
Based on definitions from

Left and Right Folds
Comparison of a mathematical definition

and a programmatic one
Polyglot FP for Fun and Profit - Haskell and Scala

@philip_schwarzslides by https://www.slideshare.net/pjschwarz

Sergei Winitzki
sergei-winitzki-11a6431

Richard Bird
http://www.cs.ox.ac.uk/people/richard.bird/

https://www.slideshare.net/pjschwarz/natural-transformations
http://www.cs.ox.ac.uk/people/richard.bird/

𝑓𝑜𝑙𝑑𝑙 ∷ 𝛽 → 𝛼 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 = 𝑒
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 𝑥 ∶ 𝑥𝑠 = 𝑓𝑜𝑙𝑑𝑙 𝑓 𝑓 𝑒 𝑥 𝑥𝑠

𝑓𝑜𝑙𝑑𝑟 ∷ 𝛼 → 𝛽 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 = 𝑒
𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 𝑥 ∶ 𝑥𝑠 = 𝑓 𝑥 𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 𝑥𝑠

If I have to write down the definitions of a left
fold and a right fold for lists, here is what I write

While both definitions are recursive, the left fold is tail recursive, whereas the right fold isn’t.

Although I am very familiar with the above definitions, and view them as doing a good job of
explaining the two folds, I am always interested in alternative ways of explaining things, and so
I have been looking at Sergei Winitzki’s mathematical definitions of left and right folds, in his
upcoming book: The Science of Functional Programming (SOFP).

Sergei’s definitions of the folds are in the top two rows of the following table

Sergei Winitzki

Richard Bird

@philip_schwarz

test1 = TestCase (assertEqual "foldl(+) 0 []" 0 (foldl (+) 0 []))
test2 = TestCase (assertEqual "foldl(+) 0 [1,2,3,4]" 10 (foldl (+) 0 [1,2,3,4]))

test3 = TestCase (assertEqual "foldr (+) 0 []" 0 (foldr (+) 0 []))
test4 = TestCase (assertEqual "foldr (+) 0 [1,2,3,4]" 10 (foldr (+) 0 [1,2,3,4]))

Left folds and right folds do not necessarily produce the same
results. According to the first duality theorem of folding, one case
in which the results are the same, is when we fold using the unit
and associative operation of a monoid.

First duality theorem. Suppose ⊕ is associative with unit 𝑒. Then

𝑓𝑜𝑙𝑑𝑟 ⊕ 𝑒 𝑥𝑠 = 𝑓𝑜𝑙𝑑𝑙 ⊕ 𝑒 𝑥𝑠

For all finite lists 𝑥𝑠.

test5 = TestCase (assertEqual "foldl(-) 0 []" 0 (foldl (+) 0 []))
test6 = TestCase (assertEqual "foldl(-) 0 [1,2,3,4]" (- 10) (foldl (-) 0 [1,2,3,4]))

test7 = TestCase (assertEqual "foldr (-) 0 []" 0 (foldr (-) 0 []))
test8 = TestCase (assertEqual "foldr (-) 0 [1,2,3,4]" (- 2) (foldr (-) 0 [1,2,3,4]))

Folding integers left and right using the (Int,+,0)monoid, for example, produces the same results.

But folding integers left and right using subtraction and zero, does not produce the same results, and in
fact (Int,-,0) is not a monoid, because subtraction is not associative.

𝑓 = 𝑏; 𝑓 𝑥 ⧺ 𝑠 = 𝑔(𝑥, 𝑓(𝑠))

𝑓 = 𝑏; 𝑓 𝑠 ⧺ [𝑥] = 𝑔(𝑓 𝑠 , 𝑥)

To avoid any confusion (the definitions use the same function name 𝑓), and to
align with the definitions on the right, let’s modify Sergei’s definitions by doing
some simple renaming.

Here are Sergei’s mathematical definitions again, on the right (the ⧺ operator
is list concatenation). Notice how neither definition is tail recursive. That is
deliberate.

As Sergei explained to me: “I'd like to avoid putting tail recursion into a
mathematical formula, because tail recursion is just a detail of how we
implement this function” and “The fact that foldLeft is tail recursive for List is
an implementation detail that is specific to the List type. It will be different for
other sequence types. I do not want to put the implementation details into the
formulas.”

