a; : aq
/\ /\f
a, : a;
/\ /\
as [] as e

E‘ HX @philip_schwarz (FP IM\uminated) https://fpilluminated.com/

slides by

http://fpilluminated.com/

We want to write function decimal, which given the digits of an integer number

[do, dll R dn]
computes the integer value of the number haskell> decimal [1,2,3,4] scala> decimal(List(1,2,3,4))
1234 INF=| |val resd: Int = 1234 =
n
de*lo"—k do*103+d; * 102+ d, * 101+ d3 100 =1+ 1000 + 2« 100 + 3« 10 + 4 * 1 = 1234
k=0

Thanks to the universal property of fold, if we are able to define decimal so that its equations match those on the left hand side of the
following equivalence, then we are also able to implement decimal using a right fold

4 N

The universal property of fold
gl] =v = g = foldfv g:la]l - p
g((x:xs) = fx(gxs) v:f
N froa-f- ﬁ/

i.e. given foldr

foldr :(a » B> B) - - (la] = B)
foldr fv]] =v
foldr fv(x:xs) =fx(foldr fvxs)

we can reimplement decimal like this:

decimal = foldr fv

Notice that f has two parameters: the head of the list, and the result of recursively calling g with the tail of the list

g (x:xs) =fx(gxs)

In order to define our decimal function however, the two parameters of f are not sufficient. When decimal is passed [dk, ...,dn], f is
passed digit d;, so f needs n and k in order to compute 10™7%, but n — k is the number of elements in [dk, ..., dn] minus one, so by nesting
the definition of f inside that of decimal, we can avoid explicitly adding a third parameter to f :

decimal :: [Int] -> Int
decimal [] = ©

e = length ds
f :: Int -> Int -> Int
fdds =d * (106 » e) + ds

decimal (d:ds) = f d (decimal ds) where

S

def decimal(digits: List[Int]): Int =
val e = digits.length-1
def f(d: Int, ds: Int): Int =
d * Math.pow(10, e).toInt + ds
digits match
case Nil => ©
case d +: ds => f(d, decimal(ds))

The unnecessary complexity
of the decimal functions
on this slide is purely due to
them being defined in terms
of f. See next slide for
simpler refactored versions
! in which fis inlined.

We nested f inside decimal, so that the equations of decimal match (almost) those of g. They don’t match perfectly, in that the f nested
inside decimal depends on decimal’s list parameter, whereas the f nested inside g does not depend on g’s list parameter. Are we still able
to redefine decimal using foldr? If the match had been perfect, we would be able to define decimal = foldr f 0 (with v = 0), but
because f needs to know the value of n — k, we can’t just pass f to foldr, and use 0 as the initial accumulator. Instead, we need to use (0, 0)
as the accumulator (the second 0 being the initial value of n — k, when k = n), and pass to foldr a helper function h that manages n — k
and that wraps f, so that the latter has access to n — k.

h :: Int -> (Int,Int) -> (Int,Int)
hd(ds, e) = (f d ds, e + 1) where
f :: Int -> Int -> Int
fdds =d * (106 » e) + ds
decimal :: [Int] -> Int
decimal ds = fst (foldr h (0,0) ds)

S

def h(d: Int, acc: (Int,Int)): (Int,Int)
def f(d: Int, ds: Int): Int =
d * Math.pow(10, e).toInt + ds
(f(d, ds), e + 1)
}
def decimal(ds: List[Int]): Int =
ds.foldRight((0,0))(h).head

= acc match { case (ds, e) =>

Same decimal functions as on the previous slide, but refactored as follows:

1. inlined f in all four functions
2. inlined e in the first two functions
3. renamed hto f in the last two functions

S

decimal :: [Int] -> Int
decimal [] = ©
decimal (d:ds) = d*(10~(length ds))+(decimal ds)

def decimal(digits: List[Int]): Int = digits match
case Nil => ©
case d +: ds => d * Math.pow(10, ds.length).toInt + decimal(ds)

f :: Int -> (Int,Int) -> (Int,Int)
fd(ds, e) = (d * (16 ~e) + ds, e + 1)

decimal :: [Int] -> Int
decimal ds = fst (foldr f (0,0) ds)

def f(d: Int, acc: (Int,Int)): (Int,Int) = acc match
case (ds, e) => (d * Math.pow(10, e).toInt + ds, e + 1)

def decimal(ds: List[Int]): Int =

ds.foldRight((0,0))(f).head

The definition of decimal using a right fold is inefficient because it computes Y_, d;, * 10"~* by computing 10™ % for each k.

Not every function on lists can be defined as an instance of foldr. ... Even for those that can, an alternative definition may be
more efficient. To illustrate, suppose we want a function decimal that takes a list of digits and returns the corresponding
decimal number; thus

decimal [Xg, Xy, oo, Xy] = Yopeo X, 100K

It is assumed that the most significant digit comes first in the list. One way to compute decimal efficiently is by a process of
multiplying each digit by ten and adding in the following digit. For example

decimal [xg, x1,x,] =10 X (10 X (10 X 0 + x) + x,) + x,
This decomposition of a sum of powers is known as Horner’s rule.
Suppose we define @ byn @ x = 10 X n + x. Then we can rephrase the above equation as

decimal [xg, x4, %,] = ((0 D xp) D x1) D x,

This is almost like an instance of foldr, except that the grouping is the other way round, and the starting value appears on the
left, not on the right. In fact the computation is dual: instead of processing from right to left, the computation processes from
left to right.

