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{If | have to write down the definitions of a Ieft]

I%.' fold and a right fold for lists, here is what | write
Introduction to ili
Functional Programming u @philip_schwarz
ising Haskell
cond edition foldl:: (B »a »B)—>B—-[a] - B foldr:: (a » B »B)->B->la]l - B

foldl fel] =e foldr fel] =e
foldl fe(x:xs) = foldl f (f ex)xs foldr fe(x:xs) = fx(foldr f e xs)

Richard Bird

/ Richard Bird
While both definitions are recursive, the left fold is tail recursive, whereas the right fold isn’t. I

g Although | am very familiar with the above definitions, and view them as doing a good job of
| e explaining the two folds, | am always interested in alternative ways of explaining things, and so

,““ﬁ | have been looking at Sergei Winitzki’s mathematical definitions of left and right folds, in his
upcoming book: The Science of Functional Programming (SOFP).

The Science of Qergei’s definitions of the folds are in the top two rows of the following table /
Functional
Programming
Atutorial, with examples in Scala Definition by induction Scala code example

f(D=0b; f(s+[x])=g(f(s),x)|| £(xs) = xs.foldLeft(b) (g)
f(D =b; f(x]+s)=g(x, f(s)) || £(xs) = xs.foldRight (b) (g)

xg=b; xp1=g(xx) xs = Stream.iterate(b) (g)

yo=b; yk+1 =80k, Xk) ys = xs.scanLeft(b) (g)

Fa.0) Sergei Winitzki
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[Left folds and right folds do not necessarily produce the same
results. According to the first duality theorem of folding, one case
in which the results are the same, is when we fold using the unit
\and associative operation of a monoid. y

S ..

Introduction to

- Functional Programming
ng Haskell

- sec edition

First duality theorem. Suppose () is associative with unit e. Then

foldr () e xs = foldl (P) e xs

For all finite lists xs. _,..WLI

Folding integers left and right using the (Int,+,0) monoid, for example, produces the same results. ]

\

testl = TestCase (assertEqual "foldl(+) © []" @ (foldl (+) @ [1))

test2 = TestCase (assertEqual "foldl(+) © [1,2,3,4]" 10 (foldl (+) © [1,2,3,4]))
test3 = TestCase (assertEqual "foldr (+) © []" @ (foldr (+) © [1))

testd4 = TestCase (assertEqual "foldr (+) © [1,2,3,4]" 10 (foldr (+) © [1,2,3,4]))
But folding integers left and right using subtraction and zero, does not produce the same results, and in )
fact (Int,-,0) is not a monoid, because subtraction is not associative. )
test5 = TestCase (assertEqual "foldl(-) © []" @ (foldl (+) @ [1))

test6 = TestCase (assertEqual "foldl(-) © [1,2,3,4]" (- 10) (foldl (-) o [1,2,3,4]))
test7 = TestCase (assertEqual "foldr (-) © []" © (foldr (-) © []))

test8 = TestCase (assertEqual "foldr (-) © [1,2,3,4]" (- 2) (foldr (-) © [1,2,3,4]))




Here are Sergei’s mathematical definitions again, on the right (the # operator
is list concatenation). Notice how neither definition is tail recursive. That is
deliberate.

As Sergei explained to me: “I'd like to avoid putting tail recursion into a
mathematical formula, because tail recursion is just a detail of how we
implement this function” and “The fact that foldLeft is tail recursive for List is
an implementation detail that is specific to the List type. It will be different for

fUAD =Db; f(s#[x]) = g(f(s),x)

fAD =b; f(x]4#s)=g(x f(s))

