
Game of Life - Polyglot FP
Haskell - Scala - Unison

Follow along as the impure functions in the Game of Life are translated from Haskell into Scala,

deepening you understanding of the IO monad in the process
(Part 2)

through the work of

Graham Hutton
@haskellhutt

@philip_schwarzslides by https://www.slideshare.net/pjschwarz

Paul ChiusanoRunar Bjarnason
@pchiusano@runarorama

FP in Scala

https://www.slideshare.net/pjschwarz/natural-transformations

In part 1 we translated some of the Game Of Life functions from Haskell into
Scala. The functions that we translated were the pure functions, and on the next
slide you can see the resulting Scala functions.

@philip_schwarz

type Pos = (Int, Int)

type Board = List[Pos]

val width = 20

val height = 20

def neighbs(p: Pos): List[Pos] = p match {
case (x,y) => List(
(x - 1, y - 1), (x, y - 1),
(x + 1, y - 1), (x - 1, y),
(x + 1, y), (x - 1, y + 1),
(x, y + 1), (x + 1, y + 1)) map wrap }

def wrap(p:Pos): Pos = p match {
case (x, y) => (((x - 1) % width) + 1,

((y - 1) % height) + 1) }

def survivors(b: Board): List[Pos] =
for {
p <- b
if List(2,3) contains liveneighbs(b)(p)

} yield p

def births(b: Board): List[Pos] =
for {
p <- rmdups(b flatMap neighbs)
if isEmpty(b)(p)
if liveneighbs(b)(p) == 3

} yield p

def rmdups[A](l: List[A]): List[A] = l match {
case Nil => Nil
case x::xs => x::rmdups(xs filter(_ != x)) }

def nextgen(b: Board): Board =
survivors(b) ++ births(b)

def isAlive(b: Board)(p: Pos): Boolean =
b contains p

def isEmpty(b: Board)(p: Pos): Boolean =
!(isAlive(b)(p))

def liveneighbs(b:Board)(p: Pos): Int =
neighbs(p).filter(isAlive(b)).length

val glider: Board = List((4,2),(2,3),(4,3),(3,4),(4,4))

val gliderNext: Board = List((3,2),(4,3),(5,3),(3,4),(4,4))

val pulsar: Board = List(
(4, 2),(5, 2),(6, 2),(10, 2),(11, 2),(12, 2),

(2, 4),(7, 4),(9, 4),(14, 4),
(2, 5),(7, 5),(9, 5),(14, 5),
(2, 6),(7, 6),(9, 6),(14, 6),

(4, 7),(5, 7),(6, 7),(10, 7),(11, 7),(12, 7),

(4, 9),(5, 9),(6, 9),(10, 9),(11, 9),(12, 9),
(2,10),(7,10),(9,10),(14,10),
(2,11),(7,11),(9,11),(14,11),
(2,12),(7,12),(9,12),(14,12),

(4,14),(5,14),(6,14),(10,14),(11,14),(12,14)])

PURE FUNCTIONS

We now want to translate from Haskell into Scala, the remaining Game of Life
functions, which are impure functions, and which are shown on the next slide.

life :: Board -> IO ()
life b = do cls

showcells b
wait 500000
life (nextgen b)

showcells :: Board -> IO ()
showcells b = sequence_ [writeat p "O" | p <- b]

wait :: Int -> IO ()
wait n = sequence_ [return () | _ <- [1..n]]

main :: IO ()
main = life(pulsar)

putStr :: String -> IO ()
putStr [] = return ()
putStr (x:xs) = do putChar x

putStr xs

putStrLn :: String -> IO ()
putStrLn xs = do putStr xs

putChar '\n'

cls :: IO ()
cls = putStr "\ESC[2J"

writeat :: Pos -> String -> IO ()
writeat p xs = do goto p

putStr xs

goto :: Pos -> IO ()
goto (x,y) =
putStr ("\ESC[" ++ show y ++ ";"

++ show x ++ "H")

IMPURE FUNCTIONS

OOO OOO

O O O O
O O O O
O O O O
OOO OOO

OOO OOO
O O O O
O O O O
O O O O

OOO OOO

O O
O O
OO OO

OOO OO OO OOO
O O O O O O
OO OO

OO OO
O O O O O O

OOO OO OO OOO

OO OO
O O
O O

OO OO
OO OO

O O O O O O
OOO OO OO OOO
O O O O O O
OOO OOO

OOO OOO
O O O O O O
OOO OO OO OOO
O O O O O O

OO OO
OO OO

While I have also included putsStr and putStrLn, they are of
course Haskell predefined (derived) primitives.