𝑓 → 𝑓𝑜𝑙𝑑𝑙 𝑔 → 𝑓 𝑏 → 𝑒

𝑓𝑜𝑙𝑑𝑟 = 𝑒; 𝑓𝑜𝑙𝑑𝑟 𝑥 ⧺ 𝑠 = 𝑓(𝑥, 𝑓𝑜𝑙𝑑𝑟(𝑠))𝑓𝑜𝑙𝑑𝑙 = 𝑒; 𝑓𝑜𝑙𝑑𝑙 𝑠 ⧺ [𝑥] = 𝑓(𝑓𝑜𝑙𝑑𝑙 𝑠 , 𝑥)

𝑓 → 𝑓𝑜𝑙𝑑𝑟 𝑔 → 𝑓 𝑏 → 𝑒

𝑓𝑜𝑙𝑑𝑙 ∷ 𝛽 → 𝛼 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 = 𝑒
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 𝑥 ∶ 𝑥𝑠 = 𝑓𝑜𝑙𝑑𝑙 𝑓 𝑓 𝑒 𝑥 𝑥𝑠

𝑓𝑜𝑙𝑑𝑟 ∷ 𝛼 → 𝛽 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 = 𝑒
𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 𝑥 ∶ 𝑥𝑠 = 𝑓 𝑥 𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 𝑥𝑠

𝑓 = 𝑏; 𝑓 𝑥 ⧺ 𝑠 = 𝑔(𝑥, 𝑓(𝑠))𝑓 = 𝑏; 𝑓 𝑠 ⧺ [𝑥] = 𝑔(𝑓 𝑠 , 𝑥)

𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 [] = 𝑒
𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 𝑥 ⧺ 𝑠 = 𝑓 𝑥 (𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 𝑠)

𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 = 𝑒
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 𝑠 ⧺ [𝑥] = 𝑓 𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 𝑠 𝑥

𝑓𝑜𝑙𝑑𝑙 :: (𝑏 → 𝑎 → 𝑏) → 𝑏 →[𝑎] → 𝑏
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 = 𝑒
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 𝑎𝑠 = 𝑓 𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 (𝑖𝑛𝑖𝑡 𝑎𝑠) (𝑙𝑎𝑠𝑡 𝑎𝑠)

𝑓𝑜𝑙𝑑𝑟 :: (𝑎 → 𝑏 → 𝑏) → 𝑏 →[𝑎] → 𝑏
𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 = 𝑒
𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 𝑎𝑠 = 𝑓 ℎ𝑒𝑎𝑑 𝑎𝑠 𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 (𝑡𝑎𝑖𝑙 𝑎𝑠)

𝑓𝑜𝑙𝑑𝑙 :: (𝑏 → 𝑎 → 𝑏) → 𝑏 →[𝑎] → 𝑏
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 = 𝑒
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 𝑎𝑠 = 𝑓 𝑏 𝑎

𝑤ℎ𝑒𝑟𝑒 𝑎 = 𝑙𝑎𝑠𝑡 𝑎𝑠
𝑏 = 𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 (𝑖𝑛𝑖𝑡 𝑎𝑠)

𝑓𝑜𝑙𝑑𝑟 :: (𝑎 → 𝑏 → 𝑏) → 𝑏 →[𝑎] → 𝑏
𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 = 𝑒
𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 𝑎𝑠 = 𝑓 𝑎 𝑏

𝑤ℎ𝑒𝑟𝑒 𝑎 = ℎ𝑒𝑎𝑑 𝑎𝑠
𝑏 = 𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 (𝑡𝑎𝑖𝑙 𝑎𝑠)

𝑓𝑜𝑙𝑑𝑟 = 𝑒; 𝑓𝑜𝑙𝑑𝑟 𝑥 ⧺ 𝑠 = 𝑓(𝑥, 𝑓𝑜𝑙𝑑𝑟(𝑠))𝑓𝑜𝑙𝑑𝑙 = 𝑒; 𝑓𝑜𝑙𝑑𝑙 𝑠 ⧺ [𝑥] = 𝑓(𝑓𝑜𝑙𝑑𝑙 𝑠 , 𝑥)

To help us understand the above two definitions, let’s first express them in Haskell,
pretending that we are able to use 𝑠 ⧺ [𝑥] and 𝑥 ⧺ 𝑠 in a pattern match.

