]) case class StatementData(customer: String, performances: List[EnrichedPerformance])

case class Performance(
playID: String,
audience: Int)

case class Performance(
playID: String,
play: Option[Play] = None,
audience: Int,
amount: Option[Int] = None,
volumeCredits: Option[Int] = None) case class EnrichedPerformance(

playID: String,
play: Play,
audience: Int,
amount: Int,
volumeCredits: Int)

We can now remove the optional Performance fields
by introducing an EnrichedPerformance.

Splitting the Phases of Calculation and Formatting

def statement(invoice: Invoice, plays: Map[String, Play]): String =

def enrichPerformance(aPerformance: Performance): EnrichedPerformance =
EnrichedPerformance(

aPerformance.playID,
playFor(aPerformance),
aPerformance.audience,
amountFor(aPerformance),
volumeCreditsFor(aPerformance))

val statementData =
StatementData(invoice.customer,invoice.performances.map(enrichPerformance))

renderPlainText(statementData)

def renderPlainText(data: StatementData): String =

def totalVolumeCredits: Int =
var result = 0
for (perf <- data.performances)

result += perf.volumeCredits
result

def totalAmount: Int =
var result = 0
for (perf <- data.performances)

result += perf.amount
result

var result = s"Statement for ${data.customer}\n"
for (perf <- data.performances)

result +=
s" ${perf.play.name}: ${usd(perf.amount/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(totalAmount/100)}\n"
result += s"You earned $totalVolumeCredits credits\n"
result

Martin Fowler
@martinfowler

def statement(invoice: Invoice, plays: Map[String, Play]): String =

def enrichPerformance(aPerformance: Performance): EnrichedPerformance =
EnrichedPerformance(

aPerformance.playID,
playFor(aPerformance),
aPerformance.audience,
amountFor(aPerformance),
volumeCreditsFor(aPerformance))

def totalVolumeCredits(performances:List[EnrichedPerformance]): Int =
var result = 0
for (perf <- performances)

result += perf.volumeCredits
result

def totalAmount(performances:List[EnrichedPerformance]): Int =
var result = 0
for (perf <- performances)

result += perf.amount
result

val enrichedPerformances = invoice.performances.map(enrichPerformance)
val statementData = StatementData(invoice.customer,

enrichedPerformances,
totalAmount(enrichedPerformances),
totalVolumeCredits(enrichedPerformances))

renderPlainText(statementData)

def renderPlainText(data: StatementData): String =

var result = s"Statement for ${data.customer}\n"
for (perf <- data.performances)

result +=
s" ${perf.play.name}: ${usd(perf.amount/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(data.totalAmount/100)}\n"
result += s"You earned ${data.totalVolumeCredits} credits\n"
result

case class StatementData(
customer: String,
performances: List[EnrichedPerformance])

case class StatementData(
customer: String,
performances: List[EnrichedPerformance],
totalAmount: Int,
totalVolumeCredits: Int)

Finally, I move the
two calculations of
the totals.

Splitting the Phases of Calculation and Formatting

Martin Fowler
@martinfowler

def totalVolumeCredits(performances:List[EnrichedPerformance]): Int =
var result = 0
for (perf <- performances)

result += perf.volumeCredits
result

def totalAmount(performances:List[EnrichedPerformance]): Int =
var result = 0
for (perf <- performances)

result += perf.amount
result

def totalVolumeCredits(performances:List[EnrichedPerformance]): Int =
performances.foldLeft(0)((total,perf) => total + perf.volumeCredits)

def totalAmount(performances:List[EnrichedPerformance]): Int =
performances.foldLeft(0)((total,perf) => total + perf.amount)

I can’t resist a couple quick shots of Remove Loop with Pipeline

Splitting the Phases of Calculation and Formatting

Martin Fowler
@martinfowler

I now extract all the first-phase code into its own function.

def statement(invoice: Invoice, plays: Map[String, Play]): String =
val enrichedPerformances = invoice.performances.map(enrichPerformance)
val statementData = StatementData(invoice.customer,

enrichedPerformances,
totalAmount(enrichedPerformances),
totalVolumeCredits(enrichedPerformances))

renderPlainText(statementData)

def statement(invoice: Invoice, plays: Map[String, Play]): String =
renderPlainText(createStatementData(invoice, plays))

def createStatementData(invoice: Invoice, plays: Map[String, Play]): StatementData =
val enrichedPerformances = invoice.performances.map(enrichPerformance)
StatementData(invoice.customer,

enrichedPerformances,
totalAmount(enrichedPerformances),
totalVolumeCredits(enrichedPerformances))

Splitting the Phases of Calculation and Formatting

Note that on the previous slide, when we extracted
createStatementData, all the functions nested inside
statement, e.g. totalAmount and totalVolumeCredits, also
moved along and are now nested in createStatementData.

