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The initial motivation for this slide deck is an 
Applicative palindrome checker illustrated 
collaboratively by Impure Pics and Ἑκάτη. 

@philip_schwarz



https://ko-fi.com/hecatemoonlight/gallery#galleryItemView

Here is a handwritten version 
of the illustration, by Ἑκάτη.



In the illustration by Impure Pics and  Ἑκάτη 
we see that (≡) has the following type

λ :type (==)
(==) :: Eq a => a -> a -> Bool

:t (≡)
(≡) :: Eq a => a -> a -> Bool

One of the things that I did when I first saw the 
palindrome function was ask myself: what is (≡) ?

palindrome = (≡) <*> reverse

λ (≡) = (==)

But that type is the same as the type of the 
(==) function

So it looks like (≡) is just an alias for (==)

https://en.wikipedia.org/wiki/Triple_bar

The triple bar, ≡, is a symbol with multiple, context-dependent 
meanings. 

It has the appearance of an equals sign ⟨=⟩ sign with a third line. 

The triple bar character in Unicode is code 
point U+2261  ≡ IDENTICAL TO

…

In mathematics, the triple bar is sometimes used as a symbol of 
identity or an equivalence relation.



Another thing that I did when I first saw the palindrome function is notice that it 
is written in point-free style.

  palindrome = (≡) <*> reverse

See the next nine slides for a quick refresher on (or introduction to) point-free 
style. Feel free to skip the slides if you are already up to speed on the subject.



1.4.1 Extensionality

Two functions are equal if they give equal results for equal arguments. Thus, 𝑓 = 𝑔 if and only if 𝑓	𝑥 = 𝑔	𝑥 for all 𝑥. This principle 
is called the principle of extensionality. It says that the important thing about a function is the correspondence between 
arguments and results, not how this correspondence is described. 

For instance, we can define the function which doubles its argument in the following two ways:

	 𝑑𝑜𝑢𝑏𝑙𝑒, 𝑑𝑜𝑢𝑏𝑙𝑒′	 ∷ 	 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟
	 𝑑𝑜𝑢𝑏𝑙𝑒	𝑥	 = 	 𝑥 + 𝑥
	 𝑑𝑜𝑢𝑏𝑙𝑒′	𝑥	 = 	 2	×	𝑥

The two definitions describe different procedures for obtaining the correspondence, one involving addition and the other involving 
multiplication, but 𝑑𝑜𝑢𝑏𝑙𝑒	and 𝑑𝑜𝑢𝑏𝑙𝑒′	define the same function value and we can assert 𝑑𝑜𝑢𝑏𝑙𝑒 = 𝑑𝑜𝑢𝑏𝑙𝑒′	as a mathematical 
truth. Regarded as procedures for evaluation, one definition may be more or less ‘efficient’ than the other, but the notion of 
efficiency is not one that can be attached to function values themselves. This is not to say, of course, that efficiency is not 
important; after all, we want expressions to be evaluated in a reasonable amount of time. The point is that efficiency is an 
intensional property of definitions, not an extensional one.

Extensionality means that we can prove 𝑓 = 𝑔 by proving that 𝑓	𝑥 = 𝑔	𝑥 for all 𝑥. Depending on the definitions of 𝑓 and 𝑔, we 
may also be able to prove 𝑓 = 𝑔 directly. The former kind of proof is called an applicative or point-wise style of proof, while the 
latter is called a point-free style.

Richard Bird



1.4.7 Functional composition

The composition of two functions 𝑓 and 𝑔 is denoted by 𝑓 . 𝑔 and is defined by the equation

	 (	. ) 	 ∷ 𝛽 → 𝛾 → (𝛼 → 𝛽) → 𝛼 → 𝛾 
	 𝑓	. 	𝑔 	𝑥	 = 𝑓	(𝑔	𝑥)

…	In	words,	𝑓	. 	𝑔	 applied	to	𝑥	 is	defined	to	be	the	outcome	of	 first	applying	𝑔	to	𝑥,	and	then	applying	𝑓	to	the	result.	Not	
every	pair	of	functions	can	be	composed	since	the	types	have	to	match	up:	we	require	that	𝑔	has	type	𝑔 ∷ 𝛼 → 𝛽	for	some	
types	𝛼	and	𝛽,	and	that	𝑓	has	type	𝑓 ∷ 𝛽 → 𝛾		for	some	type	𝛾.	Then	we	obtain	𝑓. 𝑔 ∷ 𝛼 → 𝛾.	For	example,	given	𝑠𝑞𝑢𝑎𝑟𝑒 ∷
𝐼𝑛𝑡𝑒𝑔𝑒𝑟 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟,	we	can	define

	 𝑞𝑢𝑎𝑑	 ∷ 	 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟
	 𝑞𝑢𝑎𝑑 = 𝑠𝑞𝑢𝑎𝑟𝑒	. 	𝑠𝑞𝑢𝑎𝑟𝑒

By	the	definition	of	composition,	this	gives	exactly	the	same	function	𝑞𝑢𝑎𝑑	as	

	 𝑞𝑢𝑎𝑑	 ∷ 	 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 → 𝐼𝑛𝑡𝑒𝑔𝑒𝑟
	 𝑞𝑢𝑎𝑑	𝑥 = 𝑠𝑞𝑢𝑎𝑟𝑒	(𝑠𝑞𝑢𝑎𝑟𝑒	𝑥)

This	example	illustrates	the	main	advantage	of	using	function	composition	in	programs:	definitions	can	be	written	more	
concisely.	Whether	 to	use	a	point-free	style	or	a	point-wise	style	 is	partly	a	question	of	 taste…	However,	whatever	 the	
style	of	expression,	it	is	good	practice	to	construct	complicated	functions	as	the	composition	of	simpler	ones.

Functional	composition	is	an	associative	operation.	We	have	

	 𝑓	. 	𝑔 	 . 	ℎ	 = 𝑓	. 	(𝑔	. 	ℎ)

For	 all	 functions	 𝑓,	 𝑔,	 and	 ℎ	 of	 the	 appropriate	 types.	 Accordingly,	 there	 is	 no	 need	 to	 put	 in	 parentheses	when	writing	
sequences	of	compositions. Richard Bird



Composing functions

Let's compose these three functions, f, g, and h, in a few different ways:

  f, g, h :: String -> String

The most rudimentary way of combining them is through nesting:

  z x = f (g (h x))

Function composition gives us a more idiomatic way of combining functions:

  z' x = (f . g . h) x

Finally, we can abandon any reference to arguments:

    z'' = f . g . h

This leaves us with an expression consisting of only functions. This is the "point-free" form. Programming 
with functions in this style, free of arguments, is called tacit programming. It is hard to argue against the 
elegance of this style, but in practice, point-free style can be more fun to write than to read.

Ryan Lemmer



Point-Free Style
Another common use of function composition is defining functions in the point-free style. For example, consider a function 
we wrote earlier:

  sum' :: (Num a) => [a] -> a 
  sum' xs = foldl (+) 0 xs

The xs is on the far right on both sides of the equal sign. Because of currying, we can omit the xs on both sides, since 
calling foldl (+) 0 creates a function that takes a list. In this way, we are writing the function in point-free style:

  sum' :: (Num a) => [a] -> a 
  sum' = foldl (+) 0

As another example, let’s try writing the following function in point-free style:

  fn x = ceiling (negate (tan (cos (max 50 x))))

We can’t just get rid of the x on both right sides, since the x in the function body is surrounded by parentheses. cos (max 
50) wouldn’t make sense—you can’t get the cosine of a function. What we can do is express fn as a composition of functions, 
like this:

  fn = ceiling . negate . tan . cos . max 50

Excellent! Many times, a point-free style is more readable and concise, because it makes you think about functions and 
what kinds of functions composing them results in, instead of thinking about data and how it’s shuffled around. You can 
take simple functions and use composition as glue to form more complex functions.
However, if a function is too complex, writing it in point-free style can actually be less readable. For this reason, making 
long chains of function composition is discouraged. The preferred style is to use let bindings to give labels to intermediary 
results or to split the problem into subproblems that are easier for someone reading the code to understand. Miran Lipovača



Pretty Printing a String
When we must pretty print a string value, JSON has moderately involved escaping rules that we must follow. At 
the highest level, a string is just a series of characters wrapped in quotes:

  string :: String -> Doc 
  string = enclose '"' '"' . hcat . map oneChar

POINT-FREE STYLE

This style of writing a definition exclusively as a composition of other functions 
is called point-free style. The use of the word point is not related to the “.” character used 
for function composition. The term point is roughly synonymous (in Haskell) with value, 
so a point-free expression makes no mention of the values that it operates on.

Contrast this point-free definition of string with this “pointy” version, which uses a 
variable, s, to refer to the value on which it operates:

  pointyString :: String -> Doc 
  pointyString s = enclose '"' '"' (hcat (map oneChar s))



So what is this thing, point-free? Point-free is a style of writing function 
definitions. A point-free expression, is a kind of function definition. But 
point free is kind of bigger than that. It’s a way of talking about 
transformations that emphasizes the space instead of the individual 
points that make up the space. 