Now let’s replace 𝑠 ⧺ [𝑥] and 𝑥 ⧺ 𝑠 with as, and get the functions to extract
the 𝑠 and the 𝑥 using the ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙, 𝑙𝑎𝑠𝑡 and 𝑖𝑛𝑖𝑡. Let’s also add type signatures

And now let’s make it more obvious that what each fold is doing is taking an 𝑎 from the list,
folding the rest of the list into a 𝑏, and then returning the result of calling 𝑓 with 𝑎 and 𝑏.

𝑓𝑜𝑙𝑑𝑙 :: (𝑏 → 𝑎 → 𝑏) → 𝑏 →[𝑎] → 𝑏
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 = 𝑒
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 𝑎𝑠 = 𝑓 𝑏 𝑎

𝑤ℎ𝑒𝑟𝑒 𝑎 = 𝑙𝑎𝑠𝑡 𝑎𝑠
𝑏 = 𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 (𝑖𝑛𝑖𝑡 𝑎𝑠)

𝑓𝑜𝑙𝑑𝑟 :: (𝑎 → 𝑏 → 𝑏) → 𝑏 →[𝑎] → 𝑏
𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 = 𝑒
𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 𝑎𝑠 = 𝑓 𝑎 𝑏

𝑤ℎ𝑒𝑟𝑒 𝑎 = ℎ𝑒𝑎𝑑 𝑎𝑠
𝑏 = 𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 (𝑡𝑎𝑖𝑙 𝑎𝑠)

Since the above two functions are very similar, let’s extract their common logic into a fold function. Let’s call the function
that is used to extract an element from the list 𝑡𝑎𝑘𝑒, and the function that is used to extract the rest of the list 𝑟𝑒𝑠𝑡.

𝑓𝑜𝑙𝑑 ::	(𝑏 → 𝑎 → 𝑏)	→ ([𝑎]	→ 𝑎)	→ ([𝑎]	→ [𝑎])	→ 𝑏 → [𝑎]	→ 𝑏
𝑓𝑜𝑙𝑑 𝑓 𝑡𝑎𝑘𝑒 𝑟𝑒𝑠𝑡 𝑒 = 𝑒
𝑓𝑜𝑙𝑑 𝑓 𝑡𝑎𝑘𝑒 𝑟𝑒𝑠𝑡 𝑒 𝑎𝑠 = 𝑓 𝑏 𝑎

𝑤ℎ𝑒𝑟𝑒 𝑎 = 𝑡𝑎𝑘𝑒 𝑎𝑠
𝑏 = 𝑓𝑜𝑙𝑑 𝑓 𝑡𝑎𝑘𝑒 𝑟𝑒𝑠𝑡 𝑒 (𝑟𝑒𝑠𝑡 𝑎𝑠)

We can now define left and right
folds in terms of 𝑓𝑜𝑙𝑑.

𝑓𝑜𝑙𝑑𝑙 :: (𝑏 → 𝑎 → 𝑏) → 𝑏 →[𝑎] → 𝑏
𝑓𝑜𝑙𝑑𝑙 𝑓 = 𝑓𝑜𝑙𝑑 𝑓 𝑙𝑎𝑠𝑡 𝑖𝑛𝑖𝑡

𝑓𝑜𝑙𝑑𝑟 :: (𝑎 → 𝑏 → 𝑏) → 𝑏 →[𝑎] → 𝑏
𝑓𝑜𝑙𝑑𝑟 𝑓 = 𝑓𝑜𝑙𝑑 𝑓𝑙𝑖𝑝 𝑓 ℎ𝑒𝑎𝑑 𝑡𝑎𝑖𝑙

𝑓𝑙𝑖𝑝 ::	(𝑎 → 𝑏 → 𝑐)	→ 𝑏 → 𝑎 → 𝑐
𝑓𝑙𝑖𝑝 𝑓 𝑥 𝑦 =	𝑓 𝑦 𝑥

The slightly perplexing thing is that while a left fold applies 𝑓 to list elements starting with the ℎ𝑒𝑎𝑑 of the list and
proceeding from left to right, the above 𝑓𝑜𝑙𝑑𝑙 function achieves that by navigating through list elements from right to left.