Martin Fowler
@martinfowler

• Decomposing the statement Function
• Removing the play Variable
• Extracting Volume Credits
• Removing the formatter Variable
• Removing Total Volume Credits
• Removing Total Amount
• Status: Lots of Nested Functions
• Splitting the Phases of Calculation and Formatting
• Status: Separated into Two Files (and Phases)

Martin Fowler
@martinfowler

Since createStatementData is now clearly
separate, I move it into its own file.

See next slide – I also moved the
case classes into their own file.

Status: Separated into Two Files (and Phases)

def createStatementData(invoice: Invoice, plays: Map[String, Play]): StatementData =

def enrichPerformance(aPerformance: Performance): EnrichedPerformance =
EnrichedPerformance(

aPerformance.playID,
playFor(aPerformance),
aPerformance.audience,
amountFor(aPerformance),
volumeCreditsFor(aPerformance))

def playFor(aPerformance: Performance): Play =
plays(aPerformance.playID)

def amountFor(aPerformance: Performance): Int =
var result = 0
playFor(aPerformance).`type` match

case "tragedy" =>
result = 40_000
if aPerformance.audience > 30
then result += 1_000 * (aPerformance.audience - 30)

case "comedy" =>
result = 30_000
if aPerformance.audience > 20
then result += 10_000 + 500 * (aPerformance.audience - 20)
result += 300 * aPerformance.audience

case other =>
throw IllegalArgumentException(s"unknown type ${playFor(aPerformance).`type`}")

result

def volumeCreditsFor(aPerformance: Performance) =
var result = 0
result += math.max(aPerformance.audience - 30, 0)
if "comedy" == playFor(aPerformance).`type`
then result += math.floor(aPerformance.audience / 5).toInt
result

def totalAmount(performances:List[EnrichedPerformance]): Int =
performances.foldLeft(0)((total,perf) => total + perf.amount)

def totalVolumeCredits(performances:List[EnrichedPerformance]): Int =
performances.foldLeft(0)((total,perf) => total + perf.volumeCredits)

val enrichedPerformances = invoice.performances.map(enrichPerformance)
StatementData(invoice.customer,

enrichedPerformances,
totalAmount(enrichedPerformances),
totalVolumeCredits(enrichedPerformances))

import java.text.NumberFormat
import java.util.{Currency, Locale}
import scala.math

def statement(invoice: Invoice, plays: Map[String, Play]): String =
renderPlainText(createStatementData(invoice, plays))

def renderPlainText(data: StatementData): String =

def usd(aNumber: Int): String =
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))
formatter.format(aNumber)

var result = s"Statement for ${data.customer}\n"
for (perf <- data.performances)

result +=
s" ${perf.play.name}: ${usd(perf.amount/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(data.totalAmount/100)}\n"
result += s"You earned ${data.totalVolumeCredits} credits\n"
result

case class Performance(playID: String, audience: Int)

case class EnrichedPerformance(
playID: String,
play: Play,
audience: Int,
amount: Int,
volumeCredits: Int)

case class Invoice(customer: String, performances: List[Performance])

case class Play(name: String, `type`: String)

case class StatementData(
customer: String,
performances: List[EnrichedPerformance],
totalAmount: Int
totalVolumeCredits: Int)

Status: Separated into Two Files (and Phases)
CreateStatementData.scala Statement.scala

Domain.scala

Martin Fowler
@martinfowler

It is now easy to write an HTML version of
statement and renderPlainText (I moved usd to
the top level so that renderHtml could use it).

def htmlStatement(invoice: Invoice, plays: Map[String, Play]): String =
renderHtml(createStatementData(invoice,plays))

def renderHtml(data: StatementData): String =
var result = s"<h1>Statement for ${data.customer}</h1>\n"
result += "<table>\n"
result += "<tr><th>play</th><th>seats</th><th>cost</th></tr>\n"
for (perf <- data.performances)

result += s"<tr><td>${perf.play.name}</td><td>${perf.audience}</td>"
result += s"<td>${usd(perf.amount/100)}</td></tr>\n"

result += "</table>\n"
result += s"<p>Amount owed is ${usd(data.totalAmount/100)}</p>\n"
result += s"<p>You earned ${data.totalVolumeCredits} credits</p>\n"
result

Status: Separated into Two Files (and Phases)

val invoices: List[Invoice] = List(
Invoice(customer = "BigCo",

performances = List(Performance(playID = "hamlet",
audience = 55),

Performance(playID = "as-like",
audience = 35),

Performance(playID = "othello",
audience = 40)))

)

val plays = Map (
"hamlet" -> Play(name = "Hamlet", `type` = "tragedy"),
"as-like" -> Play(name = "As You Like It", `type` = "comedy"),
"othello" -> Play(name = "Othello", `type` = "tragedy")

)

@main def main: Unit =
assert(

statement(invoices(0), plays)
==
"""|Statement for BigCo

| Hamlet: $650.00 (55 seats)
| As You Like It: $580.00 (35 seats)
| Othello: $500.00 (40 seats)
|Amount owed is $1,730.00
|You earned 47 credits
|""".stripMargin

)
assert(

htmlStatement(invoices(0), plays)
==
"""|<h1>Statement for BigCo</h1>

|<table>
|<tr><th>play</th><th>seats</th><th>cost</th></tr>
|<tr><td>Hamlet</td><td>55</td><td>$650.00</td></tr>
|<tr><td>As You Like It</td><td>35</td><td>$580.00</td></tr>
|<tr><td>Othello</td><td>40</td><td>$500.00</td></tr>
|</table>
|<p>Amount owed is $1,730.00</p>
|<p>You earned 47 credits</p>
|""".stripMargin

)

Let’s add an assertion test for htmlStatement.