This example motivates the introduction of a second fold operator called foldl (pronounced ‘fold left’). Informally:

foldl (B) e [xg, x1, ., xn 4] = (..((e D xy)) D xy)...) Dx, ;4

The parentheses group from the left, which is the reason for the name. The full definition of foldl is

foldl (B pa-p)o>pola]lop
foldl fel] =e
foldl f e (x:xs) = foldl f (f e x) xs

Preatice Nall Series in Computer Science

Introduction to
Functional Programming
. using Haskell

&z edition

Richard Bird

If we look back at our initial recursive definition of decimal, we see that it splits its list parameter into a head and a tail.

decimal :: [Int] -> Int = def decimal(digits: List[Int]): Int = digits match !
decimal [] = © case Nil => ©
decimal (d:ds) = d*(10”~(length ds)) + (decimal ds) case d +: ds => d * Math.pow(10, ds.length).toInt + decimal(ds)

If we get decimal to split the list into init and last, we can make it more efficient by using Horner’s rule:

() :: Int -> Int -> Int extension (n: Int)

n @dd=10 *n + d def @(d Int): Int = 106 * n + d

decimal :: [Int] -> Int def decimal(digits: List[Int]): Int = digits match
decimal [] = © case Nil => ©

decimal ds = (decimal (init ds)) &@ (last ds) case ds :+ d => decimal(ds) @ d

We can then improve on that by going back to splitting the list into a head and a tail, and making decimal tail recursive:

decimal :: [Int] -> Int -> Int def decimal(ds: List[Int], acc: Int=0): Int = digits match
decimal [] acc = acc case Nil => acc
decimal (d:ds) acc = decimal ds (acc @d) case d +: ds => decimal(ds, acc @ d)

And finally, we can improve on that by defining decimal using a left fold:

decimal :: [Int] -> Int def decimal(ds: List[Int]): Int =
decimal = foldl () © ds.foldLeft(0)(_ &)

Recap

In the case of the decimal function, defining it using a left fold is simple and mathematically more efficient

decimal [1,2,3,4] =10 (10« (10 * (10*0+ dp) +dy) +dy) +d3 =10+ (10« (10* (10«0 + 1) +2) + 3) + 4 = 1234

decimal :: [Int] -> Int = def decimal(ds: List[Int]): Int = !
decimal = foldl () © ds.foldLeft(0)(_ &P)

(@) :: Int -> Int -> Int extension (n: Int)

n @ d=10 *n + d def @©(d Int): Int = 16 * n + d

whereas defining it using a right fold is more complex and mathematically less efficient

decimal [1,2,3,4] = dy * 103 + (dy * 102+ (dy * 101 + (d3 * 10° + 0))) = 1 % 1000 + (2 * 100 + (3 * 10 + (4 * 1 + 0))) = 1234

decimal :: [Int] -> Int = def decimal(ds: List[Int]): Int = !
decimal ds = fst (foldr f (0,0) ds) ds.foldRight((0,0))(f).head

f :: Int -> (Int,Int) -> (Int,Int) def f(d: Int, acc: (Int,Int)): (Int,Int) = acc match
fd(ds, e) = (d * (16 ~e) + ds, e + 1) case (ds, e) => (d * Math.pow(10, e).toInt + ds, e + 1)

) : U
< L4
- -
L 4 S

inspired
by

Folding Unfolded

Polyglot FP for Fun and Profit

Haskell and Scala

See how recursive functions and structural induction relate to recursive datatypes
Follow along as the fold abstraction is introduced and explained

Watch as folding is used to simplify the definition of recursive functions over recursive datatypes

Part 1 - through the work of

ﬁ.—;&;}.w" sctence

Introduction to
ional Programming
laskell

d edition

Richard Bird
http://www.cs.ox.ac.uk/people/richard.bird/

slides by . E2 @philip_schwarz (g} slideshare https://www.slig

https://fpilluminated.com/

A tutorial on the universality and
expressiveness of fold

GRAHAM HUTTON

University of Nottingham, Nottingham, UK
http://www. cs.nott . ac. uk/-guh

Graham Hutton
[@haskellhutt

FP IAMAuminated

Folding Unfolded

Polyglot FP for Fun and Profit
Haskell and Scala

See aggregation functions defined inductively and implemented using recursion
Learn how in many cases, tail-recursion and the accumulator trick can be used to avoid stackoverflow errors
Watch as general aggregation is implemented and see duality theorems capturing the relationship between left folds and right folds

Part 2 - through the work of

? P AL compte st
The Science of ﬁg
Functional o |
Programming nal Programming

 Haskell
A tutorial, with examples in Scala

Sergei Winitzki Richard Bird
sergei-winitzki-11a6431 http://www.cs.ox.ac.uk/people/richard.bird,

slides by . E @philip_schwarz [gg/slideshare httos://www.slideshare.net/pischwarz

http://fpilluminated.com/