Third duality theorem. For all finite lists 𝑥𝑠,

𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 𝑥𝑠 = 𝑓𝑜𝑙𝑑𝑙 𝑓𝑙𝑖𝑝 𝑓 𝑒 (𝑟𝑒𝑣𝑒𝑟𝑠𝑒 𝑥𝑠)
𝒘𝒉𝒆𝒓𝒆 𝑓𝑙𝑖𝑝 𝑓 𝑥 𝑦 = 𝑓 𝑦 𝑥

The fact that we can define 𝑓𝑜𝑙𝑑𝑙 and 𝑓𝑜𝑙𝑑𝑟 in terms of 𝑓𝑜𝑙𝑑, as we
do above, seems related to the third duality theorem of folding.
Instead of our 𝑓𝑜𝑙𝑑𝑙 function being passed the reverse of the list
passed to 𝑓𝑜𝑙𝑑𝑟, it processes the list with 𝑙𝑎𝑠𝑡 and 𝑖𝑛𝑖𝑡, rather than
with ℎ𝑒𝑎𝑑 and 𝑡𝑎𝑖𝑙.

@philip_schwarz

To summarise what we did to help understand SOFP’s mathematical definitions of left and right fold: we
turned them into code and expressed them in terms of a common function 𝑓𝑜𝑙𝑑 that uses a 𝑡𝑎𝑘𝑒 function
to extract an element from the list being folded, and a 𝑟𝑒𝑠𝑡 function to extract the rest of the list.

𝑓𝑜𝑙𝑑 ::	(𝑏 → 𝑎 → 𝑏)	→ ([𝑎]	→ 𝑎)	→ ([𝑎]	→ [𝑎])	→ 𝑏 → [𝑎]	→ 𝑏
𝑓𝑜𝑙𝑑 𝑓 𝑡𝑎𝑘𝑒 𝑟𝑒𝑠𝑡 𝑒 = 𝑒
𝑓𝑜𝑙𝑑 𝑓 𝑡𝑎𝑘𝑒 𝑟𝑒𝑠𝑡 𝑒 𝑎𝑠 = 𝑓 𝑏 𝑎

𝑤ℎ𝑒𝑟𝑒 𝑎 = 𝑡𝑎𝑘𝑒 𝑎𝑠
𝑏 = 𝑓𝑜𝑙𝑑 𝑓 𝑡𝑎𝑘𝑒 𝑟𝑒𝑠𝑡 𝑒 (𝑟𝑒𝑠𝑡 𝑎𝑠)

𝑓𝑜𝑙𝑑𝑙 :: (𝑏 → 𝑎 → 𝑏) → 𝑏 →[𝑎] → 𝑏
𝑓𝑜𝑙𝑑𝑙 𝑓 = 𝑓𝑜𝑙𝑑 𝑓 𝑙𝑎𝑠𝑡 𝑖𝑛𝑖𝑡

𝑓𝑜𝑙𝑑𝑟 :: (𝑎 → 𝑏 → 𝑏) → 𝑏 →[𝑎] → 𝑏
𝑓𝑜𝑙𝑑𝑟 𝑓 = 𝑓𝑜𝑙𝑑 𝑓𝑙𝑖𝑝 𝑓 ℎ𝑒𝑎𝑑 𝑡𝑎𝑖𝑙

𝑓𝑜𝑙𝑑𝑟 = 𝑒; 𝑓𝑜𝑙𝑑𝑟 𝑥 ⧺ 𝑠 = 𝑓(𝑥, 𝑓𝑜𝑙𝑑𝑟(𝑠))𝑓𝑜𝑙𝑑𝑙 = 𝑒; 𝑓𝑜𝑙𝑑𝑙 𝑠 ⧺ [𝑥] = 𝑓(𝑓𝑜𝑙𝑑𝑙 𝑠 , 𝑥)

𝑓𝑜𝑙𝑑𝑟 = 𝑒; 𝑓𝑜𝑙𝑑𝑟 𝑎𝑠 = 𝑓(ℎ𝑒𝑎𝑑(𝑎𝑠), 𝑓𝑜𝑙𝑑𝑟(𝑡𝑎𝑖𝑙(𝑎𝑠)))𝑓𝑜𝑙𝑑𝑙 = 𝑒; 𝑓𝑜𝑙𝑑𝑙 𝑎𝑠 = 𝑓(𝑓𝑜𝑙𝑑𝑙 𝑖𝑛𝑖𝑡(𝑎𝑠) , 𝑙𝑎𝑠𝑡(𝑎𝑠))

Let’s feed one aspect of the above back into Sergei’s definitions. Let’s temporarily rewrite them by
replacing 𝑠 ⧺ [𝑥] and 𝑥 ⧺ 𝑠 with as, and getting the definitions to extract the 𝑠 and the 𝑥 using the
functions ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙, 𝑙𝑎𝑠𝑡 and 𝑖𝑛𝑖𝑡.