Status: Separated into Two Files (and Phases)

@philip_schwarz

Martin Fowler
@martinfowler

There are more things I could do to simplify the printing logic, but this will do for the moment.

I always have to strike a balance between all the refactorings I could do and adding new features.

At the moment, most people under-prioritize refactoring—but there still is a balance.

My rule is a variation on the camping rule:

Always leave the code base healthier than when you found it.

It will never be perfect, but it should be better.

Martin Fowler
@martinfowler

• Decomposing the statement Function
• Removing the play Variable
• Extracting Volume Credits
• Removing the formatter Variable
• Removing Total Volume Credits
• Removing Total Amount
• Status: Lots of Nested Functions
• Splitting the Phases of Calculation and Formatting
• Status: Separated into Two Files (and Phases)
• Reorganising the Calculations by Type

Martin Fowler
@martinfowler

Now I’ll turn my attention to the next feature change: supporting more categories of plays, each with its own charging and volume credits
calculations. At the moment, to make changes here I have to go into the calculation functions and edit the conditions in there.

The amountFor function highlights the central role the type of play has in the choice of calculations—but conditional logic like this tends to
decay as further modifications are made unless it’s reinforced by more structural elements of the programming language.

There are various ways to introduce structure to make this explicit, but in this case a natural approach is type polymorphism—a prominent
feature of classical object-orientation. Classical OO has long been a controversial feature in the JavaScript world, but the ECMAScript 2015
version provides a sound syntax and structure for it. So it makes sense to use it in a right situation—like this one.

My overall plan is to set up an inheritance hierarchy with comedy and tragedy subclasses that contain the calculation logic for those cases.
Callers call a polymorphic amount function that the language will dispatch to the different calculations for the comedies and tragedies. I’ll
make a similar structure for the volume credits calculation. To do this, I utilize a couple of refactorings.

The core refactoring is Replace Conditional with Polymorphism, which changes a hunk of conditional code with polymorphism. But before I
can do Replace Conditional with Polymorphism, I need to create an inheritance structure of some kind. I need to create a class to host the
amount and volume credit functions.

def amountFor(aPerformance: Performance): Int =
var result = 0
playFor(aPerformance).`type` match

case "tragedy" =>
result = 40_000
if aPerformance.audience > 30
then result += 1_000 * (aPerformance.audience - 30)

case "comedy" =>
result = 30_000
if aPerformance.audience > 20
then result += 10_000 + 500 * (aPerformance.audience - 20)
result += 300 * aPerformance.audience

case other =>
throw IllegalArgumentException(s"unknown type ${playFor(aPerformance).`type`}")

result

Martin Fowler
@martinfowler

• Decomposing the statement Function
• Removing the play Variable
• Extracting Volume Credits
• Removing the formatter Variable
• Removing Total Volume Credits
• Removing Total Amount
• Status: Lots of Nested Functions
• Splitting the Phases of Calculation and Formatting
• Status: Separated into Two Files (and Phases)
• Reorganising the Calculations by Type

• Creating a Performance Calculator

Martin Fowler
@martinfowler

case class PerformanceCalculator(performance: Performance)

def enrichPerformance(aPerformance: Performance): EnrichedPerformance =
EnrichedPerformance(

aPerformance.playID,
playFor(aPerformance),
aPerformance.audience,
amountFor(aPerformance),
volumeCreditsFor(aPerformance))

def enrichPerformance(aPerformance: Performance): EnrichedPerformance =
val calculator = PerformanceCalculator(aPerformance)
EnrichedPerformance(

aPerformance.playID,
playFor(aPerformance),
aPerformance.audience,
amountFor(aPerformance),
volumeCreditsFor(aPerformance))

The enrichPerformance function is the key, since it populates the
intermediate data structure with the data for each performance.

Currently, it calls the conditional functions for amount and volume
credits. What I need it to do is call those functions on a host class.

Since that class hosts functions for calculating data about performances,
I’ll call it a performance calculator.

Creating a Performance Calculator

Martin Fowler
@martinfowler

case class PerformanceCalculator(performance: Performance)

def enrichPerformance(aPerformance: Performance): EnrichedPerformance =
val calculator = PerformanceCalculator(aPerformance)
EnrichedPerformance(

aPerformance.playID,
playFor(aPerformance),
aPerformance.audience,
amountFor(aPerformance),
volumeCreditsFor(aPerformance))

So far, this new object isn’t doing anything. I want to move behavior into it—and I’d like
to start with the simplest thing to move, which is the play record.

