a; : aq
/\ /\f
a, : a;
/\ /\
as [] as e

E‘ HX @philip_schwarz (FP IM\uminated) https://fpilluminated.com/

slides by

http://fpilluminated.com/

The universal property of fold

For finite lists, the universal property of fold can be stated as the following equivalence between two definitions for a function g that
processes lists:

gl] =v & g = foldfv
g (x:xs) =fx(gxs)

In the right-to-left direction, substituting g = fold f v into the two equations for g gives the recursive definition for fold.

Conversely, in the left-to-right direction the two equations for g are precisely the assumptions required to show that g = fold f v using a
simple proof by induction on finite lists...

Taken as a whole, the universal property states that for finite lists the function fold f v is not just a solution to its defining equations, but
in fact the unique solution....

The universal property of fold can be generalised to handle partial and infinite lists...

A tutorial on the universality and fold (@ > B—->B)—->B - ([a] = B)
expressiveness of fold fold fv]] =v
fold fv(x:xs) =fx(fold fvxs)

Graham Hutton
2 X @haskelhutt

GRAHAM HUTTON

gll = v
g (x:xs) =fx(gxs)

g = fold fv

sum :: [Int] - Int
sum [] =0
sum (x : xs) = x + sum xs

sum = fold (+) 0

product :: [Int] - Int
product [| =1
product (x : xs) = x X product xs

product = fold (X) 1

length :: [a] = Int
length [] =0
length (x : xs) = 1+ length xs

length = fold (Ax.An.1+n)0

(#) = [a] = [a] = [o]
L]+ ys = ys
(x:xs)#ys = x:(xs#ys)

(#ys) = fold () ys

concat :: [[a]] = [«
concat | | =[]
concat (xs : xss) = xs 4 concat xss

[

concat = fold (#) []

The Triad of The bread, butter, and jam of
map, filter and fold Functional Programming

gll = v
g (x:xs) =fx(gxs)

map = (a = B) = ([a] = [B])
map f |] =[]

map f (x:xs) = fx:mapf xs

filter :: (&« = Bool) - ([a] — [a])

filter p [] = [
filter p (x 1 xs) = ifpx
then x : filter p xs

else filter p xs

g = foldr fv

map f = foldr (Ax.Axs. (f x) : xs) []

filter p = foldr (Ax.Axs.if p x then x : xs else xs) []

\ Y U
inspired

by

Folding Unfolded

Polyglot FP for Fun and Profit
Haskell and Scala

See how recursive functions and structural induction relate to recursive datatypes
Follow along as the fold abstraction is introduced and explained
Watch as folding is used to simplify the definition of recursive functions over recursive datatypes

Part 1 - through the work of

ﬁmhwn Science
AR

Introduction to

A tutorial on the universality and
expressiveness of fold

? nal Programming
skell
edition

GRAHAM HUTTON

University of Nottingham, Nottingham, UK
http://www.cs.nott.ac.uk/-gmh

CA R b s

Richard Bird Graham Hutton
http://www.cs.ox.ac.uk/people/richard.bird/ £l @haskellhutt

slides by . u@philip_schwarz @Slideshare https://www.slideshare.net/pjschwarz

https://fpilluminated.com/

FP IAMAuminated

http://fpilluminated.com/