Notice how the flipping of 𝑓 done by the 𝑓𝑜𝑙𝑑𝑟 function above, is reflected, in the 𝑓𝑜𝑙𝑑𝑟 function below,
in the fact that its 𝑓 takes an 𝑎 and a 𝑏, rather than a 𝑏 and an 𝑎.

Another thing we can do to understand SOFP’s definitions of left and right folds, is to see how they work
when applied to a sample list, e.g. [𝑥0, 𝑥1, 𝑥2, 𝑥3], when we run them manually.

In the next slide we first do this for the following definitions

𝑓𝑜𝑙𝑑𝑙 = 𝑒; 𝑓𝑜𝑙𝑑𝑙 𝑠 ⧺ [𝑥] = 𝑓(𝑓𝑜𝑙𝑑𝑙 𝑠 , 𝑥) 𝑓𝑜𝑙𝑑𝑟 = 𝑒; 𝑓𝑜𝑙𝑑𝑟 𝑥 ⧺ 𝑠 = 𝑓(𝑥, 𝑓𝑜𝑙𝑑𝑟(𝑠))

𝑓𝑜𝑙𝑑𝑙 ∷ 𝛽 → 𝛼 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 = 𝑒
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 𝑥 ∶ 𝑥𝑠 = 𝑓𝑜𝑙𝑑𝑙 𝑓 𝑓 𝑒 𝑥 𝑥𝑠

𝑓𝑜𝑙𝑑𝑟 ∷ 𝛼 → 𝛽 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 = 𝑒
𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 𝑥 ∶ 𝑥𝑠 = 𝑓 𝑥 𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 𝑥𝑠

In the slide after that, we do it for SOFP’s definitions.

∶
/ \
𝑥0 ∶

/ \
𝑥1 ∶

/ \
𝑥2 ∶

/ \
𝑥3

𝑓
/ \
𝑓 𝑥3

/ \
𝑓 𝑥2

/ \
𝑓 𝑥1

/ \
𝑒 𝑥0

𝑓
/ \
𝑥0 𝑓

/ \
𝑥1 𝑓

/ \
𝑥2 𝑓

/ \
𝑥3 𝑒

𝑥0: (𝑥1: 𝑥2: 𝑥3:)

𝑓 𝑓 𝑓 𝑓 𝑒 𝑥0 𝑥1 𝑥2 𝑥3

var 𝑎𝑐𝑐 = 𝑒
foreach(𝑥 in 𝑥s)
𝑎𝑐𝑐 = 𝑓(𝑎𝑐𝑐, 𝑥)
return 𝑎𝑐𝑐

𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 𝑥𝑠

𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 𝑥𝑠

𝑥𝑠 = [𝑥0, 𝑥1, 𝑥2, 𝑥3]

𝑓𝑜𝑙𝑑𝑟 ∷ 𝛼 → 𝛽 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 = 𝑒
𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 𝑥: 𝑥𝑠 = 𝑓 𝑥 𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 𝑥𝑠

𝑓𝑜𝑙𝑑𝑙 ∷ 𝛽 → 𝛼 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 = 𝑒
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 𝑥: 𝑥𝑠 = 𝑓𝑜𝑙𝑑𝑙 𝑓 𝑓 𝑒 𝑥 𝑥𝑠

𝑟𝑒𝑝𝑙𝑎𝑐𝑒:
∶ 𝑤𝑖𝑡ℎ 𝑓
𝑤𝑖𝑡ℎ 𝑒

𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 [𝑥0, 𝑥1, 𝑥2, 𝑥3]
𝑓 𝑥0 𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 [𝑥1, 𝑥2, 𝑥3]