Strictly, I don’t need to do this, as it’s not varying polymorphically, but this way I’ll keep
all the data transforms in one place, and that consistency will make the code clearer.

Creating a Performance Calculator

case class PerformanceCalculator(performance: Performance, play: Play)

def enrichPerformance(aPerformance: Performance): EnrichedPerformance =
val calculator = PerformanceCalculator(aPerformance,playFor(aPerformance))
EnrichedPerformance(

aPerformance.playID,
calculator.play,
aPerformance.audience,
amountFor(aPerformance),
volumeCreditsFor(aPerformance))

Martin Fowler
@martinfowler

• Decomposing the statement Function
• Removing the play Variable
• Extracting Volume Credits
• Removing the formatter Variable
• Removing Total Volume Credits
• Removing Total Amount
• Status: Lots of Nested Functions
• Splitting the Phases of Calculation and Formatting
• Status: Separated into Two Files (and Phases)
• Reorganising the Calculations by Type

• Creating a Performance Calculator
• Moving Functions into the Calculator

Martin Fowler
@martinfowler

Moving Functions into the Calculator

case class PerformanceCalculator(performance: Performance, play: Play):
def amount: Int =
var result = 0
play.`type` match
case "tragedy" =>
result = 40_000
if performance.audience > 30
then result += 1_000 * (performance.audience - 30)

case "comedy" =>
result = 30_000
if performance.audience > 20
then result += 10_000 + 500 * (performance.audience - 20)
result += 300 * performance.audience

case other =>
throw IllegalArgumentException(s"unknown type ${play.`type`}")

result

case class PerformanceCalculator(performance: Performance, play: Play)

def amountFor(aPerformance: Performance): Int =
var result = 0
playFor(aPerformance).`type` match
case "tragedy" =>
result = 40_000
if aPerformance.audience > 30
then result += 1_000 * (aPerformance.audience - 30)

case "comedy" =>
result = 30_000
if aPerformance.audience > 20
then result += 10_000 + 500 * (aPerformance.audience - 20)
result += 300 * aPerformance.audience

case other =>
throw IllegalArgumentException(s"unknown type ${playFor(aPerformance).`type`}")

result

The next bit of logic I move is rather more substantial for
calculating the amount for a performance…

The first part of this refactoring is to copy the logic over
to its new context—the calculator class.

Then, I adjust the code to fit into its new home,
changing aPerformance to performance and playFor(aPer
formance) to play.

Move Function amountFor

Martin Fowler
@martinfowler

Moving Functions into the Calculator

Once the new function fits its home, I take the
original function and turn it into a delegating
function so it calls the new function.

Move Function amountFor (continued)

def amountFor(aPerformance: Performance): Int =
var result = 0
playFor(aPerformance).`type` match
case "tragedy" =>
result = 40_000
if aPerformance.audience > 30
then result += 1_000 * (aPerformance.audience - 30)

case "comedy" =>
result = 30_000
if aPerformance.audience > 20
then result += 10_000 + 500 * (aPerformance.audience - 20)
result += 300 * aPerformance.audience

case other =>
throw new IllegalArgumentException(s"unknown type ${playFor(aPerformance).`type`}")

result

def amountFor(aPerformance: Performance): Int =
PerformanceCalculator(aPerformance,playFor(aPerformance)).amount

Martin Fowler
@martinfowler

def amountFor(aPerformance: Performance): Int =
PerformanceCalculator(aPerformance,playFor(aPerformance)).amount

def enrichPerformance(aPerformance: Performance): EnrichedPerformance =
val calculator = PerformanceCalculator(aPerformance,playFor(aPerformance))
EnrichedPerformance(

aPerformance.playID,
calculator.play,
aPerformance.audience,
amountFor(aPerformance),
volumeCreditsFor(aPerformance))

def enrichPerformance(aPerformance: Performance): EnrichedPerformance =
val calculator = PerformanceCalculator(aPerformance,playFor(aPerformance))
EnrichedPerformance(

aPerformance.playID,
calculator.play,
aPerformance.audience,
calculator.amount,
volumeCreditsFor(aPerformance))

Inline Function amountFor

With that done, I use Inline Function to
call the new amount function directly.

Moving Functions into the Calculator

Yes, we are not just inlining amountFor, we are then taking into
consideration the fact that the body of amountFor that we have just
inlined is equivalent to the simpler expression calculator.amount.

