
Game of Life - Polyglot FP
Haskell - Scala - Unison

Follow along as Game of Life is first coded in Haskell and then translated into Scala, learning about the IO monad in the process

Also see how the program is coded in Unison, which replaces Monadic Effects with Algebraic Effects
(Part 1)

through the work of

Graham Hutton
@haskellhutt

Will Kurt
@willkurt

Alejandro
Serrano Mena

@trupill

@philip_schwarzslides by https://www.slideshare.net/pjschwarz

https://www.slideshare.net/pjschwarz/natural-transformations

Our third and final interactive programming example concerns the game of life. The game models a simple
evolutionary system based on cells, and is played on a two-dimensional board. Each square on the board is
either empty, or contains a single living cell, as illustrated in the following example:

Each internal square on the board has eight immediate neighbours:

For uniformity, each external square on the board is also viewed as having eight neighbours, by assuming
that the board wraps around from top-to-bottom and from left-to-right. That is, we can think of the board
as really being a torus, the surface of a three-dimensional doughnut shaped object.

Graham Hutton
@haskellhutt

Given an initial configuration of the board, the next generation of the board is given by simultaneously
applying the following rules to all squares:

• a living cell survives if it has precisely two or three neighbouring squares that contain living cells, and
• an empty square gives birth to a living cell if it has precisely three neighbours that contain living cells,

and remains empty otherwise.

For example, applying these rules to the above board gives:

By repeating this procedure with the new board, an infinite sequence of generations can be produced. By
careful design of the initial configuration, many interesting patterns of behaviour can be observed in
such sequences. For example, the above arrangement of cells is called a glider, and over successive
generations will move diagonally down the board. Despite its simplicity, the game of life is in fact
computationally complete, in the sense that any computational process can be simulated within it by
means of a suitable encoding. In the remainder of this section we show how the game of life can be
implemented in Haskell.

Graham Hutton
@haskellhutt

The next section of the book is called Screen utilities and involves functions that have the side-effect
of writing to the screen.

We prefer to look at pure functions first, and side-effecting functions next, so we are going to skip
that section of the book for now and come back to it later, except for the first few lines of the next
slide, which are from that section and introduce the use of a Pos type to represent coordinate
positions.

@philip_schwarz

By convention, the position of each character on the screen is given by a pair (x,y) of positive
integers, with (1,1) being the top-left corner.

We represent such coordinate positions using the following type:

type Pos = (Int,Int)

For increased flexibility, we allow the board size for life to be modified, by means of two integer values
that specify the size of the board in squares:

width :: Int
width = 10

height :: Int
height = 10

We represent a board as a list of the (x,y) positions at which there is a living cell, using the same
coordinate convention as the screen:

type Board = [Pos]

For example, the initial example board above would be represented by:

width :: Int
width = 10

height :: Int
height = 10

type Pos = (Int,Int)

type Board = [Pos]

glider :: Board
glider = [(4,2),(2,3),(4,3),(3,4),(4,4)]

Graham Hutton
@haskellhutt

Just in case it helps, here is how the positions of the first generation of the glider map to a 5 x 5 board.
Similarly for the second generation, generated fom the first by applying the rules.

COL 1 COL 2 COL 3 COL 4 COL 5
ROW 1
ROW 2 O
ROW 3 O O
ROW 4 O O
ROW 5

COL 1 COL 2 COL 3 COL 4 COL 5
ROW 1
ROW 2 O
ROW 3 O O
ROW 4 O O
ROW 5

type Board = [Pos] glider :: Board
glider = [(4,2),(2,3),(4,3),(3,4),(4,4)]

Rules
1. a living cell survives if it has precisely two or three neighbouring squares that contain living cells, and
2. an empty square gives birth to a living cell if it has precisely three neighbours that contain living cells, and remains empty otherwise

C,R C,R C,R C,R C,R
[(3,2),(4,3),(5,3),(3,4),(4,4)]

X,Y X,Y X,Y X,Y X,Y

C,R C,R C,R C,R C,R
[(4,2),(2,3),(4,3),(3,4),(4,4)]

X,Y X,Y X,Y X,Y X,Y

As we progress through the Haskell program, we are going to translate it into Scala.

We begin on the next slide by translating the code we have seen so far.

type Pos = (Int,Int)

width :: Int
width = 10

height :: Int
height = 10

type Board = [Pos]

glider :: Board
glider = [(4,2),(2,3),(4,3),(3,4),(4,4)]

type Pos = (Int, Int)

val width = 20

val height = 20

type Board = List[Pos]

val glider: Board = List((4,2),(2,3),(4,3),(3,4),(4,4))

Here is the Haskell code we have seen so far, and next to it, the Scala equivalent.

@philip_schwarz

On the next slide, Graham Hutton looks at a function for
displaying living cells on the screen. Because that function is
side-effecting, we’ll skip it for now and come back to it later.

Using this representation of the board, it is easy to display living cells on the screen, and to decide if a
given position is alive or empty:

isAlive :: Board -> Pos -> Bool
isAlive b p = elem p b

isEmpty :: Board -> Pos -> Bool
isEmpty b p = not (isAlive b p)

Next, we define a function that returns the neighbours of a position:

neighbs :: Pos -> [Pos]
neighbs (x,y) = map wrap [(x-1, y-1), (x, y-1),

(x+1, y-1), (x-1, y),
(x+1, y), (x-1, y+1),
(x, y+1), (x+1, y+1)]

The auxiliary function wrap takes account of the wrapping around at the edges of the board, by
subtracting one from each component of the given position, taking the remainder when divided by the
width and height of the board, and then adding one to each component again:

wrap :: Pos -> Pos
wrap (x,y) = (((x-1) `mod` width) + 1,

((y-1) `mod` height) + 1)

isAlive :: Board -> Pos -> Bool
isAlive b p = elem p b

isEmpty :: Board -> Pos -> Bool
isEmpty b p = not (isAlive b p)

neighbs :: Pos -> [Pos]
neighbs (x,y) = map wrap [(x-1, y-1), (x, y-1),

(x+1, y-1), (x-1, y),
(x+1, y), (x-1, y+1),
(x, y+1), (x+1, y+1)]

wrap :: Pos -> Pos
wrap (x,y) = (((x-1) `mod` width) + 1,

((y-1) `mod` height) + 1)

Graham Hutton
@haskellhutt

isAlive :: Board -> Pos -> Bool
isAlive b p = elem p b

isEmpty :: Board -> Pos -> Bool
isEmpty b p = not (isAlive b p)

neighbs :: Pos -> [Pos]
neighbs (x,y) =
map wrap [(x-1, y-1), (x, y-1),

(x+1, y-1), (x-1, y),
(x+1, y), (x-1, y+1),
(x, y+1), (x+1, y+1)]

wrap :: Pos -> Pos
wrap (x,y) = (((x-1) `mod` width) + 1,

((y-1) `mod` height) + 1)

def isAlive(b: Board)(p: Pos): Boolean =
b contains p

def isEmpty(b: Board)(p: Pos): Boolean =
!(isAlive(b)(p))

def neighbs(p: Pos): List[Pos] = p match {
case (x,y) =>
List((x - 1, y - 1), (x, y - 1), (x + 1, y - 1),

(x - 1, y), /* cell */ (x + 1, y),
(x - 1, y + 1), (x, y + 1), (x + 1, y + 1)) map wrap

}

def wrap(p:Pos): Pos = p match {
case (x, y) => (((x - 1) % width) + 1,

((y - 1) % height) + 1)
}

Let’s write the Scala equivalent of the Haskell functions we have just seen.