So what’s this other thing: tacit? So tacit is just a synomym for quiet. And 
tacit code is quieter than noisy code, and here is an example of a point-
free definition, down here at the bottom, and its pointful counterpart:

So both of these definitions describe the same function. It’s the sum 
function and you could say the first one reads like this: to take the sum of 
a list of things, do a right fold over that list, starting at zero and using 
addition to combine items. Or you could just say sum is a right fold, 
using addition, starting at zero. 

https://www.youtube.com/watch?v=seVSlKazsNk 

@amar47shahAmar Shah

point-free definition

pointful definition

https://www.youtube.com/watch?v=seVSlKazsNk
https://twitter.com/amar47shah


But why would you want to use the point-free definition? What’s the point of removing all these arguments from your functions? 

So that means that when you want to make your code communicate better, you can 
use tacitness, and you can use point-free style to make it quiet.

And why would you want to do that?  To

One reason is that tacit code can keep you talking at the right level of abstraction, so 
that you are not constantly switching between low level and high level constructions.

Here is another example.

lengths can take a list of lists, and map the length function over that list of lists, or 
you could just say lengths is a map of length.

So point-free definitions are a way that you can be more expressive with your code
@amar47shah
Amar Shah

So here is one more example. Here is a function totalNumber, of a list of lists. To get he total number of the items 
in my sublists, I want to take the lengths of all my sublists and then I want to add all those together.

Or I could just say the total number is the composition of sum and length.
So I can use the composition operator, right here.

https://twitter.com/amar47shah


so, that little dot, it is not a point, it is composition 
and you are better off thinking of it as a pipe.

And then you might say something like:

If I have two functions, outside and inside, their composition works like this:

Composition is a function that takes an argument, applies inside and then applies outside.
I can do some Haskell magic here, I can use the $ sign operator here, instead of parentheses, it 
means the same thing essentially, and I can move the dollar sign to the end here, and replace it 
with composition. Of course, when I have a lambda abstraction that takes an argument and does 
nothing but apply that function to the argument, then I don’t even need the lambda abstraction.

So you can read this as outside composed with inside. That’s probably the best way to read it if 
you want to remember that it is a composition.

@amar47shah
Amar Shah

So when should you use a point-free definition, because you can use definitions that are point-free and you can use ones that aren’t?

And here are my two rules, which are really just one rule:

Use it when it is good and don’t use it when it is bad. 

https://twitter.com/amar47shah


Martin Odersky
@odersky

Daniel Spiewak
@djspiewak

Generally, trying to do 
point-free style in 
Scala is a dead end.

To elaborate on this just a little bit, inability to effectively encode point-free (in general!) is a fundamental limitation of 
object-oriented languages.  Effective point-free style absolutely requires that function parameters are ordered from least-
to-most specific.  For example:

Prelude> :type foldl
foldl :: (a -> b -> a) -> a -> [b] -> a

This ordering is required for point-free because it makes it possible to apply a function, specifying a subset of the parameters, 
receiving a function that is progressively more specific (and less general).  If we invert the arguments, then the most specific 
parameter must come *first*, meaning that the function has lost all generality before any of the other parameters have been 
specified!

Unfortunately, most-specific-first is precisely the ordering imposed by any object-oriented language.  Think about this: what 
is the most specific parameter to the fold function?  Answer: the list!  In object-oriented languages, dispatch is always 
defined on the most-specific parameter in an expression.  This is another way of saying that we define the foldLeft function 
on List, *not* on Function2.

Now, it is possible to extend an object-oriented language with reified messages to achieve an effective point-free dispatch 
mechanism (basically, by making it possible to construct a method dispatch prior to having the dispatch receiver), but Scala 
does not do this.  In any case, such a mechanism imposes a lot of other requirements, such as a rich structural type system 
(much richer than Scala anonymous interfaces).

There are certainly special cases where point-free does work in Scala, but by and large, you're not going to be able to use it 
effectively.  Everything in the language is conspiring against you, from the syntax to the type system to the fundamental 
object-oriented nature itself!

sealed abstract class List[+A] …
  …
  def foldLeft[B](z: B)(op: (B, A) => B): B

15 Nov 2011

Prelude> :type foldl
foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b



After that refresher on (or introduction to) point-free style, let’s go back to the palindrome function 
and take it for a spin.

By the way, if you liked the ‘point free or die’ slides, you can find the rest of that deck here: 

https://www2.slideshare.net/pjschwarz/point-free-or-die-tacit-programming-in-haskell-and-beyond



λ palindrome "A man, a plan, a canal: Panama!"

False

λ clean str = fmap toLower (filter (`notElem` [' ',',',':','!']) str)

λ clean  "A man, a plan, a canal: Panama!"

"amanaplanacanalpanama"

λ palindrome "amanaplanacanalpanama"

True 

Let’s define the equality function (≣). It simply 
applies equality operator == to its arguments.

λ palindrome [1,2,3,1,2,3]

False

λ palindrome [1,2,3,3,2,1]

True

palindrome :: Eq a => [a] -> Bool
palindrome = (≡) <*> reverse

(≡) :: Eq a => a -> a -> Bool
(≡) x y = x == y

λ [1,2,3] ≡ [1,3,2]

False

λ [1,2,3] ≡ [1,2,3]

True

λ 3 ≡ 4

False

λ 3 ≡ 3

True

We can now define the palindrome function. A 
palindrome is something that equals its reverse.

λ palindrome "abcabc"

False

λ palindrome "abccba"

True

Let’s try it out Let’s try it out

Here is a more 
interesting 
palindrome.



In Get Programming with Haskell I came across the following palindrome function:

  isPalindrome :: String -> Bool 
  isPalindrome text = text == reverse text

While isPalindrome operates on String, which is a list of Char, palindrome is 
more generic in that it operates on a list of any type for which == is defined

  palindrome :: Eq a => [a] -> Bool
  palindrome = (≡) <*> reverse

But the signature of isPalindrome can also be made more generic, i.e. it can be changed to be the same as the signature of palindrome:

  isPalindrome :: Eq a => [a] -> Bool
  isPalindrome text = text == reverse text

And in fact, the illustration of palindrome by Impure Pics and  Ἑκάτη points out that the definitions of palindrome and isPalindrome 
are equivalent by refactoring from one to the other. 

  palindrome = (≡) <*> reverse 

  palindrome a = (≡) a <*> reverse a 
               = (\x y -> x ≡ y) a (reverse a)
               = a ≡ reverse a

So, since (≡) is just (==), the only difference between palindrome and isPalindrome is that while the definition of isPalindrome 
is in point-wise style (it is pointful), the definition of palindrome is in point-free style.



The palindrome function uses the <*> operator of the Function Applicative, which seems to me 
to be quite a niche Applicative instance. 

To pave the way for an understanding of the <*> operator of the Function Applicative, let’s first 
go through a refresher of the <*> operator of garden-variety applicatives like Maybe and List.

And before we do that, since every Applicative is also a Functor, (which is why Applicative is 
sometimes called Applicative Functor), let’s gain an understanding of the map function of the 
Function Functor, but let’s first warm up by going through a refresher of the map function of 
garden-variety functors like Maybe and List.

<*> is called apply or ap, but is also known as the 
advanced tie fighter (|+| being the plain tie 
fighter), the angry parent, and the sad Pikachu.

Tie fighter advanced 
Tie fighter

@philip_schwarz



class Functor f where
  fmap :: (a -> b) -> f a -> f b

trait Functor[F[_]]:
  def map[A,B](f: A => B): F[A] => F[B]

Here is the definition of the Functor type class. 

trait Functor[F[_]]:
  def map[A,B] (fa: F[A])(f: A => B): F[B]

instance Functor Maybe where
  fmap _ Nothing  = Nothing
  fmap f (Just a) = Just (f a)

enum Option[+A]:
  case Some(a: A)
  case None

data  Maybe a  =  Nothing | Just a

given optionFunctor: Functor[Option] with
  override def map[A,B](f: A => B): Option[A] => Option[B] =
    case None => None
    case Some(a) => Some(f(a))

def reverse(as: String): String = as.reverse

assert( map(reverse)(Some("rab oof")) == Some("foo bar"))
assert( map(reverse)(None) == None)

λ fmap reverse (Just "rab oof")
Just "foo bar"
λ fmap reverse Nothing
Nothing

Here is the definition of a Functor 
instance for the above ADT.

Yes, the more customary Scala signature for map is the 
one below. The above signature matches the Haskell one.

And here is the definition of an Algebraic 
Data Type (ADT) modelling optionality.

And here is an example of using the 
map function of the Functor  instance.

Maybe 
Functor



Here is the definition of a Functor 
instance for the above ADT.

And here is an example of using the 
map function of the Functor  instance.