𝑓 𝑥0 (𝑓 𝑥1 (𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 [𝑥2, 𝑥3]))
𝑓 𝑥0 (𝑓 𝑥1 (𝑓 𝑥2 (𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 [𝑥3])))

𝑓 𝑥0 (𝑓 𝑥1 (𝑓 𝑥2 (𝑓 𝑥3 (𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 []))))
𝑓 𝑥0 (𝑓 𝑥1 (𝑓 𝑥2 (𝑓 𝑥3 𝑒)))

𝑓 𝑥0 (𝑓 𝑥1 (𝑓 𝑥2 (𝑓 𝑥3 𝑒)))

𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 [𝑥0, 𝑥1, 𝑥2, 𝑥3]
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑓 𝑒 𝑥0 [𝑥1, 𝑥2, 𝑥3]

𝑓𝑜𝑙𝑑𝑙 𝑓 𝑓 𝑓 𝑒 𝑥0 𝑥1 [𝑥2, 𝑥3]
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑓 𝑓 𝑓 𝑒 𝑥0 𝑥1 𝑥2 [𝑥3]

𝑓𝑜𝑙𝑑𝑙 𝑓 𝑓 𝑓 𝑓 𝑓 𝑒 𝑥0 𝑥1 𝑥2 𝑥3 []
𝑓 𝑓 𝑓 𝑓 𝑒 𝑥0 𝑥1 𝑥2 𝑥3

∶
/ \
𝑥0 ∶

/ \
𝑥1 ∶

/ \
𝑥2 ∶

/ \
𝑥3

𝑓
/ \
𝑓 𝑥3

/ \
𝑓 𝑥2

/ \
𝑓 𝑥1

/ \
𝑒 𝑥0

𝑓
/ \
𝑥0 𝑓

/ \
𝑥1 𝑓

/ \
𝑥2 𝑓

/ \
𝑥3 𝑒

𝑥0: (𝑥1: 𝑥2: 𝑥3:)

𝑓(𝑓 𝑓 𝑓 𝑒, 𝑥0 , 𝑥1 , 𝑥2 , 𝑥3)

𝑓𝑜𝑙𝑑𝑟 𝑥𝑠

𝑓𝑜𝑙𝑑𝑙 𝑥𝑠

𝑥𝑠 = [𝑥0, 𝑥1, 𝑥2, 𝑥3]

𝑓(𝑥0, 𝑓(𝑥1, 𝑓(𝑥2, 𝑓(𝑥3, 𝑒))))

𝑓𝑜𝑙𝑑𝑙 = 𝑒; 𝑓𝑜𝑙𝑑𝑙 𝑠 ⧺ [𝑥] = 𝑓(𝑓𝑜𝑙𝑑𝑙 𝑠 , 𝑥)

𝑓𝑜𝑙𝑑𝑟 = 𝑒; 𝑓𝑜𝑙𝑑𝑟 𝑥 ⧺ 𝑠 = 𝑓(𝑥, 𝑓𝑜𝑙𝑑𝑟(𝑠))

𝑓𝑜𝑙𝑑𝑙 𝑥0, 𝑥1, 𝑥2, 𝑥3 ,
𝑓 𝑓𝑜𝑙𝑑𝑙 𝑥0, 𝑥1, 𝑥2 , 𝑥3

𝑓(𝑓(𝑓𝑜𝑙𝑑𝑙 [𝑥0, 𝑥1] , 𝑥2), 𝑥3)
𝑓 𝑓 𝑓 𝑓𝑜𝑙𝑑𝑙 𝑥0 , 𝑥1 , 𝑥2 , 𝑥3

𝑓 𝑓 𝑓 𝑓 𝑓𝑜𝑙𝑑𝑙 [] , 𝑥0 , 𝑥1 , 𝑥2 , 𝑥3
𝑓 𝑓 𝑓 𝑓 𝑒, 𝑥0 , 𝑥1 , 𝑥2 , 𝑥3

𝑓𝑜𝑙𝑑𝑟([𝑥0, 𝑥1, 𝑥2, 𝑥3])
𝑓(𝑥0, 𝑓𝑜𝑙𝑑𝑟([𝑥1, 𝑥2, 𝑥3]))