The difference between the pure functions and the impure functions is that while the former don’t have any side effects, the latter do,
which is indicated by the fact that their signatures contain the IO type. See below for how Graham Hutton puts it.

Functions with the IO type in their signature are called IO actions. The first two Haskell functions on the previous slide
are predefined primitives putStr and putStrLn, which are IO actions. See below for how Will Kurt puts the fact that IO
actions are not really functions, i.e. they are not pure.

IO actions work much like functions except they violate at least one of the three rules of functions that make
functional programming so predictable and safe
• All functions must take a value.
• All functions must return a value.
• Anytime the same argument is supplied, the same value must be returned (referential transparency).
getLine is an IO action because it violates our rule that functions must take an argument
putStrLn is an IO action because it violates our rule that functions must return values.

Most of the definitions used to implement the game of life are pure functions, with only a small number of top-level
definitions involving input/output. Moreover, the definitions that do have such side-effects are clearly
distinguishable from those that do not, through the presence of IO in their types.

Graham Hutton
@haskellhutt

Will Kurt
@willkurt

Alejandro
Serrano Mena

@trupill

Haskell’s solution is to mark those values for which purity does not hold with IO.

Also see below how Alejandro Mena puts it when discussing referential
transparency and the randomRIO function

But while there is this clear distinction between pure functions and impure functions, between
functions with side effects and functions without side effects, between pure functions and IO
actions, there is also the notion that an IO action can be viewed as a pure function that takes
the current state of the world as its argument, and produces a modified world as its result, in
which the modified world reflects any side-effects that were performed by the program during
its execution.

See the next slide for a recap of how Graham Hutton puts it.

@philip_schwarz

In Haskell, an interactive program is viewed as a pure function that takes the current state of the world as its argument,
and produces a modified world as its result, in which the modified world reflects any side-effects that were performed by
the program during its execution. Hence, given a suitable type World whose values represent states of the world, the
notion of an interactive program can be represented by a function of type World -> World, which we abbreviate as IO
(short for input/output) using the following type declaration:

type IO = World -> World

In general, however, an interactive program may return a result value in addition to performing side-effects. For example, a
program for reading a character from the keyboard may return the character that was read. For this reason, we generalise
our type for interactive programs to also return a result value, with the type of such values being a parameter of the IO
type:

type IO a = World -> (a,World)

Expressions of type IO a are called actions. For example, IO Char is the type of actions that return a character, while IO
() is the type of actions that return the empty tuple () as a dummy result value. Actions of the latter type can be thought
of as purely side-effecting actions that return no result value and are often useful in interactive programming.

In addition to returning a result value, interactive programsmay also require argument values. However, there is no need to
generalise the IO type further to take account of this, because this behaviour can already be achieved by exploiting
currying. For example, an interactive program that takes a character and returns an integer would have type Char -> IO
Int, which abbreviates the curried function type Char -> World -> (Int,World).

At this point the reader may, quite reasonably, be concerned about the feasibility of passing around the entire state of the
world when programming with actions! Of course, this isn’t possible, and in reality the type IO a is provided as a
primitive in Haskell, rather than being represented as a function type. However, the above explanation is useful for
understanding how actions can be viewed as pure functions, and the implementation of actions in Haskell is consistent with
this view. For the remainder of this chapter, we will consider IO a as a built-in type whose implementation details are
hidden:

data IO a = ...

Graham Hutton
@haskellhutt

See the next slide for an illustrated recap of how viewing IO actions as pure functions solves the
problem of modeling interactive programs as pure functions.

See the slide after that for a further illustration of how IO actions can be seen as pure functions.

type IO a = World -> (a,World)

Char World (Int,World)

‘A’ (65,)interactive
program

“‘

SIDE-EFFECTS

keyboard

interactive
program

outputsinputs

screen

Char IO Int IO action returning an Int

How can such programs be
modelled as pure functions?

Problem

Solution

IO : short for input/output

current state
of the world

modified
world

reflects any side-
effects that were
performed by the
program during
its execution.