Now let’s look at List, an ADT modelling nondeterminism. In Haskell, the syntax for lists is baked into the compiler, 
so below we show two examples of how the List ADT could look like if it were explicitly defined. In Scala there is no 
built-in syntax for lists, so the List ADT is defined explicitly. Below, we show a List ADT implemented using an enum.

enum List[+A]:
  case Cons(head: A, tail: List[A])
  case Nil

instance Functor [] where
  fmap = map

map :: (a -> b) -> [a] -> [b]
map _ []     = []
map f (x:xs) = f x : map f xs

given listFunctor: Functor[List] with
  override def map[A, B](f: A => B): List[A] => List[B] =
    case Cons(a,as) => Cons(f(a),map(f)(as))
    case Nil => Nil 

λ fmap reverse ["rab oof"]
["foo bar"]
λ fmap reverse []
[]

def reverse(as: String): String = as.reverse

assert( map(reverse)(Cons("rab oof",Nil)) == Cons("foo bar",Nil))
assert( map(reverse)(Nil) == Nil)

data List a = Nil | Cons a (List a)

data [a] = [ ] | a : [a]

The map function for Haskell 
lists, which is used below.

List 
Functor



While the plan was to look at the map function of garden variety Functors like List and 
Option, which it is possible to see as containers, let’s also look at the map function of a 
Functor that cannot be seen as a container, i.e. IO. Here is how Miran Lipovača describes it.

Let’s see how IO is an instance of Functor. When we fmap a function over an I/O action, we want to get 
back an I/O action that does the same thing but has our function applied over its result value. Here’s the 
code:

  instance Functor IO where 
      fmap f action = do 
          result <- action 
          return (f result)

The result of mapping something over an I/O action will be an I/O action, so right off the bat, we use the 
do syntax to glue two actions and make a new one. In the implementation for fmap, we make a new I/O 
action that first performs the original I/O action and calls its result result. Then we do return (f 
result). Recall that return is a function that makes an I/O action that doesn’t do anything but only 
yields something as its result.

The action that a do block produces will always yield the result value of its last action. That’s why we use 
return to make an I/O action that doesn’t really do anything; it just yields f result as the result of 
the new I/O action.

Miran Lipovača



instance Functor IO where 
    fmap f action = do 
        result <- action 
        return (f result)

final def map[B](f: A => B): IO[B] = {
  val trace = …
  Map(this, f, trace)
}

final private[effect] 
case class Pure[+A](a: A) 
extends IO[A]

final private[effect] 
case class Map[E, +A](source: IO[E], f: E => A, trace: AnyRef) 
extends IO[A] with (E => IO[A]) {
  override def apply(value: E): IO[A] =
    Pure(f(value))
}

λ fmap reverse getLine
rab oof
"foo bar"

import cats._
import cats.implicits._
import cats.effect.IO

def reverse(as: String): String = as.reverse
def getLine(): IO[String] = IO {scala.io.StdIn.readLine }

@main def main = 
  val action = Functor[IO].map(getLine())(reverse)
  println(action.unsafeRunSync())

sbt run
rab oof
"foo bar"

λ :type getLine
getLine :: IO String

On the Scala side, we use the Cats Effect IO 
Monad, which being a Monad, is also a Functor.

If you are not so familiar with the IO Monad and 
you find some of this slide confusing then it’s fine 
for you to just skip the slide.

Also on the Scala side, an IO value is an effectful 
value describing an I/O action which, when 
executed (by calling its unsafeRunSync method), 
results in an I/O side effect, which in this case is 
the reading of an input String from the console.

IO 
Functor



Now that we have warmed up by going through a refresher 
of the map function of functors for Maybe, List and IO,  
let’s turn to the map function of the function Functor.

@philip_schwarz



Miran Lipovača

Functions As Functors

Another instance of Functor that we’ve been dealing with all along is (->) r. But wait! What the heck does (->) r 
mean? The function type r -> a can be rewritten as (->) r a, much like we can write 2 + 3 as (+) 2 3. 

When we look at it as (->) r a, we can see (->) in a slightly different light. It’s just a type constructor that takes two 
type parameters, like Either. But remember that a type constructor must take exactly one type parameter so it can be made 
an instance of Functor. That’s why we can’t make (->) an instance of Functor; however, if we partially apply it to (->) 
r, it doesn’t pose any problems. If the syntax allowed for type constructors to be partially applied with sections (like we can 
partially apply + by doing (2+), which is the same as (+) 2), we could write (->) r as (r ->).

How are functions functors? Let’s take a look at the implementation, which lies in Control.Monad.Instances:

instance Functor ((->) r) where 
  fmap f g = (\x -> f (g x))

First, let’s think about fmap’s type:

  fmap :: (a -> b) -> f a -> f b

Next, let’s mentally replace each f, which is the role that our functor instance plays, with (->) r. This will let us see 
how fmap should behave for this particular instance. Here’s the result:

  fmap :: (a -> b) -> ((->) r a) -> ((->) r b)

Now we can write the (->) r a and (->) r b types as infix r -> a and r -> b, as we normally do with functions:

  fmap :: (a -> b) -> (r -> a) -> (r -> b)

Okay, mapping a function over a function must produce a function, just like mapping a function over a Maybe must 
produce a Maybe, and mapping a function over a list must produce a list. What does the preceding type tell us? 



fmap :: (a -> b) -> (r -> a) -> (r -> b)

We see that it takes a function from a to b and a function from r to a and returns a function from r to b. Does this remind you 
of anything? Yes, function composition! We pipe the output of r -> a into the input of (a -> b) to get a function  r -> 
b, which is exactly what function composition is all about. Here’s another way to write this instance:

  instance Functor ((->) r) where 
    fmap = (.)

This makes it clear that using fmap over functions is just function composition. In a script,import Control.Monad.Instances, 
since that’s where the instance is defined, and then load the script and try playing with mapping over functions:

  ghci> :t fmap (*3) (+100) 
  fmap (*3) (+100) :: (Num a) => a -> a 

  ghci> fmap (*3) (+100) 1 
  303 

  ghci> (*3) `fmap` (+100) $ 1 
  303 

  ghci> (*3) . (+100) $ 1 
  303 

  ghci> fmap (show . (*3)) (+100) 1 
  "303"

We can call fmap as an infix function so that the resemblance to . is clear. In the second input line, we’re 
mapping (*3) over (+100), which results in a function that will take an input, apply (+100) to that, and then apply (*3) to 
that result. We then apply that function to 1.

Miran Lipovača



Just like all functors, functions can be thought of as values with contexts. When we have a function like (+3), we can view the value as 
the eventual result of the function, and the context is that we need to apply the function to something to get to the result. 
Using fmap (*3) on (+100) will create another function that acts like (+100), but before producing a result, (*3) will be applied to 
that result.

The fact that fmap is function composition when used on functions isn’t so terribly useful right now, but at least it’s very 
interesting. It also bends our minds a bit and lets us see how things that act more like computations than boxes (IO and (->) r) can 
be functors. The function being mapped over a computation results in the same sort of computation, but the result of that 
computation is modified with the function.

I think that the use of partially applied functions like (*3) and (+100) in the examples on the previous 
slide could be making the examples slightly harder to understand, by adding some unnecessary complexity. 
So here are the examples again but this time using single-argument functions twice and square.    

λ fmap twice square 3
18

λ twice `fmap` square $ 3 
18 

λ twice . square $ 3 
18 

λ fmap (show . twice) square 3 
"18"

λ twice n = n + n
λ square n = n * n

λ :type twice
twice :: Num a => a -> a

λ :type square
square :: Num a => a -> a

λ :type fmap twice square
fmap twice square :: Num b => b -> b

Using fmap to compose the twice 
function with the square function

The $ operator allows us to write 
twice `fmap` square $ 3 rather 
than ( twice `fmap` square) 3 

See an upcoming slide for a fuller 
explanation of the $ operator.



given functionFunctor[D]: Functor[[C] =>> D => C] with
  override def map[A,B](f: A => B): (D => A) => (D => B) =
    g => f compose g

λ :type reverse
reverse :: [a] -> [a]

λ :type words
words :: String -> [String]

λ words "one two"
["one","two"]

instance Functor ((->) r) where 
  fmap = (.)

def reverse[A]: List[A] => List[A] = 
  _.reverse

def words: String => List[String] = 
  s => s.split(" ").toList

assert( words("one two") == List("one", "two") )

λ fmap reverse words "rab oof"
["oof","rab"]

val stringFunctionFunctor = functionFunctor[String] 
import stringFunctionFunctor.map

assert( map(reverse)(words)("rab oof") == List("oof", "rab"))

Function 
Functor

Earlier on we saw Functor instances for Maybe, List and 
IO, plus an example of their usage. So here is a Functor 
instance for functions and an example of its usage.

To achieve a similar effect in Scala, we are using type lambda [C] =>> D => C. 
D is the domain of a function and C is its codomain. So functionFunctor[Int] 
for example, is the functor instance for functions whose domain is Int. i.e. 
functions of type Int => C for any C.