Martin Fowler
@martinfowler

I repeat the same process to move
the volume credits calculation.

def enrichPerformance(aPerformance: Performance): EnrichedPerformance =
val calculator = PerformanceCalculator(aPerformance,playFor(aPerformance))
EnrichedPerformance(

aPerformance.playID,
calculator.play,
aPerformance.audience,
calculator.amount,
volumeCreditsFor(aPerformance))

def volumeCreditsFor(aPerformance: Performance) =
var result = 0
result += math.max(aPerformance.audience - 30, 0)
if "comedy" == playFor(aPerformance).`type`
then result += math.floor(aPerformance.audience / 5).toInt
result

def enrichPerformance(aPerformance: Performance): EnrichedPerformance =
val calculator = PerformanceCalculator(aPerformance,playFor(aPerformance))
EnrichedPerformance(

aPerformance.playID,
calculator.play,
aPerformance.audience,
calculator.amount,
calculator.volumeCredits)

Move Function volumeCreditsFor

case class PerformanceCalculator(performance: Performance, play: Play):
def amount: Int =

…
def volumeCredits: Int =

var result = 0
result += math.max(performance.audience - 30, 0)
if "comedy" == play.`type`
then result += math.floor(performance.audience / 5).toInt
result

Moving Functions into the Calculator

Martin Fowler
@martinfowler

• Decomposing the statement Function
• Removing the play Variable
• Extracting Volume Credits
• Removing the formatter Variable
• Removing Total Volume Credits
• Removing Total Amount
• Status: Lots of Nested Functions
• Splitting the Phases of Calculation and Formatting
• Status: Separated into Two Files (and Phases)
• Reorganising the Calculations by Type

• Creating a Performance Calculator
• Moving Functions into the Calculator
• Making the Performance Calculator Polymorphic

case class PerformanceCalculator(performance: Performance, play: Play):

def amount: Int =
var result = 0
play.`type` match
case "tragedy" =>
result = 40_000
if performance.audience > 30
then result += 1_000 * (performance.audience - 30)

case "comedy" =>
result = 30_000
if performance.audience > 20
then result += 10_000 + 500 * (performance.audience - 20)
result += 300 * performance.audience

case other =>
throw new IllegalArgumentException(
s"unknown type ${play.`type`}")

result

def volumeCredits: Int =
var result = 0
result += math.max(performance.audience - 30, 0)
if "comedy" == play.`type`
then result += math.floor(performance.audience / 5).toInt
result

sealed trait PerformanceCalculator :

def performance: Performance

def play: Play

def amount: Int =
var result = 0
play.`type` match
case "tragedy" =>

result = 40_000
if performance.audience > 30
then result += 1_000 * (performance.audience - 30)

case "comedy" =>
result = 30_000
if performance.audience > 20
then result += 10_000 + 500 * (performance.audience - 20)
result += 300 * performance.audience

case other =>
throw new IllegalArgumentException(s"unknown type ${play.`type`}")

result

def volumeCredits: Int =
var result = 0
result += math.max(performance.audience - 30, 0)
if "comedy" == play.`type`
then result += math.floor(performance.audience / 5).toInt
result

case class TragedyCalculator(performance: Performance, play: Play) extends PerformanceCalculator

case class ComedyCalculator(performance: Performance, play: Play) extends PerformanceCalculator

object PerformanceCalculator:
def apply(aPerformance: Performance, aPlay: Play): PerformanceCalculator =
aPlay.`type` match
case "tragedy" => TragedyCalculator(aPerformance,aPlay)
case "comedy" => ComedyCalculator(aPerformance,aPlay)
case other => throw new IllegalArgumentException(s"unknown type ${aPlay.`type`}")

Making the Performance Calculator Polymorphic

Now that I have the logic in a class, it’s time to
apply the polymorphism. The first step is to
use Replace Type Code with Subclasses to
introduce subclasses instead of the type code.

Martin Fowler
@martinfowler

In Scala, we decided to map the superclass
to an interface (trait), and the subclasses to
implementations of the interface (trait).

sealed trait PerformanceCalculator :

def performance: Performance

def play: Play

def amount: Int =
var result = 0
play.`type` match
case "tragedy" =>
result = 40_000
if performance.audience > 30
then result += 1_000 * (performance.audience - 30)

case "comedy" =>
result = 30_000
if performance.audience > 20
then result += 10_000 + 500 * (performance.audience - 20)
result += 300 * performance.audience

case other =>
throw new IllegalArgumentException(s"unknown type ${play.`type`}")

result

def volumeCredits: Int =
var result = 0
result += math.max(performance.audience - 30, 0)
if "comedy" == play.`type`
then result += math.floor(performance.audience / 5).toInt
result

case class TragedyCalculator(performance: Performance, play: Play)
extends PerformanceCalculator

case class ComedyCalculator(performance: Performance, play: Play)
extends PerformanceCalculator

sealed trait PerformanceCalculator :

def performance: Performance

def play: Play

def amount: Int =
var result = 0
play.`type` match
case "tragedy" => throw IllegalArgumentException(s”bad thing")
case "comedy" =>
result = 30_000
if performance.audience > 20
then result += 10_000 + 500 * (performance.audience - 20)
result += 300 * performance.audience

case other =>
throw IllegalArgumentException(s"unknown type ${play.`type`}")

result

def volumeCredits: Int =
var result = 0
result += math.max(performance.audience - 30, 0)
if "comedy" == play.`type`
then result += math.floor(performance.audience / 5).toInt
result

case class TragedyCalculator(performance: Performance, play: Play)
extends PerformanceCalculator:
override def amount: Int =
var result = 40_000
if performance.audience > 30
then result += 1_000 * (performance.audience - 30)
result

case class ComedyCalculator(performance: Performance, play: Play)
extends PerformanceCalculator

Martin Fowler

This sets up the structure for the
polymorphism, so I can now move on to
Replace Conditional with Polymorphism.