Graham Hutton
@haskellhutt

visual
summary

@philip_schwarz

SIDE-EFFECTS

keyboard

interactive
program

outputsinputs

screen

getChar :: World -> (Char, World)

putChar :: Char -> World -> ((), World)

return :: a -> World -> (a, World)

getLine :: World -> (String, World)

putStr :: String -> World -> ((), World)

putStrLn :: String -> World -> ((), World)

batch
program

outputsinputs

getChar :: IO Char
getLine :: IO String

putChar :: Char -> IO ()
putStr :: String -> IO ()
putStrLn :: String -> IO ()

Basic primitive IO actions

getChar :: IO Char
putChar :: Char -> IO ()
return :: a -> IO a

Derived primitive IO actions

getLine :: IO String
putStr :: String -> IO ()
putStrLn :: String -> IO ()

Instead of viewing IO actions as impure functions that perform the side effects of an interactive program…

…view them as pure functions of a batch program that take the current
world and return a modified world that reflects any side effects performed.

The first two Haskell functions that we have to translate into Scala are derived
primitive IO actions putStr and putStrLn.

Right after Graham Hutton introduced Haskell’s primitive IO actions, he showed us a
simple strLen program that made use of the derived ones (see below).

Basic primitive IO actions

getChar :: IO Char
putChar :: Char -> IO ()
return :: a -> IO a

Derived primitive IO actions

getLine :: IO String
putStr :: String -> IO ()
putStrLn :: String -> IO ()

Graham Hutton
@haskellhutt

For example, using these primitives we can now define an
action that prompts for a string to be entered from the
keyboard, and displays its length:

strLen :: IO ()
strLen = do putStr "Enter a string: "

xs <- getLine
putStr "The string has "
putStr (show (length xs))
putStr " characters”

For example:

strlen
Enter a string: Haskell
The string has 7 characterstr " chara

cters"

strLen :: IO ()
strLen = do putStr "Enter a string: "

xs <- getLine
putStr "The string has "
putStr (show (length xs))
putStrLn " characters"

> strLen
Enter a string: Haskell
The string has 7 characters
>

The next thing we are going to do is see if
we can translate the Haskell derived
primitive IO actions into Scala and then
use them to write the Scala equivalent of
the program on the left.

Haskell primitive IO actions have the IO type in their signature.

While in Scala there are primitive functions for reading/writing from/to the console, their signature does not involve
any IO type and there is no such predefined type in Scala.

While we can view the Haskell IO actions as pure functions, which take the current world and return a result
together with a modified world, the same cannot be said of the corresponding Scala functions, which have side
effects (they violate one or more of the rules for pure functions):

It is, however, possible to define an IO type in Scala and we are now going to turn to Functional Programming in
Scala (FPiS) to see how it is done and how such an IO type can be used to write pure Scala functions that mirror
Haskell’s derived primitive IO actions.

getLine :: World -> (String, World) def readLine() : String
putStr :: String -> World -> ((), World) def print(x: Any) : Unit
putStrLn :: String -> World -> ((), World) def println(x: Any) : Unit

getLine :: IO String
putStr :: String -> IO ()
putStrLn :: String -> IO ()

@philip_schwarz

In this chapter, we’ll take what we’ve learned so far about monads and algebraic data
types and extend it to handle external effects like reading from databases and writing
to files.

We’ll develop a monad for I/O, aptly called IO, that will allow us to handle such
external effects in a purely functional way.

We’ll make an important distinction in this chapter between effects and side effects.

The IO monad provides a straightforward way of embedding imperative
programming with I/O effects in a pure program while preserving referential
transparency. It clearly separates effectful code—code that needs to have some
effect on the outside world—from the rest of our program.

This will also illustrate a key technique for dealing with external effects—using pure
functions to compute a description of an effectful computation, which is then
executed by a separate interpreter that actually performs those effects.

Essentially we’re crafting an embedded domain-specific language (EDSL) for
imperative programming. This is a powerful technique that we’ll use throughout the
rest of part 4. Our goal is to equip you with the skills needed to craft your own EDSLs
for describing effectful programs.

Runar Bjarnason
@runarorama

Paul Chiusano
@pchiusano

Functional Programming
in Scala

13 External effects and I/O

13.1 Factoring effects
We’ll work our way up to the IO monad by first considering a simple example of a program with side effects.

case class Player(name: String, score: Int)

def contest(p1: Player, p2: Player): Unit =
if (p1.score > p2.score)

println(s"${p1.name} is the winner!")
else if (p2.score > p1.score)

println(s"${p2.name} is the winner!")
else

println("It's a draw.")

The contest function couples the I/O code for displaying the result to the pure logic for computing the winner. We can factor
the logic into its own pure function, winner:

def contest(p1: Player, p2: Player): Unit = winner(p1, p2) match {
case Some(Player(name, _)) => println(s"$name is the winner!")
case None => println("It's a draw.")