In Haskell, we are using type 
variable r as the domain of the 
functions supported by the 
Functor instance.



reversed :: Maybe String
reversed = fmap reverse (Just "rab oof")

λ reversed
Just "foo bar"

reversed :: [String]
reversed = fmap reverse ["rab oof"]

λ reversed
["foo bar"]

reversed :: IO String
reversed = fmap reverse getLine

λ reversed
rab oof
"foo bar"

reversed :: String -> [String]
reversed = fmap reverse words

λ reversed "rab oof"
["oof","rab"]

reversed :: Maybe String
reversed = fmap reverse Nothing

λ reversed
Nothing

reversed :: [String]
reversed = fmap reverse []

λ reversed
[]

reversed :: IO String
reversed = fmap reverse getLine

λ reversed
<no one types anything, so the 
function hangs waiting for input>

reversed :: a -> [a]
reversed = fmap reverse id

λ reversed "rab oof"
"foo bar"

reverse :: [a] -> [a] words :: String -> [String]

Here is a quick recap of the behaviours of the fmap 
functions of the four Functor instances we looked at. 

Mapping a function f over 
Nothing yields Nothing. 

Mapping a function f over an 
empty list yields an empty list. 

Mapping a function f over an IO 
action that ends up producing an 
unwanted side effect, results in an 
action producing the same side effect.

Mapping a function f over the identity 
function, i.e. the function that does 
nothing, simply yields f.



class Functor f where
  fmap :: (a -> b) -> f a -> f b

function application lifted over a Functor.
(<$>) :: Functor f => (a -> b) -> f a -> f b
(<$>) = fmap

An infix synonym for fmap. 

The name of this operator is an allusion to $. Note the similarities between their types:

($) :: (a -> b) -> a -> b 
(<$>) :: Functor f => (a -> b) -> f a -> f b

Whereas $ is function application, <$> is function application lifted over a Functor.

function application 
($) :: (a -> b) -> a -> b
f $ x =  f x 

Application operator. This operator is redundant, since ordinary application (f x) means 
the same as (f $ x). However, $ has low, right-associative binding precedence, so it 
sometimes allows parentheses to be omitted; for example:

f $ g $ h x = f (g (h x))

fmap reverse (Just "rab oof")

fmap reverse ["rab oof"]

fmap reverse getLine

fmap reverse words

reverse <$> (Just "rab oof")

reverse <$> ["rab oof"]

reverse <$> getLine

reverse <$> words

A couple of slides ago we came across 
the $ operator. Here is its definition.

And below is the definition of <$>, an  
operator that is closely related to $.

Here is how our usages of fmap look when we switch to <$> 

<$> will prove much more useful in 
future slides in which we look at 
Applicative.



trait Functor[F[_]]:
  def map[A,B](f: A => B): F[A] => F[B]
  extension[A,B] (f: A => B)
    def `<＄>`(fa: F[A]): F[B] = map(f)(fa)

given functionFunctor[D]: Functor[[C] =>> D => C] with
  override def map[A,B](f: A => B): (D => A) => (D => B) =
    g => f compose g

val intFunctionFunctor = functionFunctor[Int]
import intFunctionFunctor.map

val twice: Int => Int = x => x + x
val square: Int => Int = x => x * x

assert(map(twice)(square)(5) == 50)
assert((twice `<＄>` square)(5) == 50)

For what it is worth, here we just add <$> to the Scala 
definition of Functor, and have a quick go at switching from 
map to <$> in an example using the Int function Functor.

Again, <$> will become more useful 
when we look at Applicative.

@philip_schwarz



The palindrome function uses the <*> operator of the Function Applicative, so after gaining 
an understanding of the map function of the Function Functor, and in order to  pave the way 
for an understanding of the <*> operator of the Function Applicative, let’s first go through a 
refresher of the <*> operator of garden-variety applicatives like Maybe and List.



Here is the definition of the Applicative type class. 

trait Functor[F[_]]:
  
  def map[A,B](f: A => B): F[A] => F[B]

  extension[A,B] (f: A => B)
    def `<＄>`(fa: F[A]): F[B] = map(f)(fa)

class Functor f where
  fmap :: (a -> b) -> f a -> f b

class Functor f => Applicative f where
   pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b

trait Applicative[F[_]] extends Functor[F]:
  
  def pure[A](a: => A): F[A]
   
  def apply[A,B](fab: F[A => B]): F[A] => F[B]
  
  extension[A,B] (fab: F[A => B])
    def <*> (fa: F[A]): F[B] = apply(fab)(fa)



given optionApplicative as Applicative[Option]:
  override def map[A, B](f: A => B): Option[A] => Option[B] =
    case None => None
    case Some(a) => Some(f(a))
 override def pure[A](a: => A): Option[A] = Some(a)  
  override def apply[A,B](fab: Option[A => B]): Option[A] => Option[B] =
    fa => (fab, fa) match
      case (None,_) => None
      case (Some(f),m) => map(f)(m)

enum Option[+A]:
  case Some(a: A)
  case None

data  Maybe a  =  Nothing | Just a

Maybe 
Applicative

instance Functor Maybe where
fmap _ Nothing  = Nothing
fmap f (Just a) = Just (f a)

instance Applicative Maybe where
pure = Just
Nothing <*> _ = Nothing
Just f  <*> m = fmap f m

And here is an Applicative 
instance for the Maybe ADT.



assert( None <*> Some(2) == None )

assert( Some(twice) <*> None == None )

assert(None <*> None == None )

assert( Some(twice) <*> Some(2) == Some(4) )

assert( pure(twice) <*> Some(2) == Some(4) )

assert( map(twice)(Some(2)) == Some(4) )

assert( twice `<$>` Some(2) == Some(4) )

λ Nothing <*> Just 2
Nothing

λ Just twice <*> Nothing
Nothing

λ Nothing <*> Nothing
Nothing

λ Just twice <*> Just 2
Just 4

λ pure twice <*> Just 2
Just 4

λ fmap twice (Just 2)
Just 4

λ twice <$> Just 2
Just 4

twice n = n + n val twice: Int => Int = n => n + n

See below for some examples of using the Maybe 
Applicative to apply a function that takes a single argument.



λ Nothing <*> Just 2 <*> Just 3
Nothing

λ Just (+) <*> Nothing <*> Just 3
Nothing

λ Nothing <*> Nothing <*> Just 3
Nothing

λ Just (+) <*> Just 2 <*> Just 3
Just 5

λ pure (+) <*> Just 2 <*> Just 3
Just 5

λ fmap (+) (Just 2) <*> Just 3
Just 5

λ (+) <$> Just 2 <*> Just 3
Just 5

assert( None <*> Some(2) <*> Some(3) == None )

assert( Some(`(+)`) <*> None <*> Some(3) == None )

assert( None <*> None <*> Some(3) == None )

assert( Some(`(+)`) <*> Some(2) <*> Some(3) == Some(5) )

assert( pure(`(+)`) <*> Some(2) <*> Some(3) == Some(5) )

assert( map(`(+)`)(Some(2)) <*> Some(3) == Some(5) )

assert( `(+)` `<$>` Some(2) <*> Some(3) == Some(5) )

val `(+)`: Int => Int => Int = x => y => x + y(+) :: Num a => a -> a -> a

And now some examples of using the Maybe Applicative 
to apply a function that takes two arguments.



At the bottom of the previous slide we see that 

  pure (+) <*> Just 2 <*> Just 3

is equivalent to 

  fmap (+) (Just 2) <*> Just 3

which in turn is equivalent to

  (+) <$> Just 2 <*> Just 3

i.e. by using <$> together with <*> we can write the invocation of a function with arguments that are in an applicative context m

    f <$> mx <*> my <*> mz

in a way that is very similar to the invocation of the function with ordinary arguments

    f x y z

See the next slide for how Miran Lipovača puts it . 

@philip_schwarz



Miran Lipovača

The Applicative Style
With the Applicative type class, we can chain the use of the <*> function, thus enabling us to seamlessly 
operate on several applicative values instead of just one. For instance, check this out:

  ghci> pure (+) <*> Just 3 <*> Just 5 
  Just 8 
  ghci> pure (+) <*> Just 3 <*> Nothing 
  Nothing 
  ghci> pure (+) <*> Nothing <*> Just 5 
  Nothing

We wrapped the + function inside an applicative value and then used <*> to call it with two parameters, 
both applicative values … Isn’t this awesome? Applicative functors and the applicative style of pure f 
<*> x <*> y <*> ... allow us to take a function that expects parameters that aren’t applicative values 
and use that function to operate on several applicative values. The function can take as many 
parameters as we want, because it’s always partially applied step by step between occurrences of <*>.

This becomes even more handy and apparent if we consider the fact that pure f <*> x equals fmap f x. 
This is one of the applicative laws… pure puts a value in a default context. If we just put a function in a 
default context and then extract and apply it to a value inside another applicative functor, that’s the 
same as just mapping that function over that applicative functor. Instead of writing pure f <*> x <*> y 
<*> ..., we can write fmap f x <*> y <*> .... 



Miran Lipovača

This is why Control.Applicative exports a function called <$>, which is just fmap as an infix operator. 
Here’s how it’s defined:

  (<$>) :: (Functor f) => (a -> b) -> f a -> f b 
  f <$> x = fmap f x

By using <$>, the applicative style really shines, because now if we want to apply a function f between 
three applicative values, we can write f <$> x <*> y <*> z. If the parameters were normal values rather 
than applicative functors, we would write f x y z.