𝑓(𝑥0, 𝑓(𝑥1, 𝑓𝑜𝑙𝑑𝑟([𝑥2, 𝑥3])))
𝑓(𝑥0, 𝑓(𝑥1, 𝑓(𝑥2, 𝑓𝑜𝑙𝑑𝑟([𝑥3]))))

𝑓(𝑥0, 𝑓(𝑥1, 𝑓(𝑥2, 𝑓(𝑥3, 𝑓𝑜𝑙𝑑𝑟([])))))
𝑓(𝑥0, 𝑓(𝑥1, 𝑓(𝑥2, 𝑓(𝑥3, 𝑒))))

𝑓𝑜𝑙𝑑𝑙 ∷ 𝛽 → 𝛼 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 = 𝑒
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 𝑥: 𝑥𝑠 = 𝑓𝑜𝑙𝑑𝑙 𝑓 𝑓 𝑒 𝑥 𝑥𝑠

𝑓𝑜𝑙𝑑𝑙 = 𝑒; 𝑓𝑜𝑙𝑑𝑙 𝑠 ⧺ [𝑥] = 𝑓(𝑓𝑜𝑙𝑑𝑙 𝑠 , 𝑥)

∶
/ \
𝑥0 ∶

/ \
𝑥1 ∶

/ \
𝑥2 ∶

/ \
𝑥3

𝑥0: (𝑥1: 𝑥2: 𝑥3:)

𝑥𝑠 = [𝑥0, 𝑥1, 𝑥2, 𝑥3]

𝑓
/ \
𝑓 𝑥3

/ \
𝑓 𝑥2

/ \
𝑓 𝑥1

/ \
𝑒 𝑥0

𝑓𝑜𝑙𝑑𝑙 𝑓 𝑒 [𝑥0, 𝑥1, 𝑥2, 𝑥3]
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑓 𝑒 𝑥0 [𝑥1, 𝑥2, 𝑥3]

𝑓𝑜𝑙𝑑𝑙 𝑓 𝑓 𝑓 𝑒 𝑥0 𝑥1 [𝑥2, 𝑥3]
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑓 𝑓 𝑓 𝑒 𝑥0 𝑥1 𝑥2 [𝑥3]

𝑓𝑜𝑙𝑑𝑙 𝑓 𝑓 𝑓 𝑓 𝑓 𝑒 𝑥0 𝑥1 𝑥2 𝑥3 []
𝑓 𝑓 𝑓 𝑓 𝑒 𝑥0 𝑥1 𝑥2 𝑥3

𝑓𝑜𝑙𝑑𝑙 𝑥0, 𝑥1, 𝑥2, 𝑥3 ,
𝑓 𝑓𝑜𝑙𝑑𝑙 𝑥0, 𝑥1, 𝑥2 , 𝑥3

𝑓(𝑓(𝑓𝑜𝑙𝑑𝑙 [𝑥0, 𝑥1] , 𝑥2), 𝑥3)
𝑓 𝑓 𝑓 𝑓𝑜𝑙𝑑𝑙 𝑥0 , 𝑥1 , 𝑥2 , 𝑥3

𝑓 𝑓 𝑓 𝑓 𝑓𝑜𝑙𝑑𝑙 [] , 𝑥0 , 𝑥1 , 𝑥2 , 𝑥3
𝑓 𝑓 𝑓 𝑓 𝑒, 𝑥0 , 𝑥1 , 𝑥2 , 𝑥3

Now let’s compare the results for both
definitions of 𝑓𝑜𝑙𝑑𝑙. The results are the same.

@philip_schwarz

𝑓
/ \
𝑥0 𝑓

/ \
𝑥1 𝑓

/ \
𝑥2 𝑓

/ \
𝑥3 𝑒

𝑓𝑜𝑙𝑑𝑟 ∷ 𝛼 → 𝛽 → 𝛽 → 𝛽 → 𝛼 → 𝛽
𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 = 𝑒
𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 𝑥: 𝑥𝑠 = 𝑓 𝑥 𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 𝑥𝑠

𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 [𝑥0, 𝑥1, 𝑥2, 𝑥3]
𝑓 𝑥0 𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 [𝑥1, 𝑥2, 𝑥3]

𝑓 𝑥0 (𝑓 𝑥1 (𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 [𝑥2, 𝑥3]))
𝑓 𝑥0 (𝑓 𝑥1 (𝑓 𝑥2 (𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 [𝑥3])))