}

def winner(p1: Player, p2: Player): Option[Player] =
if (p1.score > p2.score) Some(p1)
else if (p1.score < p2.score) Some(p2)
else None

It is always possible to factor an impure procedure into a pure “core” function and two procedures with side effects: one that
supplies the pure function’s input and one that does something with the pure function’s output. In listing 13.1, we factored the pure
function winner out of contest. Conceptually, contest had two responsibilities—it was computing the result of the contest,
and it was displaying the result that was computed. With the refactored code, winner has a single responsibility: to compute the
winner. The contest method retains the responsibility of printing the result of winner to the console.

Runar Bjarnason
@runarorama

Paul Chiusano
@pchiusano

Functional Programming in Scala

We can refactor this even further. The contest function still has two responsibilities: it’s computing which message to display and
then printing that message to the console. We could factor out a pure function here as well, which might be beneficial if we later
decide to display the result in some sort of UI or write it to a file instead. Let’s perform this refactoring now:

def contest(p1: Player, p2: Player): Unit =
println(winnerMsg(winner(p1, p2)))

def winner(p1: Player, p2: Player): Option[Player] =
if (p1.score > p2.score) Some(p1)
else if (p1.score < p2.score) Some(p2)
else None

def winnerMsg(p: Option[Player]): String = p map {
case Player(name, _) => s"$name is the winner!"

} getOrElse "It's a draw."

Note how the side effect, println, is now only in the outermost layer of the program, and what’s inside the call to println is
a pure expression. This might seem like a simplistic example, but the same principle applies in larger, more complex programs, and
we hope you can see how this sort of refactoring is quite natural. We aren’t changing what our program does, just the internal details of
how it’s factored into smaller functions.

The insight here is that inside every function with side effects is a pure function waiting to get out. We can formalize this insight a
bit. Given an impure function f of type A => B, we can split f into two functions:
• A pure function of type A => D, where D is some description of the result of f.
• An impure function of type D => B, which can be thought of as an interpreter of these descriptions.

We’ll extend this to handle “input” effects shortly. For now, let’s consider applying this strategy repeatedly to a program. Each time
we apply it, we make more functions pure and push side effects to the outer layers. We could call these impure functions the
“imperative shell” around the pure “core” of the program. Eventually, we reach functions that seem to necessitate side effects like
the built-in println, which has type String => Unit. What do we do then?

Runar Bjarnason
@runarorama

Paul Chiusano
@pchiusanoFunctional Programming in Scala

About the following section of the previous slide:

The insight here is that inside every function with side effects is a pure function waiting to get out.

Given an impure function f of type A => B, we can split f into two functions:
• A pure function of type A => D, where D is some description of the result of f.
• An impure function of type D => B which can be thought of as an interpreter of these descriptions.

When it come to relating the above to the contest function that we have just seen, I found it straightforward to
relate function A => B to the original contest function, but I did not find it that straightforward to relate functions
A => D and D => B to the winner and winnerMsg functions.

So on the next slide I show the code before and after the refactoring and in the slide after that I define type aliases
A, B and D and show the code again but making use of the aliases.

On both slides, I have replaced methods with functions in order to help us identify the three functions
A => B, A => D and D => B.

I also called the A => D function ‘pure’ and the D => B function ‘impure’.

val pure: ((Player, Player)) => String = winnerMsg compose winner

val winnerMsg: Option[Player] => String = p => p map {
case Player(name, _) => s"$name is the winner!"

} getOrElse "It's a draw."

val winner: ((Player, Player)) => Option[Player] = {
case (p1: Player, p2: Player) =>

if (p1.score > p2.score) Some(p1)
else if (p1.score < p2.score) Some(p2)
else None

}

def contest: ((Player, Player)) => Unit = {
case (p1: Player, p2: Player) =>

if (p1.score > p2.score)
println(s"${p1.name} is the winner!")

else if (p2.score > p1.score)
println(s"${p2.name} is the winner!")

else
println("It's a draw.")

}

val contest: ((Player, Player)) => Unit = impure compose pure

val impure : String => Unit = println(_)

Here on the left is the original contest
function, and on the right, the refactored version

PURE FUNCTIONS

IMPURE FUNCTIONS

val pure: A => D = winnerMsg compose winner

val winnerMsg: Option[Player] => D = p => p map {
case Player(name, _) => s"$name is the winner!"