NOTE: Remember that type variables are independent of parameter names or other value names. The f in the 
function declaration here is a type variable with a class constraint saying that any type constructor that replaces 
f should be in the Functor type class. The f in the function body denotes a function that we map over x. The fact 
that we used f to represent both of those doesn’t mean that they represent the same thing.



What about an Applicative instance for the List ADT? Here is 
how it looks in Haskell, followed by some examples of its usage.

instance Applicative [] where 
pure x = [x] 
fs <*> xs = [f x | f <- fs, x <- xs]

class Functor f => Applicative f where
   pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b

λ (+) <$> [1,2,3] <*> [10,20,30]
[11,21,31,12,22,32,13,23,33]

λ (+) <$> [1,2,3] <*> [10]
[11,12,13]

λ (+) <$> [1,2,3] <*> []
[]

λ max3 x y z = max x (max y z)

λ max3 <$> [6,2] <*> [3,5] <*> [4,9]
[6,9,6,9,4,9,5,9]

λ max3 <$> [6,2] <*> [3] <*> [4,9]
[6,9,4,9]

λ max3 <$> [6,2] <*> [] <*> [4,9]
[]

λ max3 <$> [] <*> [3,5] <*> [4,9]
[]

λ inc n = n + 1
λ twice n = n + n
λ square n = n * n

λ [inc, twice, square] <*> [1,2,3]
[2,3,4,2,4,6,1,4,9]

λ [inc, twice, square] <*> [3]
[4,6,9]

λ [inc, twice, square] <*> []
[]

λ [inc] <*> [1,2,3]
[2,3,4]

λ [] <*> [1,2,3]
[]

λ :type (,)
(,) :: a -> b -> (a, b)

λ (,) <$> ['a','b'] <*> [1,2]
[('a',1),('a',2),('b',1),('b',2)]

λ [(+),(*)] <*> [10,20,30] <*> [1,2]
[11,12,21,22,31,32,10,20,20,40,30,60]

λ [(+),(*)] <*> [10,20,30] <*> [2]
[12,22,32,20,40,60]

λ [(+),(*)] <*> [10] <*> [1,2]
[11,12,10,20]

λ [(+),(*)] <*> [] <*> [1,2]
[]

λ [(+),(*)] <*> [10,20,30] <*> []
[]

λ [(+)] <*> [10,20,30] <*> [1,2]
[11,12,21,22,31,32]

λ [] <*> [10,20,30] <*> [1,2]
[]



So what does the Scala 
implementation of the Applicative 
instance for the List ADT look like? 

instance Applicative [] where 
pure x = [x] 
fs <*> xs = [f x | f <- fs, x <- xs]

Implementing pure in Scala is trivial:

  def pure[A](a: => A): List[A] = Cons(a, Nil)

As for <*>, the above definition uses a list comprehension, firstly to extract function f from the list which is its first parameter, and 
secondly to extract the function’s argument x from the list which is its second parameter. It then applies f to x and returns a singleton list 
containing the result.

How do we do the equivalent in Scala, where there is no list comprehension? For type constructors that are Monads, i.e. they have both a 
map method and a flatMap method, Scala provides for comprehensions. E.g. if we were implementing the List Monad, we would be able 
to implement Applicative’s apply method as follows:

  override def apply[A,B](fab: List[A => B]): List[A] => List[B] = fa =>
    for {
      f <- fab
      a <- fa
    } yield f(a)

But since in our particular case we are implementing the List Applicative rather than the List Monad, we have to find another way of 
implementing the apply method.

enum List[+A]:
  case Cons(head: A, tail: List[A])
  case Nil



If we define an append function for List, then we can define the apply function recursively as follows:

override def apply[A,B](fab: List[A => B]): List[A] => List[B] = fa =>
  (fab, fa) match
    case (Nil, _) => Nil
    case (Cons(f,Nil), Nil) => Nil
    case (Cons(f,Nil), Cons(a,as)) => Cons(f(a),apply(fab)(as))
    case (Cons(f,fs), fa) => append( apply(Cons(f, Nil))(fa), apply(fs)(fa))

object List:
  def append[A](lhs: List[A], rhs: List[A]): List[A] =
    foldRight((h: A,t: List[A]) => Cons(h,t))(rhs)(lhs)
  def foldRight[A,B](f: (A, B) => B)(b: B)(as: List[A]): B = 
    as match
      case Nil => b
      case Cons(h,t) => f(h,foldRight(f)(b)(t))

Let’s define append in terms of the ubiquitous foldRight function:

We can also use foldRight to implement the map function:

def map[A, B](f: A => B): List[A] => List[B] =
  fa => foldRight((h:A,t:List[B]) => Cons(f(h),t))(Nil)(fa)

See the next slide for the final code for this approach 
to the List Applicative, including a small test example.



trait Functor[F[_]]:
  def map[A,B](f: A => B): F[A] => F[B]
  extension[A,B] (f: A => B)
    def `<＄>`(fa: F[A]): F[B] = map(f)(fa)

trait Applicative[F[_]] extends Functor[F]:
  def pure[A](a: => A): F[A]
  def apply[A,B](fab: F[A => B]): F[A] => F[B]
  extension[A,B] (fab: F[A => B])
    def <*> (fa: F[A]): F[B] = apply(fab)(fa)

object List:
  def append[A](lhs: List[A], rhs: List[A]): List[A] =
    foldRight((h: A,t: List[A]) => Cons(h,t))(rhs)(lhs)
  def foldRight[A,B](f: (A, B) => B)(b: B)(as: List[A]): B = as match
    case Nil => b
    case Cons(h,t) => f(h,foldRight(f)(b)(t))
  def of[A](as: A*): List[A] = as match
    case Seq() => Nil
    case _ => Cons(as.head, of(as.tail: _*))

enum List[+A]:
  case Cons(head: A, tail: List[A])
  case Nil

given listApplicative: Applicative[List] with
  override def pure[A](a: => A): List[A] = Cons(a, Nil)
  override def map[A, B](f: A => B): List[A] => List[B] =
    fa => foldRight((h:A,t:List[B]) => Cons(f(h),t))(Nil)(fa)
  override def apply[A,B](fab: List[A => B]): List[A] => List[B] = fa =>
    (fab, fa) match
      case (Nil, _) => Nil
      case (Cons(f,Nil), Nil) => Nil
      case (Cons(f,Nil), Cons(a,as)) => Cons(f(a),apply(fab)(as))
      case (Cons(f,fs), fa) => append( apply(Cons(f, Nil))(fa), apply(fs)(fa))

val inc: Int => Int = x => x + 1
val twice: Int => Int = x => x + x
val square: Int => Int = x => x * x

assert( List.of(inc, twice, square) <*> List.of(1, 2, 3) == List.of(2, 3, 4, 2, 4, 6, 1, 4, 9) )
assert( List.of(inc, twice, square) <*> Nil == Nil )
assert( List.of(inc, twice, square) <*> List.of(3) == List.of(4,6,9) )
assert( List.of(inc) <*> List.of(1,2,3) == List.of(2,3,4) )
assert( Nil <*> List.of(1, 2, 3) == Nil )
assert( Nil <*> Nil == Nil )

List Applicative

Each function in the first list 
gets applied to each 
argument in the second list.

@philip_schwarz



Before we move on, I’d like to share another way of implementing the List Applicative which is very neat, but which turns out to be cheating, in 
that it amounts to making the List a Monad. If we take the code on the previous slide, then all we have to do is give List a flatten function:

def flatten[A](xss: List[List[A]]): List[A] =
  foldRight[List[A],List[A]](append)(Nil)(xss)

We can now greatly simplify the apply function as follows:

def apply[A,B](fab: List[A => B]): List[A] => List[B] = fa =>
  flatten(
    map((f: A => B) =>
      map(a => f(a))(fa))(fab))

Another interesting thing is that if we also give the Maybe Applicative a 
fold function, then we can give it a flatten function…

enum Option[+A]:
  case Some(a: A)
  case None
  def fold[B](ifEmpty: B)(f: A => B): B = this match
    case Some(a) => f(a)
    case None => ifEmpty

def apply[A,B](fab: Option[A => B]): Option[A] => Option[B] = fa =>
  flatten(
    map((f: A => B) =>
      map(a => f(a))(fa))(fab))

object Option:
  def flatten[A](ooa: Option[Option[A]]): Option[A] =
    ooa.fold(None)(identity)

…which means we can define the apply 
function the same way we did for List.

This is cheating, because giving List the functions pure, map 
and flatten, is equivalent to giving it functions pure and 
flatMap, i.e. making it a Monad.

def map[A, B](f: A => B): Option[A] => Option[B] =
  fa => fa.fold(None)(a => Some(f(a)))

By the way: if we did the above, we 
could  also define map in terms of fold.