Making the Performance Calculator Polymorphic

sealed trait PerformanceCalculator :

def performance: Performance

def play: Play

def amount: Int

def volumeCredits: Int =
var result = 0
result += math.max(performance.audience - 30, 0)
if "comedy" == play.`type`
then result += math.floor(performance.audience / 5).toInt
result

case class TragedyCalculator(performance: Performance, play: Play)
extends PerformanceCalculator:
def amount: Int =
var result = 40_000
if performance.audience > 30
then result += 1_000 * (performance.audience - 30)
result

case class ComedyCalculator(performance: Performance, play: Play)
extends PerformanceCalculator
def amount: Int =
var result = 30_000
if performance.audience > 20
then result += 10_000 + 500 * (performance.audience - 20)
result += 300 * performance.audience
result

Martin Fowler
@martinfowler

sealed trait PerformanceCalculator :

def performance: Performance

def play: Play

def amount: Int =
var result = 0
play.`type` match
case "tragedy" => throw IllegalArgumentException(s”bad thing")
case "comedy" =>
result = 30_000
if performance.audience > 20
then result += 10_000 + 500 * (performance.audience - 20)
result += 300 * performance.audience

case other =>
throw IllegalArgumentException(s"unknown type ${play.`type`}")

result

def volumeCredits: Int =
var result = 0
result += math.max(performance.audience - 30, 0)
if "comedy" == play.`type`
then result += math.floor(performance.audience / 5).toInt
result

case class TragedyCalculator(performance: Performance, play: Play)
extends PerformanceCalculator:
override def amount: Int =
var result = 40_000
if performance.audience > 30
then result += 1_000 * (performance.audience - 30)
result

case class ComedyCalculator(performance: Performance, play: Play)
extends PerformanceCalculator

Now I move the comedy
case down too.

Making the Performance Calculator Polymorphic

sealed trait PerformanceCalculator :

def performance: Performance

def play: Play

def amount: Int

def volumeCredits: Int =
var result = 0
result += math.max(performance.audience - 30, 0)
if "comedy" == play.`type`
then result += math.floor(performance.audience / 5).toInt
result

case class TragedyCalculator(performance: Performance, play: Play)
extends PerformanceCalculator:
override def amount: Int =
var result = 40_000
if performance.audience > 30
then result += 1_000 * (performance.audience - 30)
result

case class ComedyCalculator(performance: Performance, play: Play)
extends PerformanceCalculator
override def amount: Int =
var result = 30_000
if performance.audience > 20
then result += 10_000 + 500 * (performance.audience - 20)
result += 300 * performance.audience
result

Martin Fowler
@martinfowler

sealed trait PerformanceCalculator :

def performance: Performance

def play: Play

def amount: Int

def volumeCredits: Int = math.max(performance.audience - 30, 0)

case class TragedyCalculator(performance: Performance, play: Play)
extends PerformanceCalculator:
def amount: Int =
var result = 40_000
if performance.audience > 30
then result += 1_000 * (performance.audience - 30)
result

case class ComedyCalculator(performance: Performance, play: Play)
extends PerformanceCalculator
def amount: Int =
var result = 30_000
if performance.audience > 20
then result += 10_000 + 500 * (performance.audience - 20)
result += 300 * performance.audience
result

override def volumeCredits: Int =
super.volumeCredits + math.floor(performance.audience / 5).toInt

The next conditional to replace
is the volumeCredits calculation.

Making the Performance Calculator Polymorphic

Martin Fowler
@martinfowler

• Decomposing the statement Function
• Removing the play Variable
• Extracting Volume Credits
• Removing the formatter Variable
• Removing Total Volume Credits
• Removing Total Amount
• Status: Lots of Nested Functions
• Splitting the Phases of Calculation and Formatting
• Status: Separated into Two Files (and Phases)
• Reorganising the Calculations by Type

• Creating a Performance Calculator
• Moving Functions into the Calculator
• Making the Performance Calculator Polymorphic

• Status: Creating the Data with the Polymorphic Calculator

Martin Fowler
@martinfowler

Time to reflect on what introducing the polymorphic calculator did to the code.

Again, the code has increased in size as I’ve introduced structure.

The benefit here is that the calculations for each kind of play are grouped together.

If most of the changes will be to this code, it will be helpful to have it clearly separated like this.