} getOrElse "It's a draw."

val winner: A => Option[Player] = {
case (p1: Player, p2: Player) =>

if (p1.score > p2.score) Some(p1)
else if (p1.score < p2.score) Some(p2)
else None

}

def contest: A => B = {
case (p1: Player, p2: Player) =>

if (p1.score > p2.score)
println(s"${p1.name} is the winner!")

else if (p2.score > p1.score)
println(s"${p2.name} is the winner!")

else
println("It's a draw.")

}

val contest: A => B = impure compose pure

val impure : D => B = println(_)

type A = (Player, Player)
type B = Unit
type D = String

Same as on the previous slide,
but using type aliases A, B and D.

PURE FUNCTIONS

IMPURE FUNCTIONS

@philip_schwarz

“imperative shell” pure “core”
winnerMsg compose winnerprintln(_)

contest

impure functions

outer layer

side effect

pure expression

purecomposeimpure

val pure: A => D = winnerMsg compose winner

val winnerMsg: Option[Player] => D = p => p map {
case Player(name, _) => s"$name is the winner!"

} getOrElse "It's a draw."

val winner: A => Option[Player] = {
case (p1: Player, p2: Player) =>

if (p1.score > p2.score) Some(p1)
else if (p1.score < p2.score) Some(p2)
else None

}

val contest: A => B = impure compose pure

val impure : D => B = println(_)

A => B

D => B A => D

“the side effect, println, is now only in the
outermost layer of the program, and what’s
inside the call to println is a pure expression“

contest: A => B - an impure function – it can be split into two functions:
• pure: A => D – a pure function producing a description of the result
• impure: D => B – an impure function, an interpreter of such descriptions

type A = (Player, Player)
type B = Unit
type D = String - Some description of the result of contest

a description of the result of contest

an interpreter of such descriptions

impure function

can be split into two functions

.

PURE FUNCTIONS

IMPURE FUNCTIONS

13.2 A simple IO type

It turns out that even procedures like println are doing more than one thing. And they can be factored in much the same way, by
introducing a new data type that we’ll call IO:

trait IO { def run: Unit }

def PrintLine(msg: String): IO =
new IO { def run = println(msg) }

def contest(p1: Player, p2: Player): IO =
PrintLine(winnerMsg(winner(p1, p2)))

Our contest function is now pure— it returns an IO value, which simply describes an action that needs to take place, but
doesn’t actually execute it. We say that contest has (or produces) an effect or is effectful, but it’s only the interpreter of IO (its
run method) that actually has a side effect.

Now contest only has one responsibility, which is to compose the parts of the program together: winner to compute who the
winner is, winnerMsg to compute what the resulting message should be, and PrintLine to indicate that the message should
be printed to the console. But the responsibility of interpreting the effect and actually manipulating the console is held by the run
method on IO.

Runar Bjarnason
@runarorama

Paul Chiusano
@pchiusano

Functional Programming
in Scala

def PrintLine(msg: String): IO =
new IO { def run = println(msg) }

case class Player(name: String, score: Int)

def contest(p1: Player, p2: Player): IO =
PrintLine(winnerMsg(winner(p1, p2)))

Paul Chiusano
@pchiusano Runar Bjarnason

@runarorama

We’ll make an important distinction in this chapter between effects and side effects.

a key technique for dealing with external effects—using pure functions to compute a description of an effectful
computation, which is then executed by a separate interpreter that actually performs those effects..

Our contest function is now pure

it returns an IO value, which simply describes an action that needs to take place, but doesn’t actually execute it.

def contest(p1: Player, p2: Player): IO =
PrintLine(winnerMsg(winner(p1, p2)))

contest has (or produces) an effect or is effectful, but it’s only the interpreter of IO (its run method) that
actually has a side effect.

the responsibility of interpreting the effect and actually manipulating the console is held by the run method on IO.

def winner(p1: Player, p2: Player): Option[Player] =
if (p1.score > p2.score) Some(p1)
else if (p1.score < p2.score) Some(p2)
else None

def winnerMsg(p: Option[Player]): String = p map {
case Player(name, _) => s"$name is the winner!"