The next slide just shows the Scala code for the List 
and Option Applicative instances after applying the 
approach described in the previous slide.



object List:
  def flatten[A](xss: List[List[A]]): List[A] =
    foldRight[List[A],List[A]](append)(Nil)(xss)
  def append[A](lhs: List[A], rhs: List[A]): List[A] =
    foldRight((h: A,t: List[A]) => Cons(h,t))(rhs)(lhs)
  def foldRight[A,B](f: (A, B) => B)(b: B)(as: List[A]): B = 
    as match
      case Nil => b
      case Cons(h,t) => f(h,foldRight(f)(b)(t))

enum List[+A]:
  case Cons(head: A, tail: List[A])
  case Nil

given listApplicative: Applicative[List] with
  override def pure[A](a: => A): List[A] = Cons(a, Nil)
  override def map[A, B](f: A => B): List[A] => List[B] =
    fa => foldRight((h:A,t:List[B]) => Cons(f(h),t))(Nil)(fa)
  override def apply[A,B](fab: List[A => B]): List[A] => List[B] = 
    fa =>
      flatten(
        map((f: A => B) =>
          map(a => f(a))(fa))(fab))

object Option:
  def flatten[A](ooa: Option[Option[A]]): Option[A] =
    ooa.fold(None)(identity)

enum Option[+A]:
  case Some(a: A)
  case None
  def fold[B](ifEmpty: B)(f: A => B): B = this match
    case Some(a) => f(a)
    case None => ifEmpty

given optionApplicative: Applicative[Option] with
  override def pure[A](a: => A): Option[A] = Some(a)
  override def map[A, B](f: A => B): Option[A] => Option[B] =
    fa => fa.fold(None)(a => Some(f(a)))
  override def apply[A,B](fab: Option[A=>B]): Option[A] => Option[B] =
    fa =>
      flatten(
        map((f: A => B) =>
          map(a => f(a))(fa))(fab))

trait Functor[F[_]]:
  def map[A,B](f: A => B): F[A] => F[B]
  extension[A,B] (f: A => B)
    def `<＄>`(fa: F[A]): F[B] = map(f)(fa)

trait Applicative[F[_]] extends Functor[F]:
  def pure[A](a: => A): F[A]
  def apply[A,B](fab: F[A => B]): F[A] => F[B]
  extension[A,B] (fab: F[A => B])
    def <*> (fa: F[A]): F[B] = apply(fab)(fa)



In the next 3 slides we take 
a look at the IO Applicative. 



IO Is An Applicative Functor, Too

Another instance of Applicative that we’ve already encountered is IO. This is how the instance is 
implemented:

  instance Applicative IO where 
    pure = return 
    a <*> b = do 
      f <- a 
      x <- b 
      return (f x)

Since pure is all about putting a value in a minimal context that still holds the value as the result, it makes 
sense that  pure is just return. return makes an I/O action that doesn’t do anything. It just yields some 
value as its result, without performing any I/O operations like printing to the terminal or reading from a file.

If <*> were specialized for IO, it would have a type of (<*>) :: IO (a -> b) -> IO a -> IO b. In the 
case of IO, it takes the I/O action a, which yields a function, performs the function, and binds that function 
to f. Then it performs b and binds its result to x. Finally, it applies the function f to x and yields that as the 
result. We used do syntax to implement it here. (Remember that do syntax is about taking several I/O actions 
and gluing them into one.)

With Maybe and [], we could think of <*> as simply extracting a function from its left parameter and then 
applying it over the right one. With IO, extracting is still in the game, but now we also have a notion 
of sequencing, because we’re taking two I/O actions and gluing them into one. We need to extract the 
function from the first I/O action, but to extract a result from an I/O action, it must be performed. 

Miran Lipovača



Consider this:

  myAction :: IO String 
  myAction = do 
    a <- getLine 
    b <- getLine 
    return $ a ++ b

This is an I/O action that will prompt the user for two lines and yield as its result those two lines concatenated. We achieved 
it by gluing together two getLine I/O actions and a return, because we wanted our new glued I/O action to hold the result 
of a ++ b. Another way of writing this is to use the applicative style:

  myAction :: IO String 
  myAction = (++) <$> getLine <*> getLine

λ pure (++) <*> getLine <*> getLine
foo
bar
"foobar"

λ (++) <$> getLine <*> getLine
foo
bar
"foobar"

Let’s try out the IO Applicative.

λ :type getLine
getLine :: IO String

instance Applicative IO where 
    pure = return 
    a <*> b = do 
      f <- a 
      x <- b 
      return (f x)



import cats._
import cats.implicits._
import cats.effect.IO

extension (l: String)
  def `(++)`(r: String): String = l ++ r

extension[A,B,F[_]] (f: A => B)
  def `<＄>`(fa: F[A])(using functor: Functor[F]): F[B] = functor.map(fa)(f)

def getLine(): IO[String] = IO.pure(scala.io.StdIn.readLine)

@main def main =

  val action1: IO[String] = IO.pure(`(++)`) <*> getLine() <*> getLine()
  println(action1.unsafeRunSync)

  val action2: IO[String] = `(++)` `<＄>` getLine() <*> getLine()
  println(action2.unsafeRunSync)

sbt run
foo
bar
"foobar”
abc
def
”abcdef”

Here we try out the IO 
Applicative in Scala using the 
Cats Effect IO Monad, which 
being a Monad, is also an 
Applicative Functor.

IO 
Applicative

@philip_schwarz



Now that we have looked at the Applicative instances for Maybe, for 
lists, and for IO actions, let’s see how Graham Hutton describes 
applicative style and summarises the similarities and differences 
between the three types of programming supported by the 
applicative style for the three above instances of Applicative. 



 pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b 

That is, pure converts a value of type a into a structure of type f a, while <*> is a generalised form of function 
application for which the argument function, the argument value, and the result value are all contained in f 
structures. As with normal function application, the <*> operator is written between its two arguments and is 
assumed to associate to the left. For example, 

  g <*> x <*> y <*> z 

means 

  ((g <*> x) <*> y) <*> z 

A typical use of pure and <*> has the following form: 

  pure g <*> x1 <*> x2 <*> ... <*> xn 

Such expressions are said to be in applicative style, because of the similarity to normal function application 
notation g x1 x2 ... xn. 

In both cases, g is a curried function that takes n arguments of type a1 ... an and produces a result of type b. 
However, in applicative style, each argument xi has type f ai rather than just ai, and the overall result has 
type f b rather than b.

Graham Hutton
     @haskellhutt



Graham Hutton
     @haskellhutt

the applicative style for Maybe supports a form of exceptional programming in which we can apply pure 
functions to arguments that may fail without the need to manage the propagation of failure ourselves, as this 
is taken care of automatically by the applicative machinery.
…
the applicative style for lists supports a form of non-deterministic programming in which we can apply pure 
functions to multi-valued arguments without the need to manage the selection of values or the propagation 
of failure, as this is taken care of by the applicative machinery.
…
the applicative style for IO supports a form of interactive programming in which we can apply pure functions 
to impure arguments without the need to manage the sequencing of actions or the extraction of result 
values, as this is taken care of automatically by the applicative machinery.
…
The common theme between the instances is that they all concern programming with effects. In each case, 
the applicative machinery provides an operator <*> that allows us to write programs in a familiar applicative 
style in which functions are applied to arguments, with one key difference: the arguments are no longer just 
plain values but may also have effects, such as the possibility of failure, having many ways to succeed, or 
performing input/output actions. In this manner, applicative functors can also be viewed as abstracting the 
idea of applying pure functions to effectful arguments, with the precise form of effects that are permitted 
depending on the nature of the underlying functor.

The next slide is a diagram illustrating 
the above with an example



λ pure max3 <*> ["jam"] <*> ["jaw"] <*> ["jar"]
["jaw"]

λ pure max3 <*> getLine <*> getLine <*> getLine
jam
jaw
jar
"jaw"

λ max3 "jam" "jaw" "jar"
"jaw"

λ pure max3 <*> Just "jam" <*> Just "jaw" <*> Just "jar"
Just "jaw”

normal 
function 
appliction

generalised 
form of 
function 

application

exceptional programming

normal programming

non-deterministic programming

interactive programming

apply a pure function to arguments 
that may fail without the need to 
manage the propagation of failure 
ourselves

apply a pure function to multi-
valued arguments without the need 
to manage the selection of values or 
the propagation of failure

apply a pure function to impure 
arguments without the need to 
manage the sequencing of actions 
or the extraction of result values

apply a pure function to arguments



λ max3 <$> ["jam"] <*> ["jaw"] <*> ["jar"]
["jaw"]

λ max3 <$> getLine <*> getLine <*> getLine
jam
jaw
jar
"jaw"

λ max3 "jam" "jaw" "jar"
"jaw"

λ max3 <$> Just "jam" <*> Just "jaw" <*> Just "jar"
Just "jaw”

Same code as on the previous slide, but 
this time using infix map .operator <$> .



Now let’s turn to the Applicative instance 
for functions. In the next two slides we 
look at how Miran Lipovača describes it.