Using function composition, we can now define a function that calculates the number of live
neighbours for a given position by producing the list of its neighbours, retaining those that are alive,
and counting their number:

liveneighbs :: Board -> Pos -> Int
liveneighbs b = length . filter(isAlive b) . neighbs

Using this function, it is then straightforward to produce the list of living positions in a board that
have precisely two or three living neighbours, and hence survive to the next generation of the game:

survivors :: Board -> [Pos]
survivors b = [p | p <- b, elem (liveneighbs b p) [2,3]]

In turn, the list of empty positions in a board that have precisely three living neighbours, and hence
give birth to a new cell, can be produced as follows:

births :: Board -> [Pos]
births b = [(x,y) | x <- [1..width],

y <- [1..height],
isEmpty b (x,y),
liveneighbs b (x,y) == 3]

liveneighbs :: Board -> Pos -> Int
liveneighbs b = length . filter(isAlive b) . neighbs

survivors :: Board -> [Pos]
survivors b = [p | p <- b, elem (liveneighbs b p) [2,3]]

births :: Board -> [Pos]
births b = [(x,y) | x <- [1..width],

y <- [1..height],
isEmpty b (x,y),
liveneighbs b (x,y) == 3]

Graham Hutton
@haskellhutt

liveneighbs :: Board -> Pos -> Int
liveneighbs b =
length . filter(isAlive b) . neighbs

survivors :: Board -> [Pos]
survivors b =
[p | p <- b,

elem (liveneighbs b p) [2,3]]

births :: Board -> [Pos]
births b =
[(x,y) | x <- [1..width],

y <- [1..height],
isEmpty b (x,y),
liveneighbs b (x,y) == 3]

def liveneighbs(b:Board)(p: Pos): Int =
neighbs(p).filter(isAlive(b)).length

def survivors(b: Board): List[Pos] =
for {
p <- b
if List(2,3) contains liveneighbs(b)(p)

} yield p

def births(b: Board): List[Pos] =
for {
x <- List.range(1,width + 1)
y <- List.range(1,height + 1)
if isEmpty(b)((x,y))
if liveneighbs(b)((x,y)) == 3

} yield (x,y)

Here is the Scala equivalent of the Haskell functions we have just seen.

See the next few slides for the reason why I translated liveneighbs the way I did.
@philip_schwarz

liveneighbs :: [Pos] -> Pos -> Int
liveneighbs = length . filter(isAlive b) . neighbs

length [a] -> Int
filter (a -> Bool) -> [a] -> [a]
isAlive [Pos] -> Pos -> Bool

b [Pos]
(isAlive b) Pos -> Bool

filter(isAlive b) [Pos] -> [Pos]
neighbs Pos -> [Pos]

filter(isAlive b) . neighbs Pos -> [Pos]
length . filter(isAlive b) . neighbs Pos -> Int

liveneighbs = length . filter(isAlive b) . neighbs
[Pos] -> Int :: [Pos] -> Int . [Pos] -> [Pos] . Pos -> [Pos]

The reason why in Haskell it is possible to implement liveneighbs as the composition of
neighbs, filter(isAlive b) and length, is that their signatures align: the output type
of neighbs is the input type of filter(isAlive b) and the otput type of the latter is
the input type of length.

But in Scala, the signatures of neighbs, filter(isAlive b) and length do not align because length and
filter are not functions that take a List[Pos] parameter, but rather they are functions provided by List:

Scala Haskell
List[A] – length: Int length :: [a] -> Int
List[A] – filter: (A) => Boolean => List[A] filter :: (a -> Bool) -> [a] -> [a]
neighbs: Pos => List[Pos] neighbs :: Pos -> [Pos]
isAlive: List[Pos] => Pos => Bool isAlive :: Board -> Pos -> Bool

What we can do is use Scala’s predefined length and filter functions to define the equivalent of Haskell’s
length and filter functions. i.e. we can define two anonymous functions that have the signatures we desire, but
are implemented in terms of the Scala‘s predefined length and filter functions.

So we are going to replace the following Haskell function composition

λx.x.length compose λx.x.filter(isAlive(b)) compose neighbs

with the following Scala pseudocode

length . filter(is

which maps to the following Scala code:

def liveneighbs(b:Board): Pos => Int =
((x:List[Pos]) => x.length) compose ((x:List[Pos]) => x.filter(isAlive(b))) compose neighbs

liveneighbs = length . filter(isAlive b) . neighbs

liveneighbs = λx.x.length compose λx.x.filter(isAlive(b)) compose neighbs

liveneighbs :: Board -> Pos -> Int
liveneighbs = length . filter(isAlive b) . neighbs

length [a] -> Int
filter (a -> Bool) -> [a] -> [a]

isAlive [Pos] -> Pos -> Bool
b [Pos]

(isAlive b) Pos -> Bool
filter(isAlive b) [Pos] -> [Pos]

neighbs Pos -> [Pos]
filter(isAlive b) . neighbs Pos -> [Pos]

length . filter(isAlive b) . neighbs Pos -> Int

liveneighbs = length . filter(isAlive b) . neighbs
[Pos] -> Int :: [Pos] -> Int . [Pos] -> [Pos] . Pos -> [Pos]

def liveneighbs(b:Board): Pos => Int =
(((x:List[Pos]) => x.length) compose ((x:List[Pos]) => x.filter(isAlive(b)))) compose neighbs

λx.x.length compose λx.x.filter(isAlive(b)) compose neighbs (pseudo code)

λx.x.length List[A] => Int
filter (A) => Boolean => List[A]

isAlive List[Pos] => Pos => Bool
b List[Pos]

(isAlive b) Pos => Bool
λx.x.filter(isAlive(b)) List[Pos] => List[Pos]

neighbs Pos => List[Pos]
λx.x.filter(isAlive(b)) compose neighbs Pos => List[Pos]

λx.x.length compose λx.x.filter(isAlive(b)) compose neighbs Pos => Int

liveneighbs = λx.x.length compose λx.x.filter(isAlive(b)) compose neighbs
Pos => Int : List[Pos] => Int compose List[Pos] => List[Pos] compose Pos => List[Pos]

We can stay faithful to the
Haskell code by defining a
couple of anonymous
functions that wrap Scala’s
predefined length and
filter functions and
provide us with length
and filter functions that
have the same signatures
as the Haskell length and
filter functions.

@philip_schwarz

We can do better than this though:

(((x:List[Pos]) => x.length) compose ((x:List[Pos]) => x.filter(isAlive(b)))) compose n
eighbs
If we turn the two anonymous functions into named methods,

def filter[A](f: A => Boolean)(b: List[A]): List[A] =
b filter f

def length(b: Board): Int =
then the function composition looks pretty much the same as in Haskell

(the underscores are needed to convert the length and filter methods to functions). Alternatively, if we just use
Scala’s length and filter functions the way they are intended to be used, the result is pretty clear

def liveneighbs(b:Board)(p: Pos): Int =
neighbs(p).filter(isAlive(b)).length

So I think in this case it is not worth bothering with function composition.