Adding a new kind of play requires writing a new subclass and adding it to the creation function.

The example gives some insight as to when using subclasses like this is useful.

See next slide for the initial code.

See the three subsequent slides for the refactored code.

def statement(invoice: Invoice, plays: Map[String, Play]): String =
var totalAmount = 0
var volumeCredits = 0
var result = s"Statement for ${invoice.customer}\n"
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))

for (perf <- invoice.performances)
val play = plays(perf.playID)
var thisAmount = 0

play.`type` match
case "tragedy" =>
thisAmount = 40_000
if perf.audience > 30
then thisAmount += 1_000 * (perf.audience - 30)

case "comedy" =>
thisAmount = 30_000
if perf.audience > 20
then thisAmount += 10_000 + 500 * (perf.audience - 20)
thisAmount += 300 * perf.audience

case other =>
throw IllegalArgumentException(s"unknown type ${play.`type`}")

// add volume credits
volumeCredits += math.max(perf.audience - 30, 0)
// add extra credit for every ten comedy attendees
if "comedy" == play.`type`
then volumeCredits += math.floor(perf.audience / 5).toInt

// print line for this order
result += s" ${play.name}: ${formatter.format(thisAmount/100)} (${perf.audience} seats)\n"
totalAmount += thisAmount

end for

result += s"Amount owed is ${formatter.format(totalAmount/100)}\n"
result += s"You earned $volumeCredits credits\n"
result

case class Invoice(
customer: String,
performances: List[Performance]

)

case class Performance(playID: String, audience: Int)

case class Play(name: String, `type`: String)

Initial Program

import java.text.NumberFormat
import java.util.{Currency, Locale}
import scala.math

def statement(invoice: Invoice, plays: Map[String, Play]): String =
renderPlainText(createStatementData(invoice, plays))

def htmlStatement(invoice: Invoice, plays: Map[String, Play]): String =
renderHtml(createStatementData(invoice,plays))

def renderPlainText(data: StatementData): String =
var result = s"Statement for ${data.customer}\n"
for (perf <- data.performances)

result +=
s" ${perf.play.name}: ${usd(perf.amount/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(data.totalAmount/100)}\n"
result += s"You earned ${data.totalVolumeCredits} credits\n"
result

def renderHtml(data: StatementData): String =
var result = s"<h1>Statement for ${data.customer}</h1>\n"
result += "<table>\n"
result += "<tr><th>play</th><th>seats</th><th>cost</th></tr>\n"
for (perf <- data.performances)

result += s"<tr><td>${perf.play.name}</td><td>${perf.audience}</td>"
result += s"<td>${usd(perf.amount/100)}</td></tr>\n"

result += "</table>\n"
result += s"<p>Amount owed is ${usd(data.totalAmount/100)}</p>\n"
result += s"<p>You earned ${data.totalVolumeCredits} credits</p>\n"
result

def usd(aNumber: Int): String =
val formatter = NumberFormat.getCurrencyInstance(Locale.US)
formatter.setCurrency(Currency.getInstance(Locale.US))
formatter.format(aNumber)

Refactored ProgramStatement.scala

def createStatementData(invoice: Invoice, plays: Map[String, Play]): StatementData =

def enrichPerformance(aPerformance: Performance): EnrichedPerformance =
val calculator = PerformanceCalculator(aPerformance,playFor(aPerformance))
EnrichedPerformance(

aPerformance.playID,
calculator.play,
aPerformance.audience,
calculator.amount,
calculator.volumeCredits)

def playFor(aPerformance: Performance): Play =
plays(aPerformance.playID)

def totalAmount(performances:List[EnrichedPerformance]): Int =
performances.foldLeft(0)((total,perf) => total + perf.amount)

def totalVolumeCredits(performances:List[EnrichedPerformance]): Int =
performances.foldLeft(0)((total,perf) => total + perf.volumeCredits)

val enrichedPerformances = invoice.performances.map(enrichPerformance)
StatementData(invoice.customer,

enrichedPerformances,
totalAmount(enrichedPerformances),
totalVolumeCredits(enrichedPerformances))

Refactored Program

CreateStatementData.scala

case class Performance(playID: String, audience: Int)

case class EnrichedPerformance(
playID: String,
play: Play,
audience: Int,
amount: Int,
volumeCredits: Int)

case class Invoice(customer: String, performances: List[Performance])

case class Play(name: String, `type`: String)

case class StatementData(
customer: String,
performances: List[EnrichedPerformance],
totalAmount: Int
totalVolumeCredits)

sealed trait PerformanceCalculator :
def performance: Performance
def play: Play
def amount: Int
def volumeCredits: Int = math.max(performance.audience - 30, 0)

case class TragedyCalculator(performance: Performance, play: Play)
extends PerformanceCalculator:

def amount: Int =
var result = 40_000
if performance.audience > 30
then result += 1_000 * (performance.audience - 30)
result

case class ComedyCalculator(performance: Performance, play: Play)
extends PerformanceCalculator

def amount: Int =
var result = 30_000
if performance.audience > 20
then result += 10_000 + 500 * (performance.audience - 20)
result += 300 * performance.audience
result

override def volumeCredits: Int =
super.volumeCredits + math.floor(performance.audience / 5).toInt