\other sequence types. | do not want to put the implementation details into the/

formulas.”
foldl 2B oa-op)opola]l - B
foldl fell =e

To avoid any confusion (the definitions use the same function name f), and to foldl fe(x:xs) =foldl f (f ex)xs

align with the definitions on the right, let’s modify Sergei’s definitions by doing

some simple renaming. foldr (@ =»B -B)=B—-[a]l > B
foldr fel] =e
foldr fe(x:xs) =fx(foldr f e xs)

fAD =b; f(s#[x])=g((s)x) fAD =b; f(x]#s)=g(xf(s))
f—foldl g->f b—e f—foldr g—>f b—-e

v

v

foldl([]) =e; foldl(s # [x]) = f(foldl(s),x) foldr([]) =e; foldr([x]#s) = f(x, foldr(s))




Foldl([]) = e; foldi(s + [x]) = f(foldl(s),x)

foldr([]) =e; foldr([x]# s) = f(x, foldr(s))

To help us understand the above two definitions, let’s first express them in Haskell,
pretending that we are able to use s # [x] and [x] # s in a pattern match.

foldlfell=e
foldlfe(s#[x]) =f (foldlfes)x

foldr fel[]=e
foldr fe([x]#s)=fx(foldr fes)

Now let’s replace s # [x] and [x] # s with as, and get the functions to extract
the s and the x using the head, tail, last and init. Let’s also add type signatures

foldl::(b—>a—->b)—>b—la]l—b
foldlfel] = e
foldl feas = f (foldl f e (init as)) (last as)

foldr::(a—>b—->b)—>b—-[a]l—-b
foldrfel[l=e
foldr f eas = f (head as)(foldr f e (tail as))

And now let’s make it more obvious that what each fold is doing is taking an a from the list,
folding the rest of the list into a b, and then returning the result of calling f with a and b.

foldl::(b—->a—-b)—->b-a]—>b
foldlfell=e
foldlfeas = fba
where a = last as
b = foldl f e (init as)

foldr::(a—>b—->b)—>b—-[a]l—>b
foldrfel[l=e
foldr feas = fab
where a = head as
b = foldr f e (tail as)




foldl::(b—>a—-b)—>b—-[a]l—>b
foldlfe[]l=e
foldlfeas = fba

where a = last as

b = foldl f e (init as) b = foldr f e (tail as)

foldr::(@a—>b—->b)->b—-la]l—-b
foldrfe[]l=e
foldr feas = fab

where a = head as

[ Since the above two functions are very similar, let’s extract their common logic into a fold function. Let’s call the function
X that is used to extract an element from the list take, and the function that is used to extract the rest of the list rest.

fold f takereste[] =e
fold f takeresteas = fba

fold:(b—»>a—-b)—-(la]»>a)->([a] - [a]) > b~ [a]>b

where a = take as
b = fold f take rest e (rest as) | Ed @philip_schwarz

We can now define left and right
folds in terms of fold.

foldl::(b—>a—-b)->b—-[a]l—>b
foldl f = fold f last init

foldr::(@a->b—->b)—>b—[a]—>b flip::@a@a->b->c)->b-a—-c
foldr f = fold (flip f) head tail flipfxy=fyx

N
The slightly perplexing thing is that while a left fold applies f to list elements starting with the head of the list and
proceeding from left to right, the above foldl function achieves that by navigating through list elements from right to left.

Introduction to
Functional Programming

1sing Haskell

The fact that we can define foldl and foldr in terms of fold, as we ) - - —
do above, seems related to the third duality theorem of folding. Third duality theorem. For all finite lists xs,
Instead of our foldl function being passed the reverse of the list
passed to foldr, it processes the list with last and init, rather than

with head and tail.

edition

foldr fexs = foldl (flip f) e (reverse xs)
where flipfxy=fyx

J




To summarise what we did to help understand SOFP’s mathematical definitions of left and right fold: we
turned them into code and expressed them in terms of a common function fold that uses a take function
to extract an element from the list being folded, and a rest function to extract the rest of the list.

foldl([]) =e; foldl(s # [x]) = f(foldl(s),x) foldr([]) =e; foldr([x] #s) = f(x, foldr(s))

v A 4

foldl::(b>a—-b)->b—-[a]-b fold::(b—>a—-b)-(Ja]=a)—(Ja]=[a])>b—>[a] =)D foldr:: (@a—>b—->b)—>b-[a]—-Db
foldl f = fold f last init fold f takereste[] =e foldr f = fold (flip f) head tail

fold f takeresteas = fba
where a = take as
b = fold f take rest e (rest as)

. Let’s feed one aspect of the above back into Sergei’s definitions. Let’s temporarily rewrite them by\
’ replacing s # [x] and [x]| # s with as, and getting the definitions to extract the s and the x using the
functions head, tail, last and init.