𝑓 𝑥0 (𝑓 𝑥1 (𝑓 𝑥2 (𝑓 𝑥3 (𝑓𝑜𝑙𝑑𝑟 𝑓 𝑒 []))))
𝑓 𝑥0 (𝑓 𝑥1 (𝑓 𝑥2 (𝑓 𝑥3 𝑒)))

𝑓𝑜𝑙𝑑𝑟 = 𝑒; 𝑓𝑜𝑙𝑑𝑟 𝑥 ⧺ 𝑠 = 𝑓(𝑥, 𝑓𝑜𝑙𝑑𝑟(𝑠))

𝑓𝑜𝑙𝑑𝑟([𝑥0, 𝑥1, 𝑥2, 𝑥3])
𝑓(𝑥0, 𝑓𝑜𝑙𝑑𝑟([𝑥1, 𝑥2, 𝑥3]))

𝑓(𝑥0, 𝑓(𝑥1, 𝑓𝑜𝑙𝑑𝑟([𝑥2, 𝑥3])))
𝑓(𝑥0, 𝑓(𝑥1, 𝑓(𝑥2, 𝑓𝑜𝑙𝑑𝑟([𝑥3]))))

𝑓(𝑥0, 𝑓(𝑥1, 𝑓(𝑥2, 𝑓(𝑥3, 𝑓𝑜𝑙𝑑𝑟([])))))
𝑓(𝑥0, 𝑓(𝑥1, 𝑓(𝑥2, 𝑓(𝑥3, 𝑒))))

∶
/ \
𝑥0 ∶

/ \
𝑥1 ∶

/ \
𝑥2 ∶

/ \
𝑥3

𝑥0: (𝑥1: 𝑥2: 𝑥3:)

𝑥𝑠 = [𝑥0, 𝑥1, 𝑥2, 𝑥3]

And now let’s compare the results for both
definitions of 𝑓𝑜𝑙𝑑𝑟. Again, the results are the same.

The way 𝑓𝑜𝑙𝑑𝑟 applies 𝑓 to 𝑥, 𝑦, z is by associating to the right.

The way 𝑓𝑜𝑙𝑑𝑙 does it is by associating to the right.

Thinking of 𝑓 as an infix operator can help to grasp this.

𝑓𝑜𝑙𝑑𝑟 𝑓(𝑥, 𝑓(𝑦, 𝑧)) 𝑥 ⊕ 𝑦⊕ 𝑧
𝑓𝑜𝑙𝑑𝑙 𝑓 𝑓 𝑥, 𝑦 , 𝑧 (𝑥 ⊕ 𝑦)⊕ 𝑧

𝑓𝑜𝑙𝑑𝑟 ⊕ 𝑒 𝑥, 𝑦, z = 𝑥 ⊕ (𝑦 ⊕ 𝑧⊕ 𝑒)

𝑓𝑜𝑙𝑑𝑟 (+) 0 [1,2,3] = 1 + (2 + (3 + 0)) = 6
𝑓𝑜𝑙𝑑𝑙 (+) 0 [1,2,3] = ((0 + 1) + 2) + 3 = 6

𝑓𝑜𝑙𝑑𝑟 − 0 1,2,3 = 1 − (2 − (3 − 0)) = 2
𝑓𝑜𝑙𝑑𝑙 − 0 1,2,3 = ((0 − 1) − 2) − 3 = −6

⊕
/ \
𝑥 ⊕

/ \
𝑦 ⊕

/ \
𝑧 𝑒

⊕
/ \

⊕ 𝑧
/ \

⊕ 𝑦
/ \
𝑒 𝑥

𝑓𝑜𝑙𝑑𝑙 ⊕ 𝑒 𝑥, 𝑦, 𝑧 = ((𝑒 ⊕ 𝑥)⊕ 𝑦)⊕ 𝑧

Addition is associative, so associating to the left and to the right yields the
same result. But subtraction isn’t associative, so associating to the left yields
a result that is different to the one yielded when associating to the right.

We have seen that Sergei’s definitions of left and right folds make perfect sense.

Not only are they simple and succinct, they are also free of implementation details like tail recursion.

That’s all. I hope you found this slide deck useful.

By the way, in case you are interested, see below for a whole series of slide decks dedicated to folding.