By the way, just for fun, if in the above, we insert a space either side of each dot, then it looks deceptively
similar to the Haskell function composition!!!

length compose filter(isAlive(b)) compose neighbs

((x:List[Pos]) => x.length) compose ((x:List[Pos]) => x.filter(isAlive(b))) compose neighbs

length _ compose filter(isAlive(b)) compose neighbs _

def length(b: Board): Int =b.length

def filter[A](f: A => Boolean)(b: List[A]): List[A] =b filter f

neighbs(p).filter(isAlive(b)).length

neighbs(p) . filter(isAlive(b)) . length
Haskell
length . filter(isAlive b) . neighbs

liveneighbs :: Board -> Pos -> Int
liveneighbs b =
length . filter(isAlive b) . neighbs

survivors :: Board -> [Pos]
survivors b =
[p | p <- b,

elem (liveneighbs b p) [2,3]]

births :: Board -> [Pos]
births b =
[(x,y) | x <- [1..width],

y <- [1..height],
isEmpty b (x,y),
liveneighbs b (x,y) == 3]

def liveneighbs(b:Board)(p: Pos): Int =
neighbs(p).filter(isAlive(b)).length

def survivors(b: Board): List[Pos] =
for {
p <- b
if List(2,3) contains liveneighbs(b)(p)

} yield p

def births(b: Board): List[Pos] =
for {
x <- List.range(1,width + 1)
y <- List.range(1,height + 1)
if isEmpty(b)((x,y))
if liveneighbs(b)((x,y)) == 3

} yield (x,y)

So that was the reason why I translated the liveneighbs function the way I did
below, i.e. without using the high order function for function composition.

Next, we go back to Graham Hutton’s book, at the
point where he has just introduced the births function.

@philip_schwarz

births :: Board -> [Pos]
births b =

[(x,y) | x <- [1..width],
y <- [1..height],
isEmpty b (x,y),
liveneighbs b (x,y) == 3]

However, this definition considers every position on the board. A more refined approach, which may be more
efficient for larger boards, is to only consider the neighbours of living cells, because only such cells can give rise to
new births. Using this approach, the function births can be rewritten as follows:

births :: Board -> [Pos]
births b = [p | p <- rmdups (concat (map neighbs b)),

isEmpty b p,
liveneighbs b p == 3

The auxiliary function rmdups removes duplicates from a list, and is used above to ensure that each potential new
cell is only considered once:

The next generation of a board can now be produced simply by appending the list of survivors and the list of new
births
nextgen :: Board -> Board nextgen b = survivors b ++ births b

births :: Board -> [Pos]
births b =

[(x,y) | x <- [1..width],
y <- [1..height],
isEmpty b (x,y),
liveneighbs b (x,y) == 3]

rmdups :: Eq a => [a] -> [a]
rmdups [] = []
rmdups (x:xs) = x : rmdups (filter (/= x) xs)

births :: Board -> [Pos]
births b = [p | p <- rmdups (concat (map neighbs b)),

isEmpty b p,
liveneighbs b p == 3]

nextgen :: Board -> Board
nextgen b = survivors b ++ births b

Graham Hutton
@haskellhutt

Let’s write the Scala equivalent of the Haskell functions we have just seen.

def births(b: Board): List[Pos] =
for {
p <- rmdups(b flatMap neighbs)
if isEmpty(b)(p)
if liveneighbs(b)(p) == 3

} yield p

def rmdups[A](l: List[A]): List[A] = l match {
case Nil => Nil
case x::xs => x::rmdups(xs filter(_ != x))

}

def nextgen(b: Board): Board =
survivors(b) ++ births(b)

births :: Board -> [Pos]
births b = [p | p <- rmdups (concat (map neighbs b)),

isEmpty b p,
liveneighbs b p == 3]

rmdups :: Eq a => [a] -> [a]
rmdups [] = []
rmdups (x:xs) = x : rmdups (filter (/= x) xs)

nextgen :: Board -> Board
nextgen b = survivors b ++ births b

While a literal translation of (concat (map neighbs b)) would be ((b map neighbs).flatten),
I simplified the latter to (b flatMap neighbs)

import gameoflife.GameOfLife._
import org.specs2.execute.Result
import org.specs2.mutable._

class GameOfLifeSpec extends Specification {

"GameOfLife" should {
"compute next generation of glider" in test

}

def test: Result = {
val glider: Board = List((4,2),(2,3),(4,3),(3,4),(4,4))
val gliderNext: Board = List((3,2),(4,3),(5,3),(3,4),(4,4))
nextgen(glider) must containTheSameElementsAs(gliderNext)

}

}

Let’s write a simple Scala test verifying that nextgen
correctly computes the next generation of glider.

The test
passes.

We have now finished looking at the pure functions needed to implement the game of life.

But a game cannot be implemented simply using pure functions because games need to
interact with the outside world and so implementing them also requires side-effecting
functions.

In the case of the game of life, it needs to display on the screen both the initial generation of
live cells and the subsequent generations of live cells that it computes.

Before we look at the side-effecting functions required to implement the game of life, let’s see
how Graham Hutton introduces the problem of modeling interactive programs as pure
functions and how he explains the solution adopted by Haskell.

In the early days of computing, most programs were batch programs that were run in isolation
from their users, to maximise the amount of time the computer was performing useful work.

For example, a compiler is a batch program that takes a high-level program as its input, silently
performs a large number of operations, and then produces a low-level program as its output.

In part I of the book, we showed how Haskell can be used to write batch programs. In Haskell such
programs, and more generally all programs, are modelled as pure functions that take all their
inputs as explicit arguments, and produce all their outputs as explicit results, as depicted below:

For example, a compiler such as GHC may be modelled as a function of type Prog -> Code that
transforms a high-level program into low-level code.

batch
program

outputsinputs

Graham Hutton
@haskellhutt

In the modern era of computing, most programs are now interactive programs that are run as an
ongoing dialogue with their users, to provide increased flexibility and functionality.

For example, an interpreter is an interactive program that allows expressions to be entered using
the keyboard, and immediately displays the result of evaluating such expressions on the screen:

How can such programs be modelled as pure functions?

At first sight, this may seem impossible, because interactive programs by their very nature require
the side-effects of taking additional inputs and producing additional outputs while the program is
running.

For example, how can an interpreter such as GHCi be viewed as a pure function from arguments to
results?

keyboard

interactive
program

outputsinputs

screen

Graham Hutton
@haskellhutt

batch
program

outputsinputs

recap

SIDE-EFFECTS

keyboard

interactive
program

outputsinputs

screen

How can such programs be
modelled as pure functions?

Graham Hutton
@haskellhutt

@philip_schwarz

Over the years many approaches to the problem of combining the use of pure functions
with the need for side-effects have been developed.

In the remainder of this chapter we present the solution that is used in Haskell, which is
based upon a new type together with a small number of primitive operations.

As we shall see in later chapters, the underlying approach is not specific to interaction, but
can also be used to program with other forms of effects..

10.2 The solution

In Haskell, an interactive program is viewed as a pure function that takes the current state
of the world as its argument, and produces a modified world as its result, in which the
modified world reflects any side-effects that were performed by the program during its
execution.

Hence, given a suitable type World whose values represent states of the world, the
notion of an interactive program can be represented by a function of type World ->
World, which we abbreviate as IO (short for input/output) using the following type
declaration:

type IO = World -> World

Graham Hutton
@haskellhutt

In general, however, an interactive program may return a result value in addition to
performing side-effects.