Notice how the flipping of / done by the foldr function above, is reflected, in the foldr function below,
in the fact that its f/ takes an a and a b, rather than a b and an a. j

foldl([]) =e; foldl(as) = f(foldl(init(as)),last(as)) foldr([]) =e; foldr(as) = f(head(as), foldr(tail(as)))




Another thing we can do to understand SOFP’s definitions of left and right folds, is to see how they work
when applied to a sample list, e.g. [x,, X1, X5, X3], when we run them manually.

Z

\_In the next slide we first do this for the following definitions

foldl 2 (f ma->B)-=>B->[a]l =P foldr (@ ->p->p)->pF-olal->p
foldl fell =e foldr fell] =e
foldlfe(x:xs) = foldlf (fex)xs foldr fe(x:xs) =fx (foldr f exs)

ﬁ In the slide after that, we do it for SOFP’s definitions.

foldl([]) =e; foldl(s # [x]) = f(foldl(s), x) foldr([]) =e; foldr([x]# s) = f(x, foldr(s))




foldr f e [xq, x1, X2, X3]

[ xo (foldr f e [x1, X2, x3])

fxo (f x1 (foldr f e [xz x3]))

fxo (f x1 (f x2 (foldr f e [x3])))
fxo(fx1 (f x2(f x3 (foldr fe[]))))
fxo(fx1 (f x2(f x3€)))

foldr (@ > f B oo lal o f
foldr fel] =e /\
foldr fe(x:xs) =fx(foldr fexs) xo f
/\
xs = [xg, X1, X2, X3] rfpllfictil:f X1 /f\
. [ | with e
| x2 f
/\ — foldr f e xs /\
Xo ¢ X3 €
/\
X1 fxo (f %1 (f x2 (f x3€)))
/\
Xy ¢ f
N\ —> foldl f exs /\
var acc = e f X
x5 L foreach(x in xs) / \ ’
x0: (pz (2 (x3: [ 1)) rgflfr:aigacc’ o /f\ X2
[ x
foldl (B oa—B) - —lal-p N\
foldlfe[] =e o 3
foldl f e (x:xs) = foldl f (f e x) xs 0

f(f (f (f e xp) x1) x2) x3

foldl f e [xq, X1, X2, x3]

foldl f (f e xo)[x1, X2, X3]

foldl f (f (f e xq) x1)[x2, x3]
foldl f (f (f (f e xp) x1) x2)[x3]
foldl f (f (f (f (f e xo) x1) x2) x3)[ ]
f(f (f (f exq)x1) x2) x3




foldr([]) =e; foldr([x]# s) = f(x, foldr(s))

f

/\

xo f
/\

XS§S = [xO; X1, X2, x3]

/\ — foldr xs
Xo -
/ \
X1 -
/\
2 /’\ — foldl xs
x3 |]

x1 f
/\
X2 f
/\

X3 €

foldr([xo, X1, X2, X3])

f (xo, foldr([xq, Xz, x3]))

f (%o, f (1, foldr([xz, x3])))

f (xo, [ (xe, f (x2, foldr([x3]))))

f (o, f(x1, f (2, f (x5, foldr([])))))
f(in f(xlr f(xZJ f(Xg, e))))

f(xO; f(xlr f(th f(x3) 8))))

f
/\

/\

xo: (11 (x2: (x3: [ 1))