@philip_schwarz



Functions As Applicatives

Another instance of Applicative is (->) r, or functions. We don’t often use functions as applicatives, but 
the concept is still really interesting, so let’s take a look at how the function instance is implemented.

  instance Applicative ((->) r) where 
  pure x = (\_ -> x) 
  f <*> g = \x -> f x (g x)

When we wrap a value into an applicative value with pure, the result it yields must be that value. A 
minimal default context still yields that value as a result. That’s why in the function instance 
implementation, pure takes a value and creates a function that ignores its parameter and always returns 
that value. The type for pure specialized for the (->) r instance is pure :: a -> (r -> a).

  ghci> (pure 3) "blah" 
  3

Because of currying, function application is left-associative, so we can omit the parentheses. 

  ghci> pure 3 "blah" 
  3

The instance implementation for <*> is a bit cryptic, so let’s just take a look at how to use functions as 
applicative functors in the applicative style:

  ghci> :t (+) <$> (+3) <*> (*100) 
  (+) <$> (+3) <*> (*100) :: (Num a) => a -> a 

Miran Lipovača



  ghci> (+) <$> (+3) <*> (*100) $ 5 
  508

Calling <*> with two applicative values results in an applicative value, so if we use it on two functions, 
we get back a function. So what goes on here? When we do (+) <$> (+3) <*> (*100), we’re making a 
function that will use + on the results of (+3) and (*100) and return that. With (+) <$> (+3) <*> 
(*100) $ 5, (+3) and (*100) are first applied to 5, resulting in 8 and 500. Then + is called 
with 8 and 500, resulting in 508.

The following code is similar:
  
  ghci> (\x y z -> [x,y,z]) <$> (+3) <*> (*2) <*> (/2) $ 5 
  [8.0,10.0,2.5]

We create a function that will call the function \x y z -> [x,y,z] with the eventual results from 
(+3), (*2) and  (/2). The 5 is fed to each of the three functions, and then \x y z -> [x,y,z] is called 
with those results.

Miran Lipovača



Just like when we looked at Miran’s  Lipovača’s example of using Functor’s <$> operator, I think 
that the use of partially applied functions like (*3) and (+100) could be making the examples 
on the previous slide slightly harder to understand, by adding some unnecessary complexity. So 
here is the first example again, but this time using single-argument functions twice and square.    

λ inc n = n + 1
λ twice n = n + n
λ square n = n * n

λ :type inc
inc :: Num a => a -> a

λ :type twice
twice :: Num a => a -> a

λ :type square
square :: Num a => a -> a

λ :type (+) <$> twice <*> square
(+) <$> twice <*> square :: Num b => b -> b

λ (+) <$> twice <*> square $ 5
35

λ ((+) <$> twice <*> square) 5
35

λ (((+) . twice) <*> square) 5
35

λ (((+) . twice) 5)(square 5)
35

λ ((+) . twice) 5 (square 5)
35

λ (+) (twice 5) (square 5)
35

The other example would look like this: list3 <$> inc <*> twice <*> square $ 5. Instead 
of working through that right now, we are going to first see how the functions <$>, pure and 
<*> relate to combinatory logic, and then come back to both examples and work through them 
by viewing the functions as combinators. This will make evaluating the expressions in the 
examples easier to understand. It will also be quite interesting.



It turns out that the three functions of the Applicative instance for functions, i.e. fmap, pure and <*>, are 
known in combinatory logic as combinators. The first one is called B and can be defined in terms of the other 
two, which are called K and S, and which are also called standard combinators. See the next slide for a table 
summarising some key facts about the combinators mentioned on this slide.

According to a fundamental theorem of Schönfinkel and Curry, the entire 𝝀-calculus can be recast in the theory of combinators, which 
has only one basic operation: application. Abstraction is represented in this theory with the aid of two distinguished combinators: S 
and K, which are called standard combinators. 
…
The two standard combinators, S and K, are sufficient for eliminating all abstractions, i.e. all bound variables from every 𝝀-expression. 

A combinator is a 𝝀-expression in which there are no occurrences of free variables. For example, the identity function 𝜆𝑥. 𝑥	is a 
combinator and is usually referred to by the identifier I. Another example is the fixed-point combinator … which is defined by 𝐘 =
𝜆ℎ. ( 𝜆𝑥. ℎ 𝑥	𝑥 𝜆𝑥. ℎ 𝑥	𝑥 ).

Two further examples are the cancellator K given by 𝜆𝑥. 𝜆𝑦. 𝑥, and the distributor S given by 𝜆𝑓. 𝜆𝑔. 𝜆𝑥. 𝑓	𝑥(𝑔	𝑥). (Incidentally, the 
names for these are K and S rather than C and D because they were invented by Germans.)

Now, as we shall see, any 𝝀-expression E can be converted into an applicative expression, i.e. an expression built entirely from function 
applications, lambda abstractions thereby being absent. To achieve this we require at least the two combinators (functions) S and K to 
be included in the expression syntax as additional constants. In fact, the 𝛌-calculus and the combinatory logic defined on these 
combinators are equivalent …

In our presentation we shall also use the identity combinator I, although it should be noted that it can be defined in terms of S and K 
using the identity I=SKK.	…
…
Although the complexity of the combinatory logic expressions which use only the	S,	K	and	I	combinators is unacceptably high for use as 
a viable implementation technique, certain sub-expressions structures have much simpler forms, which are equivalent… Moreover, a 
much larger number of expressions may be simplified similarly if we introduce two further primitive combinators into the fixed set, 
using corresponding new identities. The new combinators in question are called the compositor, denoted by	B,	and the permutator, 
denoted by	C, and are defined in the	𝝀-calculus  by 𝐁 = 𝜆𝑓. 𝜆𝑥. 𝜆𝑦. 𝑓 𝑥	𝑦 	and	𝐂 = 𝜆𝑓. 𝜆𝑥. 𝜆𝑦. 𝑓	𝑦	𝑥.



Name 
(Curry)

Name
(Smullyan)

Definition Haskell
function

Signature Alternative 
name and 
Lambda function

Name (Schönfinkel) Definition in 
terms of 
other 
combinators

S Starling 𝑆	𝑓	𝑔	𝑥 = 𝑓	𝑥	(𝑔	𝑥) Applicative's
(<*>) on 
functions

(a -> b -> c) -> (a -> b) -> a -> c Distributor

𝜆𝑥. 𝑦. 𝑧. 𝑥	𝑧(𝑦	𝑧)

S 

Verschmelzungsfunktion 
(amalgamation function)

K Kestrel 𝐾	𝑥	𝑦 = 𝑥 const a -> b -> a Cancellator

𝜆𝑥. 𝑦. 𝑥

K

Konstanzfunktion 
(constant function)

I Identity 
Bird 

𝐼	𝑥 = 𝑥 id a -> a Idiot

𝜆𝑥. 𝑥

I

Identitätsfunktion 
(identity function)

SKK

B Bluebird 𝐵	𝑓	𝑔	𝑥 = 𝑓 𝑔	𝑥 . (b -> c) -> (a -> b) -> a -> c Compositor

𝜆𝑥. 𝑦. 𝑧. 𝑥(𝑦	𝑧)

Z

Zusammensetzungsfunktion  
(composition function)

S(KS)K

C Cardinal 𝐶	𝑓	𝑥	𝑦 = 𝑓	𝑦	𝑥 flip (a -> b -> c) -> b -> a -> c Permutator

𝜆𝑥. 𝑦. 𝑧. 𝑥	𝑧	𝑦

T

Vertauschungsfunktion 
(exchange function)

S(BBS)(KK)

https://www.angelfire.com/tx4/cus/combinator/birds.html
https://www.johndcook.com/blog/2014/02/06/schonfinkel-combinators/
http://hackage.haskell.org/package/data-aviary-0.4.0/docs/Data-Aviary-Birds.html

To Mock a Mockingbird - Raymond Smullyan
Functional Programming - Anthony J. Field, Peter G. Harrison
Lambda Calculus, Combinators and Functional Programming – G. Revesz.
Recursive Programming Techniques– W. H. Burge



The previous two slides described combinators S,	K,	
I,	B and C. The ones that we are interested in are S,	
K,	and	B, because they are the following functions 
of the Applicative instance for functions: fmap, 
pure and <*>.

instance Applicative ((->) r) where 
  pure x = (\_ -> x) 
  f <*> g = \x -> f x (g x)

instance Functor ((->) r) where 
  fmap = (.)