For example, a program for reading a character from the keyboard may return the
character that was read.

For this reason, we generalise our type for interactive programs to also return a result
value, with the type of such values being a parameter of the IO type:

type IO a = World -> (a,World)

Expressions of type IO a are called actions. For example, IO Char is the type of actions
that return a character, while IO () is the type of actions that return the empty tuple ()
as a dummy result value. Actions of the latter type can be thought of as purely side-
effecting actions that return no result value and are often useful in interactive
programming.

Graham Hutton
@haskellhutt

In addition to returning a result value, interactive programs may also require argument
values.

However, there is no need to generalise the IO type further to take account of this,
because this behaviour can already be achieved by exploiting currying.

For example, an interactive program that takes a character and returns an integer would
have type Char -> IO Int, which abbreviates the curried function type Char ->
World -> (Int,World).

At this point the reader may, quite reasonably, be concerned about the feasibility of
passing around the entire state of the world when programming with actions! Of course,
this isn’t possible, and in reality the type IO a is provided as a primitive in Haskell,
rather than being represented as a function type.

However, the above explanation is useful for understanding how actions can be viewed as
pure functions, and the implementation of actions in Haskell is consistent with this view.

For the remainder of this chapter, we will consider IO a as a built-in type whose
implementation details are hidden:

data IO a = ...

Graham Hutton
@haskellhutt

type IO a = World -> (a,World)

Char World (Int,World)

‘A’ (65,)interactive
program

“‘

SIDE-EFFECTS

keyboard

interactive
program

outputsinputs

screen

Char IO Int IO action returning an Int

How can such programs be
modelled as pure functions?

Problem

Solution

IO : short for input/output

current state
of the world

modified
world

reflects any side-
effects that were
performed by the
program during
its execution.

Graham Hutton
@haskellhutt

recap

10.3 Basic actions

We now introduce three basic IO actions that are provided in Haskell. First of all, the
action getChar reads a character from the keyboard, echoes it to the screen, and returns
the character as its result value.

getChar :: IO Char
getChar = ...

(The actual definition for getChar is built into the GHC system.) If there are no characters
waiting to be read from the keyboard, getChar waits until one is typed. The dual action,
putChar c, writes the character c to the screen, and returns no result value, represented
by the empty tuple:

putChar :: Char -> IO ()
putChar c = ...

Our final basic action is return v, which simply returns the result value v without
performing any interaction with the user:

return :: a -> IO a
return v = ...

Graham Hutton
@haskellhutt

return :: a -> IO apure
expressions

side
effects

Graham Hutton
@haskellhutt

The function return provides a bridge from pure expressions without side-effects to impure actions
with side-effects.

return :: a -> IO a
return v = ...

Crucially, there is no bridge back — once we are impure we are impure for ever, with no possibility
for redemption!

As a result, we may suspect that impurity quickly permeates entire programs, but in practice this is
usually not the case. For most Haskell programs, the vast majority of functions do not involve
interaction, with this being handled by a relatively small number of interactive functions at the
outermost level.

10.4 Sequencing
In Haskell, a sequence of IO actions can be combined into a single composite action using the do
notation, whose typical form is as follows:

do v1 <- a1
v2 <- a2
.
.
.
vn <- an
return (f v1 v2 ... vn)

Such expressions have a simple operational reading: first perform the action a1 and call its result
value v1; then perform the action a2 and call its result value v2; ...; then perform the action an and
call its result value vn; and finally, apply the function f to combine all the results into a single value,
which is then returned as the result value from the expression as a whole.

There are three further points to note about the do notation.
• First of all, the layout rule applies, in the sense that each action in the sequence must begin in

precisely the same column, as illustrated above.
• Secondly, as with list comprehensions, the expressions vi <- ai are called generators, because they

generate values for the variables vi.
• And finally, if the result value produced by a generator vi <- ai is not required, the generator can

be abbreviated simply by ai, which has the same meaning as writing _ <- ai.

Graham Hutton
@haskellhutt

For example, an action that reads three characters, discards the second, and returns the
first and third as a pair can now be defined as follows:

act :: IO (Char,Char)
act = do x <- getChar

getChar
y <- getChar
return (x,y)

Note that omitting the use of return in this example would give rise to a type error,
because (x,y) is an expression of type (Char,Char), whereas in the above context we
require an action of type IO (Char,Char).

act :: IO (Char,Char)
act = do x <- getChar

getChar
y <- getChar
return (x,y)

Graham Hutton
@haskellhutt

10.5 Derived primitives
Using the three basic actions together with sequencing, we can now define a number of other
useful action primitives that are provided in the standard prelude. First of all, we define an action
getLine that reads a string of characters from the keyboard, terminated by the newline character ’\n’:

getLine :: IO String
getLine = do x <- getChar

if x == '\n' then
return []

else
do xs <- getLine
return (x:xs)

Note the use of recursion to read the rest of the string once the first character has been read. Dually,
we define primitives putStr and putStrLn that write a string to the screen, and in the latter case also
move to a new line:

putStr :: String -> IO ()
putStr [] = return ().
putStr (x:xs) = do putChar x

putStr xs

putStrLn :: String -> IO ()
putStrLn xs = do putStr xs

getLine :: IO String
getLine = do x <- getChar

if x == '\n' then
return []

else
do xs <- getLine

return (x:xs)

putStr :: String -> IO ()
putStr [] = return ()
putStr (x:xs) = do putChar x

putStr xs

putStrLn :: String -> IO ()
putStrLn xs = do putStr xs

putChar '\n'

Graham Hutton
@haskellhutt

For example, using these primitives we can now define an action that prompts for a string
to be entered from the keyboard, and displays its length:

strLen :: IO ()
strLen = do putStr "Enter a string: "

xs <- getLine
putStr "The string has "
putStr (show (length xs))
putStr " characters”

For example:

strlen
Enter a string: Haskell
The string has 7 characterstr " chara

cters"

strLen :: IO ()
strLen = do putStr "Enter a string: "

xs <- getLine
putStr "The string has "
putStr (show (length xs))
putStrLn " characters"

> strLen
Enter a string: Haskell
The string has 7 characters
>

Graham Hutton
@haskellhutt

To reinforce and expand on the IO concept just explained by Graham Hutton,
we now turn to Will Kurt’s book, Get Programming with Haskell.

Will Kurt
@willkurt

@philip_schwarz

Will Kurt
@willkurt

In this lesson, you’ll revisit a similar program to get a better sense of how I/O works in
Haskell. Here’s an example program using I/O that reads a name from the command line
and prints out "Hello <name>!".

helloPerson :: String -> String
helloPerson name = "Hello" ++ " " ++ name ++ "!"

main :: IO ()
main = do

putStrLn "Hello! What's your name?"
name <- getLine
let statement = helloPerson name
putStrLn statement

21.1. IO types—dealing with an impure world
putStr xs
As is often the case with Haskell, if you’re unsure of what’s going on, it’s best to look at the
types!

The first type you have to understand is the IO type.

In the preceding unit, you ended by looking at the Maybe type. Maybe is a parameterized
type (a type that takes another type as an argument) that represents a context when a
value may be missing.