} getOrElse "It's a draw."

trait IO { def run: Unit }

a description of the result of contest an interpreter of descriptions
trait IO {
def run: Unit

}

def PrintLine(msg: String): IO =
new IO { def run = println(msg) }

case class Player(name: String, score: Int)

def contest(p1: Player, p2: Player): IO =
PrintLine(winnerMsg(winner(p1, p2)))

def winner(p1: Player, p2: Player): Option[Player] =
if (p1.score > p2.score) Some(p1)
else if (p1.score < p2.score) Some(p2)
else None

def winnerMsg(p: Option[Player]): String = p map {
case Player(name, _) => s"$name is the winner!"

} getOrElse "It's a draw."

a description of the result of contest an interpreter of descriptions
trait IO {
def run: Unit

}

scala> val resultDescription: IO = contest(Player("John",score=10), Player("Jane",score=15))
resultDescription: IO = GameOfLife$$anon$1@544f606e

scala> resultDescription.run
Jane is the winner!

scala>

simply describes an action that needs to
take place, but doesn’t actually execute it

it’s only the interpreter of IO
(its run method) that actually
has a side effect.

Let’s try out the program. We first execute the contest function, which returns an IO action describing an effectful
computation. We then invoke the description’s run method, which interprets the description by executing the effectful
computation that it describes, and which results in the side effect of printing a message to the console.

side effect

produced by

Other than technically satisfying the requirements of referential transparency, has the IO type actually bought us anything?
That’s a personal value judgement. As with any other data type, we can assess the merits of IO by considering what sort of algebra
it provides—is it something interesting, from which we can define a large number of useful operations and programs, with nice
laws that give us the ability to reason about what these larger programs will do? Not really. Let’s look at the operations we can
define:

trait IO { self =>

def run: Unit

def ++(io: IO): IO = new IO {
def run = { self.run; io.run }

}

}
object IO {

def empty: IO = new IO { def run = () }

}

The only thing we can perhaps say about IO as it stands right now is that it forms a Monoid (empty is the identity, and ++ is
the associative operation). So if we have, for example, a List[IO], we can reduce that to a single IO, and the associativity of ++
means that we can do this either by folding left or folding right. On its own, this isn’t very interesting. All it seems to have given us is
the ability to delay when a side effect actually happens.

Now we’ll let you in on a secret: you, as the programmer, get to invent whatever API you wish to represent your computations,
including those that interact with the universe external to your program. This process of crafting pleasing, useful, and composable
descriptions of what you want your programs to do is at its core language design.

You’re crafting a little language, and an associated interpreter, that will allow you to express various programs. If you don’t like
something about this language you’ve created, change it! You should approach this like any other design task.

Runar Bjarnason
@runarorama

Paul Chiusano
@pchiusano

Functional Programming in Scala

The self argument lets us refer to
this object as self instead of this.

self refers to the outer IO.

In the next slide we have a go at running multiple IO actions, first by executing each one
individually, and then by folding them into a single composite IO action and executing that.

trait IO { self =>
def run: Unit
def ++(io: IO): IO = new IO {

def run = { self.run; io.run }
}

}
object IO {

def empty: IO = new IO { def run = () }
}

// create IO actions describing the effectful
// computations for three contests.
val gameResultDescriptions: List[IO] = List(

contest(Player("John", 10), Player("Jane", 15)),
contest(Player("Jane", 5), Player("Charlie", 10)),
contest(Player("John", 25), Player("Charlie", 25))

)

// run each IO action individually, in sequence
gameResultDescriptions.foreach(_.run)

trait Monoid[A] {
def op(a1: A, a2: A): A
def zero: A

}

def concatenate[A](as: List[A])(implicit m: Monoid[A]): A =
as.foldLeft(m.zero)(m.op)

// use the List.fold function of the standard library
// to fold all the IO actions into a single composite
// IO action.
val gameResultsDescription: IO =

gameResultDescriptions.fold(IO.empty)(_ ++ _)

// run the composite IO action
gameResultsDescription.run

Jane is the winner!
Charlie is the winner!
It's a draw.

// define an implicit Monoid instance for IO using an
// FP library like cats, or in this case using a
// hand-rolled Monoid typeclass (see bottom right).
implicit val ioMonoid: Monoid[IO] = new Monoid[IO] {

def op(x: IO, y: IO): IO = x ++ y
val zero: IO = IO.empty

}

// fold the actions using the List concatenation function of an
// FP library, or in this case a hand-rolled one (see right).
val gameResultsDescription: IO =

concatenate(gameResultDescriptions)(ioMonoid)

// run the composite IO action
gameResultsDescription.run

Before the introduction of
new IO operations ++ and
empty, there was no way to
compose IO actions, so each
action had to be executed
individually. See1

2

3 Now that ++ and IO.empty are available, we can compose multiple IO
actions into a single one using ++, and since (IO, ++, IO.empty) forms a
monoid, we can also compose the actions by folding them with the monoid.
In 2 we fold actions using the standard library’s List.fold function.
In 3 we fold them using an implicit instance of the IO monoid and a hand-
rolled concatenate function that uses the implicit monoid.