Foldl([D) = e; foldl(s + [x]) = f(foldl(s), x)

foldl([xo, x1, X2, x3]),

f(foldl([xo, x1, x2]), x3)

f(f (foldl([xo, x1]), x2), x3)

fF (G (foldl([xo]), x1), x2), x3)

fFU GG Sfoldl([ 1), x0), 1), X2), x3)
FU(f (e x0), x1), x2), x3)

f(f(f(f(ei x()), xl)er)pr)




Now let’s compare the results for both
definitions of foldl. The results are the same.

u @philip_schwarz

XS = [xOI X1, X2, x3]

/\
Xo -

/\

foldl f e [xq, x1, X2, X3]

foldl f (f e xo)[x1, x2, x3]
foldl f (f (f e x0) x1)[x2, x3]
foldl f (f (f (f e xo) x1) x2)[x3]
foldl f (f (f (f (f e x0) x1) x2) x3)[ ]
[ (f exo)x1) x2) x3

foldl 2 (fba—->p)>pf->lal-p

X1 -
/\
Xy ¢
/\
x3 []

xo: (11 (x2: (x3: [ 1))

» foldl fel] =e
foldl f e (x:xs) = foldl f (f e x) xs

o foldl([1) = e; foldl(s # [x]) = f(foldl(s),x)

foldl([xo, x1, X2, x3]),

f(foldl([xo, x1, x2]), x3)

f(f (foldl([xo, x1]), x2), x3)
fU(F(foldl([xo]), x1), x2), x3)
FUG G Soldl([ D) x0), x1), x2), X3)
fU (e, x0), x1), x2), x3)




1

And now let’s compare the results for both
definitions of foldr. Again, the results are the same.

XS = [xOI X1, X2, x3]

foldr f e [xq, X1, X2, X3]

f xo (foldr f e [x1, X2, x3])

f xo (f x1 (foldr f e [xz x3]))

fxo(f x1 (f x2 (foldr f e [x3])))
foxo(fx1(f x2(f x3 (foldr fe[]))))

xo: (11 (x2: (x3: [ 1))

/A foldr (@ > f o)~ f el p
Xo - » foldr fel] =e
/\ foldr fe(x:xs) = fx(foldr fexs)
X1 -
/\
X2 /:\ » foldr([]) =e; foldr([x] #s) = f(x, foldr(s))
x3 ]

fxo(f x1(f x2 (f x3€)))
f
/\
Xo f
/\
x1 f
/\
X, f
/\
X3 €
foldr([xo, X1, X2, X3])

f (xo, foldr([xy, x2,x3]))

f (xo, f (xq, foldr([xz, x3])))

f(xo, f(xy, f(x2, foldr([x3]))))

f (o f(x1, f (2, f (x5, foldr([])))))
f(xO: f(xli f(Xz, f(x?u e))))




The way foldr applies f to [x,y, z] is by associating to the right.

The way foldl does it is by associating to the right.

\Thinking of f as an infix operator can help to grasp this.

~N

foldr
foldl

& f(y,2))
f(f(x,y),2)

x® (y D z)
xDy) Dz

J

foldr (B)elx,y,z]l =xD (y B (z D ¢e))

foldl (B)elx,y,zl=(eDx)Dy) Dz

S

S

D
/\
© vy
/\

e X

/\

Z

Addition is associative, so associating to the left and to the right yields the
same result. But subtraction isn’t associative, so associating to the left yields
a result that is different to the one yielded when associating to the right.

foldr (+) 0[1,23] =1+ 2+ (3+0)) =6
foldl (+) 0[1,23]=((0+1)+2)+3=6

foldr (=) 0[1,23]=1—(Q2—(3—10)) =2
foldl (—)0[1,23]=(0—-1)—2)—3=—6




That’s all. | hope you found this slide deck useful.

We have seen that Sergei’s definitions of left and right folds make perfect sense.

Not only are they simple and succinct, they are also free of implementation details like tail recursion.

\By the way, in case you are interested, see below for a whole series of slide decks dedicated to foIdingj

~
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