𝐵	𝑓	𝑔	𝑥 = 𝑓 𝑔	𝑥

(<$>) :: Functor f => (a -> b) -> f a -> f b
(<$>) = fmap

Starling

Kestrel KCancellator

Bluebird BCompositor

(<*>)

pure

fmap

(<$>)

class Functor f => Applicative f where
   pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b

class Functor f where
  fmap :: (a -> b) -> f a -> f b

𝐾	𝑥	𝑦 = 𝑥

Distributor𝑆	𝑓	𝑔	𝑥 = 𝑓	𝑥	(𝑔	𝑥) S



(+) <$> twice <*> square $ 5

(((+) <$> twice) <*> square) 5

(s (b (+) twice) square) 5
   (b (+) twice) 5 (square 5)
      (+)(twice 5) (square 5)
      (+) 10 25
      35           

pure (+) <*> twice <*> square $ 5

(((pure (+)) <*> twice) <*> square) 5

(s (s (k (+)) twice) square) 5
   (s (k (+)) twice) 5 (square 5)
      (k (+)) 5 (twice 5) (square 5)
         (+) (twice 5) (square 5) 
         (+) 10 25
         35           

list3 <$> inc <*> twice <*> square $ 5

(((list3 <$> inc) <*> twice) <*> square) $ 5

(s (s (b list3 inc) twice) square) 5

(s (b list3 inc) twice) 5 (square 5)

(b list3 inc) 5 (twice 5) (square 5)

list3 (inc 5) (twice 5) (square 5)

list3 6 10 25

[6,10,25]

(pure list3 <*> inc <*> twice <*> square) 5

((((pure list3) <*> inc) <*> twice) <*> square) 5

s (s (s (k list3) inc) twice) square 5

(s (s (k list3) inc) twice) 5 (square 5)

(s (k list3) inc) 5 (twice 5) (square 5)

(k list3) 5 (inc 5) (twice 5) (square 5)

list3 (inc 5) (twice 5) (square 5)

list3 6 10 25

[6,10,25]

-- Combinators

-- B: compositor 
b f g x = f (g x)

-- K: cancellator
k x y = x

-- S: distributor
s f g x = f x (g x)

list3 x y z = [x,y,z]



class Functor f => Applicative f where
  pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b

instance Applicative ((->) r) where 
  pure x = (\_ -> x) 
  f <*> g = \x -> f x (g x)

So what does the Scala equivalent 
of the Haskell implementation of 
the Applicative instance for 
functions look like? 

instance Functor ((->) r) where 
  fmap = (.)

class Functor f where
  fmap :: (a -> b) -> f a -> f b

trait Functor[F[_]]:
  def map[A,B](f: A => B): F[A] => F[B]
  extension[A,B] (f: A => B)
    def `<＄>`(fa: F[A]): F[B] = map(f)(fa)

trait Applicative[F[_]] extends Functor[F]:
  def pure[A](a: => A): F[A]
  def apply[A,B](fab: F[A => B]): F[A] => F[B]
  extension[A,B] (fab: F[A => B])
    def <*> (fa: F[A]): F[B] = apply(fab)(fa)

given functionApplicative[D]: Applicative[[C] =>> D => C] with
  override def pure[A](a: => A): D => A = x => a
  override def map[A,B](f: A => B): (D => A) => (D => B) =
    g => f compose g
  override def apply[A,B](f: D => A => B): (D => A) => (D => B) =
    g => n => f(n)(g(n))

(<$>) :: (Functor f) => (a -> b) -> f a -> f b 
f <$> x = fmap f x

Here it is



val inc: Int => Int = x => x + 1
val twice: Int => Int = x => x + x
val square: Int => Int = x => x * x
def list3[A]: A => A => A => List[A] = x => y => z => List(x,y,z)

assert( (map(map(inc)(twice))(square))(3) == 19)
assert( (inc `<＄>` twice `<＄>` square)(3) == 19)

assert( (pure(`(+)`) <*> twice <*> square)(5) == 35)
assert( (`(+)` `<＄>` twice <*> square)(5) == 35)

assert( (pure(list3) <*> inc <*> twice <*> square)(5) == List(6,10,25) )
assert( (list3 `<＄>` inc <*> twice <*> square)(5) == List(6,10,25) )

And here are some Scala tests showing 
the Applicative for functions in action.



pure             a -> (d -> a)
fmap      (a -> b) -> (d -> a) -> (d -> b) 
(<*>) (d -> a -> b) -> (d -> a) -> (d -> b)

pure (a:        => A):  D => A
Map      (f:      A => B): (D => A) => (D => B)
<*>    (fab: D => A => B): (D => A) => (D => B)

pure          a -> f a
fmap   (a -> b) -> f a -> f b
(<*>) f (a -> b) -> f a -> f b

pure             a -> Maybe a
fmap       (a -> b) -> Maybe a -> Maybe b 
(<*>) Maybe (a -> b) -> Maybe a -> Maybe b

pure (a:     => A) : F[A]
Map (f:   A => B) : F[A] => F[B]
<*>    (fab: F[A => B]): F[A] => F[B]

Pure     (a:        => A) : Option[A]
Map      (f:      A => B) : Option[A] => Option[B]
<*>  (fab: Option[A => B]): Option[A] => Option[B]

Maybe Applicative

((->) d) Applicative 

Option Applicative

([C] =>> D => C) Applicative

f a
⟹

(d -> a)
∃(d) e.g. Int

f a
⟹

Maybe a

F[A] 
⟹ 

Option[A]

F[A] 
⟹ 

D => A
∃(D) e.g. Int

It can be a bit hard to visualise how a function type can instantiate the Applicative type 
class, so here is a diagram that helps you do that by contrasting the signatures of pure, 
fmap, and (<*>) in two Applicative instances, one for Maybe and one for functions.

@philip_schwarz



Now that we are thoroughly familiar with the Applicative for 
functions, it’s finally time to see, on the next slide, how the 
palindrome checker function, which inspired this slide deck, works.



 (≡) :: Eq a => a -> a -> Bool
 (≡) x y = x == y

 reverse :: [a] -> [a]

 (<*>) :: Applicative f => f (a -> b) -> f a -> f b
 (<*>) f g x = f x (g x)

 palindrome :: Eq a => [a] -> Bool
 palindrome = (≡) <*> reverse

 ((->) d) Applicative
 (<*>) :: (d -> a -> b) -> (d -> a) -> (d -> b)

 d = [Char]
 a = [Char]
 b = Bool

 (<*>) :: ([Char] -> [Char] -> Bool) -> ([Char] -> [Char]) -> ([Char] -> Bool)  

                     (≡)                      reverse            palindrome

 λ palindrome "amanaplanacanalpanama”
 True

palindrome "amanaplanacanalpanama"

((≡) <*> reverse) "amanaplanacanalpanama"

(s (≡) reverse) "amanaplanacanalpanama"

((≡) "amanaplanacanalpanama") (reverse "amanaplanacanalpanama")

((≡) "amanaplanacanalpanama") "amanaplanacanalpanama"

"amanaplanacanalpanama" ≡ "amanaplanacanalpanama"

True

-- S, the Distributor  
-- combinator, aka Starling
s f g x = f x (g x)



We have already seen hand rolled Scala code for the 
Applicative type class and the Applicative instance for 
functions. Here it is again, with some new additional 
code implementing and testing the palindrome checker 
function. Not how if we use the Cats library we only 
need a few imports to get the new code to work. 

def ≣[A] = ((_: A) == (_: A)).curried

def reverse[A]: Seq[A] => Seq[A] = _.reverse

def palindrome[A]: Seq[A] => Boolean = 
  ≣ <*> reverse

@main def main =
  
  assert(   palindrome("amanaplanacanalpanama") )
  assert( ! palindrome("abcabc") )
  assert(   palindrome(List(1,2,3,3,2,1)) )
  assert( ! palindrome(List(1,2,3,1,2,3)) )

trait Functor[F[_]]:
  def map[A,B](f: A => B): F[A] => F[B]
  extension[A,B] (f: A => B)
    def `<＄>`(fa: F[A]): F[B] = map(f)(fa)

trait Applicative[F[_]] extends Functor[F]:
  def pure[A](a: => A): F[A]
  def apply[A,B](fab: F[A => B]): F[A] => F[B]
  extension[A,B] (fab: F[A => B])
    def <*> (fa: F[A]): F[B] = apply(fab)(fa)

given functionApplicative[D]: Applicative[[C] =>> D => C] with
  override def pure[A](a: => A): D => A = x => a
  override def map[A,B](f: A => B): (D => A) => (D => B) =
    g => f compose g
  override def apply[A,B](f: D => A => B): (D => A) => (D => B) =
    g => n => f(n)(g(n))

import cats._
import cats.implicits._
import cats.Applicative

Option 1

Hand rolled Applicative 
type class and implicit
instance for functions.

Option 2

Predefined Cats Applicative
type class and predefined 
implicit  instance for functions.



The next slide is the last one and it is 
just a recap of the Applicative 
instances we have seen in this  deck.



instance Applicative ((->) r) where 
pure x = (\_ -> x) 
f <*> g = \x -> f x (g x)

instance Applicative Maybe where
pure = Just
Nothing <*> _ = Nothing
Just f  <*> m = fmap f m

instance Applicative [] where 
pure x = [x] 
fs <*> xs = [f x | f <- fs, x <- xs]

instance Applicative IO where 
 pure = return 
 a <*> b = do 
   f <- a 
   x <- b 
   return (f x)

instance Functor ((->) r) where 
fmap = (.)

instance Functor IO where 
fmap f action = do 
  result <- action 
  return (f result)

instance Functor [] where
fmap = map

instance Functor Maybe where
fmap _ Nothing  = Nothing
fmap f (Just a) = Just (f a)

class Functor f where
fmap :: (a -> b) -> f a -> f b

class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

map :: (a -> b) -> [a] -> [b]
map _ []     = []
map f (x:xs) = f x : map f xs



That’s all. I hope you found that useful.

@philip_schwarz