Here are the IO actions
for three contests.

1

2
3

@philip_schwarz

13.2.1 Handling input effects
As you’ve seen before, sometimes when building up a little language you’ll encounter a program that it can’t express. So far our IO
type can represent only “output” effects. There’s no way to express IO computations that must, at various points, wait for input
from some external source. Suppose we wanted to write a program that prompts the user for a temperature in degrees Fahrenheit, and
then converts this value to Celsius and echoes it to the user. A typical imperative program might look something like this1.

def fahrenheitToCelsius(f: Double): Double =
(f - 32) * 5.0/9.0

def converter: Unit = {
println("Enter a temperature in degrees Fahrenheit: ")
val d = readLine.toDouble
println(fahrenheitToCelsius(d))

}

Unfortunately, we run into problems if we want to make converter into a pure function that returns an IO:

def fahrenheitToCelsius(f: Double): Double =
(f - 32) * 5.0/9.0

def converter: IO = {
val prompt: IO = PrintLine("Enter a temperature in degrees Fahrenheit: ")
// now what ???

}

In Scala, readLine is a def with the side effect of capturing a line of input from the console. It returns a String. We could
wrap a call to readLine in IO, but we have nowhere to put the result! We don’t yet have a way of representing this sort of
effect. The problem is that our current IO type can’t express computations that yield a value of some meaningful type—our
interpreter of IO just produces Unit as its output. Runar Bjarnason

@runarorama

Paul Chiusano
@pchiusano

Functional Programming
in Scala

trait IO { def run: Unit }

def PrintLine(msg: String): IO =
new IO { def run = println(msg) }

trait IO {
def run: Unit

}1. We’re not doing any sort of error handling here. This is just meant to be an illustrative example.

Should we give up on our IO type and resort to using side effects? Of course not! We extend our IO type to allow input, by adding a type parameter:

sealed trait IO[A] { self =>
def run: A
def map[B](f: A => B): IO[B] =
new IO[B] { def run = f(self.run) }

def flatMap[B](f: A => IO[B]): IO[B] =
new IO[B] { def run = f(self.run).run }

}

An IO computation can now return a meaningful value. Note that we’ve added map and flatMap functions so IO can be used in for-comprehensions. And
IO now forms a Monad:

object IO extends Monad[IO] {
def unit[A](a: => A): IO[A] =
new IO[A] { def run = a }

def flatMap[A,B](fa: IO[A])(f: A => IO[B]) =
fa flatMap f

def apply[A](a: => A): IO[A] =
unit(a)

}

We can now write our converter example:

def ReadLine: IO[String] = IO { readLine }
def PrintLine(msg: String): IO[Unit] = IO { println(msg) }
def converter: IO[Unit] = for {
_ <- PrintLine("Enter a temperature in degrees Fahrenheit: ")
d <- ReadLine.map(_.toDouble)
_ <- PrintLine(fahrenheitToCelsius(d).toString)

} yield ()

Runar Bjarnason
@runarorama

Paul Chiusano
@pchiusano

Our converter definition no longer has side effects—it’s a
referentially transparent description of a computation with effects, and
converter.run is the interpreter that will actually execute those
effects. And because IO forms a Monad, we can use all the monadic
combinators we wrote previously.

Functional Programming
in Scala

The previous slide included the following statements:

• map and flatMap functions were added to IO so that it can be used in for-comprehensions
• IO now forms a Monad

But
• what does it mean for IO to be a monad?
• what is a for comprehension?
• why does IO need map and flatMap in order to be used in a for comprehension?
• how do the particular Scala idioms used to implement the IO monad compare with alternative idioms?