IO in Haskell is a parameterized type that’s similar to Maybe. The first thing they share
in common is that they’re parameterized types of the same kind.

helloPerson :: String -> String
helloPerson name = "Hello" ++ " " ++ name ++ "!"

main :: IO ()
main = do

putStrLn "Hello! What's your name?"
name <- getLine
let statement = helloPerson name
putStrLn statement

Will Kurt
@willkurt

You can see this by looking at the kind of IO and of Maybe:

GHCi> :kind Maybe
Maybe :: * -> *
GHCi> :kind IO
IO :: * -> *

The other thing that Maybe and IO have in common is that (unlike List or Map) they
describe a context for their parameters rather than a container. The context for
the IO type is that the value has come from an input/output operation. Common
examples of this include reading user input, printing to standard out, and reading a file.

With a Maybe type, you’re creating a context for a single specific problem:
sometimes a program’s values might not be there.

With IO, you’re creating context for a wide range of issues that can happen with IO.

Not only is IO prone to errors, but it’s also inherently stateful (writing a file changes
something) and also often impure (calling getLine many times could easily yield a different
result each time if the user enters different input).

Although these may be issues in I/O, they’re also essential to the way I/O works.

What good is a program that doesn’t change the state of the world in some way?

To keep Haskell code pure and predictable, you use the IO type to provide a context
for data that may not behave the way all of the rest of your Haskell code
does. IO actions aren’t functions.

> :kind Maybe
Maybe :: * -> *
> :kind IO
IO :: * -> *
>

Will Kurt
@willkurt

In your example code, you only see one IO type being declared, the type of
your main:

main :: IO ()

At first () may seem like a special symbol, but in reality it’s just a tuple of zero
elements. In the past, we’ve found tuples representing pairs or triples to be
useful, but how can a tuple of zero elements be useful? Here are some
similar types with Maybe so you can see that IO () is just IO parameterized
with (), and can try to figure out why () might be useful:

GHCi> :type Just (1,2)
Just (1,2) :: (Num t, Num t1) => Maybe (t, t1)
GHCi> :type Just (1)
Just (1) :: Num a => Maybe a
GHCi> :type Just ()
Just () :: Maybe ()

For Maybe, being parameterized with () is useless. It can have only two
values, Just () and Nothing. But arguably, Just () is Nothing. It turns out that
representing nothing is exactly why you want to parameterize IO with an
empty tuple.

main :: IO ()

> :type Just (1,2)
Just (1,2) :: (Num a, Num b) => Maybe (a, b)
> :type Just (1)
Just (1) :: Num a => Maybe a
> :type Just ()
Just () :: Maybe ()
>

Will Kurt
@willkurt

You can understand this better by thinking about what happens when your main is run.
Your last line of code is as follows:

putStrLn statement

As you know, this prints your statement. What type does putStrLn return? It has sent a
message out into the world, but it’s not clear that anything meaningful is going to come back.
In a literal sense, putStrLn returns nothing at all. Because Haskell needs a type to
associate with your main, but your main doesn’t return anything, you use
the () tuple to parameterize your IO type. Because () is essentially nothing, this is
the best way to convey this concept to Haskell’s type system.

Although you may have satisfied Haskell’s type system, something else should be
troubling you about your main. In the beginning of the book, we stressed three
properties of functions that make functional programming so predictable and safe:

• All functions must take a value.
• All functions must return a value.
• Anytime the same argument is supplied, the same value must be returned
(referential transparency).

Clearly, main doesn’t return any meaningful value; it simply performs an action. It turns out
that main isn’t a function, because it breaks one of the fundamental rules of
functions: it doesn’t return a value.

Because of this, we refer to main as an IO action. IO actions work much like functions
except they violate at least one of the three rules we established for functions early in
the book. Some IO actions return no value, some take no input, and others don’t
always return the same value given the same input.

Will Kurt
@willkurt

21.1.1. Examples of IO actions
If main isn’t a function, it should follow that neither is putStrLn. You can
quickly clear this up by looking at putStrLn’s type:

putStrLn :: String -> IO ()

As you can see, the return type of putStrLn is IO (). Like main, putStrLn is
an IO action because it violates our rule that functions must return
values.

The next confusing function should be getLine. Clearly, this works differently than
any other function you’ve seen because it doesn’t take an argument! Here’s
the type for getLine:

getLine :: IO String

Unlike putStrLn, which takes an argument and returns no value, getLine takes
no value but returns a type IO String. This means getLine violates our rule
that all functions must take an argument. Because getLine violates this rule
of functions, it’s also an IO action.

Now let’s look at a more interesting case. If you import System.Random, you
can use randomRIO, which takes a pair of values in a tuple that represents the
minimum and maximum of a range and then generates a random number in
that range.

Will Kurt
@willkurt

Here’s a simple program called roll.hs that uses randomRIO and, when run, acts
like rolling a die.
impor System.Random

minDie :: Int
minDie = 1

maxDie :: Int
maxDie = 6

main :: IO ()
main = do
dieRoll <- randomRIO (minDie,maxDie)
putStrLn (show dieRoll)

You can compile your program with GHC and “roll” your die:

$ ghc roll.hs
$./roll
2

import System.Random

minDie :: Int
minDie = 1

maxDie :: Int
maxDie = 6

main :: IO ()
main = do

dieRoll <- randomRIO (minDie,maxDie)
putStrLn (show dieRoll)

Will Kurt
@willkurt

What about randomRIO?

It takes an argument (the min/max pair) and returns an argument
(an IO type parameterized with the type of the pair), so is it a
function?

If you run your program more than once, you’ll see the problem:

$./roll
4
$
./roll
6

Each time you call randomRIO, you get a different result, even
with the same argument.

This violates the rule of referential transparency. So randomRIO,
just like getLine and putStrLn, is an IO action.

Will Kurt
@willkurt

21.1.2. Keeping values in the context of IO
The interesting thing about getLine is that you have a useful return value of the
type IO String. Just as a Maybe String means that you have a type that
might be missing, IO String means that you have a type that comes from
I/O.

In lesson 19 we discussed the fact that a wide range of errors is caused by
missing values that Maybe prevents from leaking into other code.
Although null values cause a wide variety of errors, think of how many
errors you’ve ever encountered caused by I/O!

Because I/O is so dangerous and unpredictable, after you have a value
come from I/O, Haskell doesn’t allow you to use that value outside of the
context of the IO type. For example, if you fetch a random number
using randomRIO, you can’t use that value outside main or a
similar IO action. You’ll recall that with Maybe you could use pattern matching
to take a value safely out of the context that it might be missing. This is because
only one thing can go wrong with a Maybe type: the value is Nothing. With
I/O, an endless variety of problems could occur. Because of this, after
you’re working with data in the context of IO, it must stay there.

This initially may seem like a burden. After you’re familiar with the way Haskell
separates I/O logic from everything else, you’ll likely want to replicate this in
other programming languages (though you won’t have a powerful type system to
enforce it).

https://my.safaribooksonline.com/9781617293764/kindle_split_030_html

That was Get Programming with Haskell, by Will Kurt, and it was great! I found that
material very very useful.

Before we go back to Graham Hutton’s book, to see him complete his game of life
program by writing the requisite impure functions, let’s go over a few more aspects of IO
actions which Alejandro Mena covers in his Book of Monads and which will help us not
only to understand Graham’s code but also to translate that code into Scala.