Refactored Program

Domain.scala

sealed trait PerformanceCalculator :

def performance: Performance

def play: Play

def amount: Int

def volumeCredits: Int = math.max(performance.audience - 30, 0)

case class TragedyCalculator(performance: Performance, play: Play)
extends PerformanceCalculator:
override def amount: Int =
var result = 40_000
if performance.audience > 30
then result += 1_000 * (performance.audience - 30)
result

case class ComedyCalculator(performance: Performance, play: Play)
extends PerformanceCalculator
override def amount: Int =
var result = 30_000
if performance.audience > 20
then result += 10_000 + 500 * (performance.audience - 20)
result += 300 * performance.audience
result

override def volumeCredits: Int =
super.volumeCredits + math.floor(performance.audience / 5).toInt

sealed trait PerformanceCalculator :

def performance: Performance

def play: Play

def amount: Int

def volumeCredits: Int = math.max(performance.audience - 30, 0)

case class TragedyCalculator(performance: Performance, play: Play)
extends PerformanceCalculator:
def amount: Int =
val basicAmount = 40_000
val largeAudiencePremiumAmount =
if performance.audience <= 30 then 0
else 1_000 * (performance.audience - 30)

basicAmount + largeAudiencePremiumAmount

case class ComedyCalculator(performance: Performance, play: Play)
extends PerformanceCalculator:
def amount: Int =
val basicAmount = 30_000
val largeAudiencePremiumAmount =
if performance.audience <= 20 then 0
else 10_000 + 500 * (performance.audience - 20)

val audienceSizeAmount = 300 * performance.audience
basicAmount + largeAudiencePremiumAmount + audienceSizeAmount

override def volumeCredits: Int =
super.volumeCredits + math.floor(performance.audience / 5).toInt

To conclude this slide deck, let’s make three more small improvements to the Scala code.

First, let’s get rid of the remaining mutability in the calculation logic.

def renderHtml(data: StatementData): String =
var result = s"<h1>Statement for ${data.customer}</h1>\n"
result += "<table>\n"
result += "<tr><th>play</th><th>seats</th><th>cost</th></tr>\n"
for (perf <- data.performances)
result += s"<tr><td>${perf.play.name}</td><td>${perf.audience}</td>"
result += s"<td>${usd(perf.amount/100)}</td></tr>\n"

result += "</table>\n"
result += s"<p>Amount owed is ${usd(data.totalAmount/100)}</p>\n"
result += s"<p>You earned ${data.totalVolumeCredits} credits</p>\n"
result

def renderPlainText(data: StatementData): String =
var result = s"Statement for ${data.customer}\n"
for (perf <- data.performances)
result +=
s" ${perf.play.name}: ${usd(perf.amount/100)} (${perf.audience} seats)\n"

result += s"Amount owed is ${usd(data.totalAmount/100)}\n"
result += s"You earned ${data.totalVolumeCredits} credits\n"
result

def renderHtml(data: StatementData): String =
s"""|<h1>Statement for ${data.customer}</h1>

|<table>
|<tr><th>play</th><th>seats</th><th>cost</th></tr>
|""".stripMargin + (

for
perf <- data.performances

yield s"<tr><td>${perf.play.name}</td><td>${perf.audience}</td>" +
s"<td>${usd(perf.amount/100)}</td></tr>\n"

).mkString +
s"""|</table>

|<p>Amount owed is ${usd(data.totalAmount/100)}</p>
|<p>You earned ${data.totalVolumeCredits} credits</p>
|""".stripMargin

def renderPlainText(data: StatementData): String =
s"Statement for ${data.customer}\n" + (
for

perf <- data.performances
yield s" ${perf.play.name}: ${usd(perf.amount/100)} (${perf.audience} seats)\n"

).mkString +
s"""|Amount owed is ${usd(data.totalAmount/100)}

|You earned ${data.totalVolumeCredits} credits
|""".stripMargin

Next, let’s get rid of the mutability
in the rendering logic.

def totalAmount(performances:List[EnrichedPerformance]): Int =
performances.foldLeft(0)((total,perf) => total + perf.amount)

def totalVolumeCredits(performances:List[EnrichedPerformance]): Int =
performances.foldLeft(0)((total,perf) => total + perf.volumeCredits)

def totalAmount(performances:List[EnrichedPerformance]): Int =
performances.map(_.amount).sum

def totalVolumeCredits(performances:List[EnrichedPerformance]): Int =
performances.map(_.volumeCredits).sum

And finally, let’s make a small change to
increase the readability of the totalling
functions for amount and volume credits.

@philip_schwarz

That’s all.

I hope you found it useful.