Alejandro
Serrano Mena

@trupill

Interfacing with the Real World

The IO monad is as powerful as a spaceship but also as powerful as Pandora’s box. In Haskell,
the IO monad grants access to external libraries, to the file system, to the network, and to
an imperative model of execution. We need it — we want to communicate with other
systems or with the user, don’t we? — but we want to stay far away from it as much as
possible. It is impossible to describe all the possibilities inherent in Haskell’s IO monad. For
the sake of simplicity, we are going to restrict ourselves to simple actions. The following
actions allow us to show and obtain information through the console:

putStr :: String -> IO ()
putStrLn :: String -> IO () -- end with a newline
getChar :: IO Char
getLine :: IO String

Using these primitives, we can write a simple program that asks for a name and uses it to
print a greeting:

greet :: IO ()
greet = do putStr "Enter your name: "

name <- getLine
putStrLn (" Hello, " + + name + + "!")

putStr :: String -> IO ()
putStrLn :: String -> IO () -- end with a newline
getChar :: IO Char
getLine :: IO String

greet :: IO ()
greet = do putStr "Enter your name: "

name <- getLine
putStrLn (" Hello, " + + name + + "!")

Alejandro
Serrano Mena

@trupill

Another functionality that lives in the IO monad is randomness. Each data type that
supports a notion of a random value has to implement the Random type class. This
means that the following two operations are available for that type:

randomIO :: Random a = > IO a
randomRIO :: Random a = > (a, a) -> IO a -- within bounds

Purity.

Haskellers often emphasize that their language is purely functional. A pure
language is one that embodies the idea that “equals can be substituted for equals.”
This idea is also important in mathematics. For example, we know that 1 + 2 = 3.
This means that if we have an expression like (1 + 2) 2, we can just turn it into 32.
Almost everything in Haskell works in this way. For example, the definition of the
length of a list tells us that:

length [] = 0

If we take the expression (length []) * 2, we can safely rewrite it as 0 * 2. This
property also holds for local bindings, so we can turn let x = 0 in x * x into 0 * 0.

randomIO :: Random a => IO a
randomRIO :: Random a => (a, a) -> IO a -- within bounds

Alejandro
Serrano Mena

@trupill

Imagine now that random generation would have the signature

random :: Random a => a.

The rule of “equals can be substituted for equals” tells us that

let r = random in r == r

could be rewritten to

random == random

But those two expressions have completely different meanings. In the first one we produce a
random value once, which is checked with itself for equality, and thus always returns True. In
the second case, two random values are generated, so the outcome is equally random.

Haskell’s solution is to mark those values for which purity does not hold with IO. Since
randomRIO generates two values of type IO a, we cannot directly apply the equality
operator to them, as no instance for IO a exists. In addition, the compiler knows that whereas
it is safe to inline or manipulate any other expression in a program, it should never touch an
IO action.

Here is the error we get when we try to apply the equality operator directly to two
values of type IO a generated by randomRIO (since no Eq instance for IO a exists).

> :t randomRIO
randomRIO :: Random a => (a, a) -> IO a

> randomRIO(1,10)
6

> randomRIO(1,10) == randomRIO(1,10)

<interactive>:42:1: error:
• No instance for (Eq (IO Integer)) arising from a use of ‘==’
• In the expression: randomRIO (1, 10) == randomRIO (1, 10)
In an equation for ‘it’:

it = randomRIO (1, 10) == randomRIO (1, 10)

> let r = randomRIO(1,10) in r == r

<interactive>:47:28: error:
• No instance for (Eq (IO Integer)) arising from a use of ‘==’
• In the expression: r == r
In the expression: let r = randomRIO (1, 10) in r == r
In an equation for ‘it’: it = let r = randomRIO ... in r == r

>

@philip_schwarz

Alejandro
Serrano Mena

@trupill

Description versus execution.

IO values are treated like any other value in Haskell: they can be used as arguments to
functions, put in a list, and so on. This raises the question of when the results of such actions
are visible to the outside world.

Take the following small expression:

map putStrLn [" Alejandro", "John"]

If you try to execute it, you will see that nothing is printed on the screen. What we have
created is a description of a list of actions that write to the screen. You can see this in the
type assigned to the expression, [IO ()]. The fact that IO actions are not executed on the spot
goes very well with the lazy nature of Haskell and allows us to write our own imperative
control structures:

while :: IO Bool -> IO () -> IO ()
while cond action = do c <- cond

if c then action >> while cond action

Such code would be useless if the actions given as arguments were executed immediately.e

map putStrLn ["Alejandro", "John"]

while :: IO Bool -> IO () -> IO ()
while cond action = do c <- cond

if c then action >> while cond action
else return ()

Alejandro said that if we take the expression ‘map putStrLn ["Alejandro", "John"]‘ and try to execute it,
we will see that nothing is printed on the screen. Let’s try it:

That’s in contrast to a single IO action, e.g. ‘putStrLn "Alejandro"‘

which we are able to execute:

He also said that what we have created is a description of a list of actions that write to the screen and that we
can see this in the type assigned to the expression, [IO ()]. Let’s see:

On the next slide, Alejandro explains how to execute IO actions that are in a list.

> map putStrLn ["Alejandro", "John"]
<interactive>:158:1: error:

• No instance for (Show (IO ())) arising from a use of ‘print’
• In a stmt of an interactive GHCi command: print it

>

> :t map putStrLn ["Alejandro", "John"]
map putStrLn ["Alejandro", "John"] :: [IO ()]

> putStrLn "Alejandro"
Alejandro

> :t putStrLn "Alejandro"
putStrLn "Alejandro" :: IO ()

Alejandro
Serrano Mena

@trupill

There are only two ways in which we can execute the description embodied in an IO action.
One is entering the expression at the GHC interpreter prompt. The other is putting it in the
call trace that starts in the main function of an executable. In any case, only those
expressions that have IO as their outer constructor are executed. This is the reason why the
previous expression would not print anything, even in main. To get the work done, we need
to use sequence_ or mapM_:

sequence_ (map putStrLn [" Alejandro", "John"])
-- or equivalently
mapM_ putStrLn [" Alejandro", "John"]

This distinction between description and execution is at the core of the techniques explained
in this book for creating your own, fine-grained monads. But even for a monad with so many
possible side-effects like IO, it is useful for keeping the pure and impure parts of your code
separated.

sequence_ (map putStrLn ["Alejandro", "John"])
-- or equivalently
mapM_ putStrLn ["Alejandro", "John"]

Alejandro said that to get the work done, we need to use sequence_ or mapM_:

sequence_ (map putStrLn ["Alejandro", "John"])
-- or equivalently
mapM_ putStrLn ["Alejandro", "John"]

What happens if we pass a list of IO actions to sequence_ ?

It returns a single IO action of an empty tuple. Let’s do it:

So the IO actions in the list got executed, their results were ignored, and a single IO of an empty
tuple was returned. Similarly for mapM_:

> :t sequence_ (map putStrLn ["Alejandro", "John"])
sequence_ (map putStrLn ["Alejandro", "John"]) :: IO ()
>

> sequence_ (map putStrLn ["Alejandro", "John"])
Alejandro
John
>

> mapM_ putStrLn ["Alejandro", "John"]
Alejandro
John
>

@philip_schwarz

> :info sequence_ mapM_
sequence_ :: (Foldable t, Monad m) => t (m a) -> m ()

-- Defined in ‘Data.Foldable’
mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()

-- Defined in ‘Data.Foldable’
>

What are the signatures of sequence_ and mapM_ and where are they defined?

They are defined in
Foldable.

As we see below, sequence_ executes the monadic actions in a Foldable structure from left to right, ignoring the results. On
the previous slide we saw that it executed the IO actions in a list. As for mapM_, it maps a function that returns a monadic
action (e.g. an IO action) onto a Foldable structure (e.g. a list) and then does the same as sequence_ with the result.

Armed with a pretty decent understanding of IO actions, let’s now
return to Graham Hutton’s book and watch him write the impure
functions that are needed for the game of life.

Screen utilities

We begin with some useful output utilities concerning the screen on which the game will be played.
First of all, we define an action that clears the screen, which can be achieved by displaying the
appropriate control characters:

cls :: IO ()
cls =

By convention, the position of each character on the screen is given by a pair (x,y) of positive integers,
with (1,1) being the top-left corner. We represent such coordinate positions using the following type:

"\ type Pos = (Int,Int) ESC[2J”

We can then define a function that displays a string at a given position by using control characters to
move the cursor to this position:

writeAt :: Pos -> String -> IO ()
writeAt p xs = do goto p

putStr xs

goto :: Pos -> IO ()
goto (x,y) = putStr ("\ESC[" ++ show y ++ ";" ++ show x ++ "H")

cls :: IO ()
cls = putStr "\ESC[2J"

type Pos = (Int,Int)

writeat :: Pos -> String -> IO ()
writeat p xs = do goto p

putStr xs

goto :: Pos -> IO ()
goto (x,y) = putStr ("\ESC[" ++ show y ++ ";" ++ show x ++ "H")

Graham Hutton
@haskellhutt

Let’s try out the cls and writeat utilities that we have just see by writing code that uses them to first clear the screen
and then display a 3 x 3 grid of X characters in the top left corner of the screen.

We need to call writeat nine times, once for each coordinate pair (x,y) where both x and y are numbers in the range 1
to 3 inclusive.

Each call to writeat will result in an IO () action, so we’ll be creating a list of nine such actions which we can then
execute using the sequence_ function that we saw earlier.

Finally, we call writeat again with a blank string to move the cursor to line 4 of the screen, so that the screen prompt
that gets drawn by the REPL, after our program has run, is out of the way, on a separate line.

main :: IO ()
main = do cls

sequence_ [writeAt (x,y) "X" | x <- [1,2,3], y <- [1,2,3]]
writeAt (1,4) ""

Now let’s run our program by typing main at the REPL:

main :: IO ()
main = do cls

sequence_ [writeat (x,y) "X" | x <- [1,2,3], y <- [1,2,3]]
writeat (1,4) ""

XXX
XXX
XXX
>

Remember how on slide 9, when Graham Hutton was about to write his first impure function, we decided to
temporarily skip that function with a view to coming back to it later?

Now is that time and here is the function, which is called showcells and uses the sequence_ function:

For each point on the board, the function creates an IO () action that prints a O character at the point’s coordinates.
The function then uses sequence_ to execute all the resulting IO () actions.

On the next slide, Graham Hutton looks at a function for
displaying living cells on the screen. Because that function is
side-effecting, we’ll skip it for now and come back to it later.

showcells :: Board -> IO ()
showcells b = sequence_ [writeat p "O" | p <- b]

@philip_schwarz

Finally, we define a function life that implements the game of life itself, by clearing the screen, showing
the living cells in the current board, waiting for a moment, and then continuing with the next
generation:

life :: Board -> IO ()
life b = do cls

showcells b
wait 500000
life (nextgen b)

The function wait is used to slow down the game to a reasonable speed, and can be implemented by
performing a given number of dummy actions:

wait :: Int -> IO ()
wait n =

For fun, you might like to try out the life function with the glider example, and experiment with some
patterns of your own.

life :: Board -> IO ()
life b = do cls

showcells b
wait 500000
life (nextgen b)

wait :: Int -> IO ()
wait n = sequence_ [return () | _ <- [1..n]]

The life function ends by calling
itself, so it is tail recursive and
able to run forever.Graham Hutton

@haskellhutt

pulsar :: Board
pulsar = [(4, 2),(5, 2),(6, 2),(10, 2),(11, 2),(12, 2),

(2, 4),(7, 4),(9, 4),(14, 4),
(2, 5),(7, 5),(9, 5),(14, 5),
(2, 6),(7, 6),(9, 6),(14, 6),

(4, 7),(5, 7),(6, 7),(10, 7),(11, 7),(12, 7),

(4, 9),(5, 9),(6, 9),(10, 9),(11, 9),(12, 9),
(2,10),(7,10),(9,10),(14,10),
(2,11),(7,11),(9,11),(14,11),
(2,12),(7,12),(9,12),(14,12),

(4,14),(5,14),(6,14),(10,14),(11,14),(12,14)]

main :: IO ()
main = life(pulsar)

OOO OOO

O O O O
O O O O
O O O O
OOO OOO

OOO OOO
O O O O
O O O O
O O O O

OOO OOO

Let’s run the life program with a 20 by 20 board configured with the first
generation of a Pulsar, which cycles forever through three patterns.

Screen pattern for the first
generation of the Pulsar

OOO OOO

O O O O
O O O O
O O O O
OOO OOO

OOO OOO
O O O O
O O O O
O O O O

OOO OOO

O O
O O
OO OO

OOO OO OO OOO
O O O O O O
OO OO

OO OO
O O O O O O

OOO OO OO OOO

OO OO
O O
O O

OO OO
OO OO

O O O O O O
OOO OO OO OOO
O O O O O O
OOO OOO

OOO OOO
O O O O O O
OOO OO OO OOO
O O O O O O

OO OO
OO OO

Screen patterns for the three generations that the Pulsar cycles through.

@philip_schwarz

Note also that most of the definitions used to implement the game of life are pure
functions, with only a small number of top-level definitions involving input/output.
Moreover, the definitions that do have such side-effects are clearly distinguishable from
those that do not, through the presence of IO in their types.

In the next two slides we recap by seeing all the game of life code
together, but split into pure functions and impure functions.

Graham Hutton
@haskellhutt

isAlive :: Board -> Pos -> Bool
isAlive b p = elem p b

isEmpty :: Board -> Pos -> Bool
isEmpty b p = not (isAlive b p)

liveneighbs :: Board -> Pos -> Int
liveneighbs b =
length . filter(isAlive b) . neighbs

type Pos = (Int,Int)

type Board = [Pos]

width :: Int
width = 10

height :: Int
height = 10

survivors :: Board -> [Pos]
survivors b =
[p | p <- b,

elem (liveneighbs b p) [2,3]]

births :: Board -> [Pos]
births b = [p | p <- rmdups (concat (map neighbs b)),

isEmpty b p,
liveneighbs b p == 3]

rmdups :: Eq a => [a] -> [a]
rmdups [] = []
rmdups (x:xs) = x : rmdups (filter (/= x) xs)

nextgen :: Board -> Board
nextgen b = survivors b ++ births b

glider :: Board
glider = [(4,2),(2,3),(4,3),(3,4),(4,4)]

pulsar :: Board
pulsar =
[(4, 2),(5, 2),(6, 2),(10, 2),(11, 2),(12, 2),

(2, 4),(7, 4),(9, 4),(14, 4),
(2, 5),(7, 5),(9, 5),(14, 5),
(2, 6),(7, 6),(9, 6),(14, 6),

(4, 7),(5, 7),(6, 7),(10, 7),(11, 7),(12, 7),
(4, 9),(5, 9),(6, 9),(10, 9),(11, 9),(12, 9),

(2,10),(7,10),(9,10),(14,10),
(2,11),(7,11),(9,11),(14,11),
(2,12),(7,12),(9,12),(14,12),

(4,14),(5,14),(6,14),(10,14),(11,14),(12,14)]

neighbs :: Pos -> [Pos]
neighbs (x,y) =
map wrap [(x-1, y-1), (x, y-1),

(x+1, y-1), (x-1, y),
(x+1, y), (x-1, y+1),
(x, y+1), (x+1, y+1)]

wrap :: Pos -> Pos
wrap (x,y) = (((x-1) `mod` width) + 1,

((y-1) `mod` height) + 1)

PURE FUNCTIONS

life :: Board -> IO ()
life b = do cls

showcells b
wait 500000
life (nextgen b)

showcells :: Board -> IO ()
showcells b = sequence_ [writeat p "O" | p <- b]

wait :: Int -> IO ()
wait n = sequence_ [return () | _ <- [1..n]]

main :: IO ()
main = life(pulsar)

putStr :: String -> IO ()
putStr [] = return ()
putStr (x:xs) = do putChar x

putStr xs

putStrLn :: String -> IO ()
putStrLn xs = do putStr xs

putChar '\n'

cls :: IO ()
cls = putStr "\ESC[2J"

writeat :: Pos -> String -> IO ()
writeat p xs = do goto p

putStr xs

goto :: Pos -> IO ()
goto (x,y) =
putStr ("\ESC[" ++ show y ++ ";"

++ show x ++ "H")

IMPURE FUNCTIONS

OOO OOO

O O O O
O O O O
O O O O
OOO OOO

OOO OOO
O O O O
O O O O
O O O O

OOO OOO

O O
O O
OO OO

OOO OO OO OOO
O O O O O O
OO OO

OO OO
O O O O O O

OOO OO OO OOO

OO OO
O O
O O

OO OO
OO OO

O O O O O O
OOO OO OO OOO
O O O O O O
OOO OOO

OOO OOO
O O O O O O
OOO OO OO OOO
O O O O O O

OO OO
OO OO

While I have also included putsStr and putStrLn, they
are of course predefined (derived) primitives.

Graham Hutton
@haskellhutt

[15] S. Peyton Jones, “Tackling the Awkward Squad: Monadic Input/Output,
Concurrency, Exceptions, and Foreign-Language Calls in Haskell,” in
Engineering Theories of Software Construction. IOS Press, 2001.

[4] S. Marlow, Ed., Haskell Language Report, 2010, available on the web from:
https://www.haskell.org/definition/haskell2010.pdf.

return :: a -> IO apure
expressions

side
effects

Remember when Graham Hutton
explained how the return function
provides a one-way bridge from pure
expressions without side-effects to
impure actions with side-effects?

return :: a -> IO apure
expressions

side
effects

10.9 Chapter remarks
The use of the IO type to perform other forms of side effects, including reading and
writing from files, is discussed in the Haskell Report [4], and a formal meaning for this
type is given in [15]. For specialised applications, a bridge back from impure actions to
pure expressions is in fact available via the function unsafePerformIO :: IO a -> a in the
library System.IO.Unsafe. However, as suggested by the naming, this function is unsafe
and should not be used in normal Haskell programs as it compromises the purity of the
language.

unsafePerformIO :: IO a -> a

Alejandro
Serrano Mena

@trupill

…people even use IO in languages in which side-effects are available everywhere,
such as Scala. In particular, the Scalaz ZIO library defines an IOApp class as the
entry point of a side-effectful computation, which is represented as an IO action.
Note that in ZIO, the IO type takes two arguments — the first one represents the
range of exceptions that may be thrown during the execution of the side-effects:

trait IOApp extends RTS {
def run(args: List[String]): IO[Void, ExitStatus]
final def main(args0: Array[String]): Unit =
unsafePerformIO(run(args0. toList))

...
Wait a minute! You are now looking at the devil itself: unsafePerformIO. The type
of that function is IO a -> a. In other words, it allows us to break the barrier
between purity and impurity. You should know that this function exists only so you
never use it. The situations in which you would need it are extremely rare and
mostly involve interfacing with external systems. If the moment ever comes, you will
know.

trait IOApp extends RTS {
def run(args: List[String]): IO[Void, ExitStatus]
final def main(args0: Array[String]): Unit =
unsafePerformIO(run(args0. toList))
...

} unsafePerformIO :: IO a -> a

We conclude part 1 with a single slide recapping the game of life functions that we
have translated into Scala, i.e. only the pure functions.

We still have a fair bit to do. In part 2 we will translate the impure functions into Scala
using first a handrolled IO monad and then the Cats Effect IO Monad.

We will also translate the game of life program into the Unison language, which uses
Algebraic Effects in preference to Monadic Effects.

type Pos = (Int, Int)

type Board = List[Pos]

val width = 20

val height = 20

def neighbs(p: Pos): List[Pos] = p match {
case (x,y) => List(
(x - 1, y - 1), (x, y - 1),
(x + 1, y - 1), (x - 1, y),
(x + 1, y), (x - 1, y + 1),
(x, y + 1), (x + 1, y + 1)) map wrap }

def wrap(p:Pos): Pos = p match {
case (x, y) => (((x - 1) % width) + 1,

((y - 1) % height) + 1) }

def survivors(b: Board): List[Pos] =
for {
p <- b
if List(2,3) contains liveneighbs(b)(p)

} yield p

def births(b: Board): List[Pos] =
for {
p <- rmdups(b flatMap neighbs)
if isEmpty(b)(p)
if liveneighbs(b)(p) == 3

} yield p

def rmdups[A](l: List[A]): List[A] = l match {
case Nil => Nil
case x::xs => x::rmdups(xs filter(_ != x)) }

def nextgen(b: Board): Board =
survivors(b) ++ births(b)

def isAlive(b: Board)(p: Pos): Boolean =
b contains p

def isEmpty(b: Board)(p: Pos): Boolean =
!(isAlive(b)(p))

def liveneighbs(b:Board)(p: Pos): Int =
neighbs(p).filter(isAlive(b)).length

val glider: Board = List((4,2),(2,3),(4,3),(3,4),(4,4))

val gliderNext: Board = List((3,2),(4,3),(5,3),(3,4),(4,4))

val pulsar: Board = List(
(4, 2),(5, 2),(6, 2),(10, 2),(11, 2),(12, 2),

(2, 4),(7, 4),(9, 4),(14, 4),
(2, 5),(7, 5),(9, 5),(14, 5),
(2, 6),(7, 6),(9, 6),(14, 6),

(4, 7),(5, 7),(6, 7),(10, 7),(11, 7),(12, 7),

(4, 9),(5, 9),(6, 9),(10, 9),(11, 9),(12, 9),
(2,10),(7,10),(9,10),(14,10),
(2,11),(7,11),(9,11),(14,11),
(2,12),(7,12),(9,12),(14,12),

(4,14),(5,14),(6,14),(10,14),(11,14),(12,14)])

PURE FUNCTIONS

To be continued in part 2