The following ten slides have a quick go at answering these questions. If you are already familiar with monads in
Scala you can safely skip them.

val fooMonad: Monad[Foo] = new Monad[Foo] {
def unit[A](a: => A): Foo[A] =

Foo(a)
def flatMap[A, B](ma: Foo[A])(f: A => Foo[B]): Foo[B] =

f(ma.value)

val fooTwo = Foo(2)
val fooThree = Foo(3)
val fooFour = Foo(4)
val fooNine = Foo(9)

val fooResult =
fooMonad.flatMap(fooTwo) { x =>

fooMonad.flatMap(fooThree) { y =>
fooMonad.flatMap(fooFour) { z =>

fooMonad.unit(x + y + z)
}

}
}

assert(fooResult.value == 9)

case class Foo[A](value:A)

trait Monad[F[_]] {
def flatMap[A,B](ma: F[A])(f: A => F[B]): F[B]
def unit[A](a: => A): F[A]

}

One way to define a monad is to say that it is an implementation of the Monad interface on
the right, such that its unit and flatMap functions obey the monad laws (the three monadic
laws are outside the scope of this slide deck. See the following for an introduction:
https://www.slideshare.net/pjschwarz/monad-laws-must-be-checked-107011209)

E.g. here we take Foo, a class that simply wraps a value of some type A, and we instantiate the
Monad interface for Foo by supplying implementations of unit and flatMap.

We implement unit and flatMap in a trivial way, which results in the simplest possible monad,
one that does nothing (the identity monad). We do this so that in this and the next few slides
we are not distracted by the details of any particular monad and can concentrate on things that
apply to all monads.

We then show how invocations of the flatMap function of the Foo monad can be chained,
allowing us to get hold of the wrapped values and use them to compute a result which then
gets wrapped.

In the next slide we turn to a
different way of defining a monad.

https://www.slideshare.net/pjschwarz/monad-laws-must-be-checked-107011209

case class Foo[A](value:A) {
def map[B](f: A => B): Foo[B] = Foo(f(value))
def flatMap[B](f: A => Foo[B]): Foo[B] = f(value)

}

In the Scala language itself there is no built-in, predefined Monad interface like the one we saw on the
previous slide. Instead, if we give the Foo class a map function and a flatMap function with the signatures
shown on the right, then the Scala compiler makes our life easier in that instead of us having to implement the
computation that we saw on the previous slide by chaining flatMap and map as shown bottom right, we can
use the syntactic sugar of a for comprehension, as shown bottom left. i.e. the compiler translates (desugars)
the for comprehension into a chain of flatMaps ending with a map.

desugars to

val fooPlainResult =
fooTwo flatMap { x =>

fooThree flatMap { y =>
fooFour map { z =>

x + y + z
}

}
}

assert(fooPlainResult.value == 9)

val fooSweetenedResult =
for {

x <- fooTwo
y <- fooThree
z <- fooFour

} yield x + y + z

assert(fooSweetenedResult.value == 9)

val fooTwo = Foo(2)
val fooThree = Foo(3)
val fooFour = Foo(4)
val fooNine = Foo(9)

@philip_schwarz

The first and second approach to implementing a monad can happily
coexist, so on this slide we see the code for both approaches together.

trait Monad[F[_]] {
def flatMap[A,B](ma: F[A])(f: A => F[B]): F[B]
def unit[A](a: => A): F[A]

}

desugars to

val fooPlainResult =
fooTwo flatMap { x =>

fooThree flatMap { y =>
fooFour map { z =>

x + y + z
}

}
}

assert(fooPlainResult.value == 9)

val fooSweetenedResult =
for {

x <- fooTwo
y <- fooThree
z <- fooFour

} yield x + y + z

assert(fooSweetenedResult.value == 9)

case class Foo[A](value:A) {
def map[B](f: A => B): Foo[B] = Foo(f(value))
def flatMap[B](f: A => Foo[B]): Foo[B] = f(value)

}

val fooMonad: Monad[Foo] = new Monad[Foo] {
def unit[A](a: => A): Foo[A] =

Foo(a)
def flatMap[A, B](ma: Foo[A])(f: A => Foo[B]): Foo[B] =

f(ma.value)

val fooResult =
fooMonad.flatMap(fooTwo) { x =>

fooMonad.flatMap(fooThree) { y =>
fooMonad.flatMap(fooFour) { z =>

fooMonad.unit(x + y + z)
}

}
}

assert(fooResult.value == 9)

val fooTwo = Foo(2)
val fooThree = Foo(3)
val fooFour = Foo(4)
val fooNine = Foo(9)

sealed trait Foo[A] { self =>
def value: A
def map[B](f: A => B): Foo[B] =

new Foo[B]{ def value = f(self.value) }
def flatMap[B](f: A => Foo[B]): Foo[B] =

f(self.value)
}

val fooResult =
Foo.flatMap(fooTwo) { x =>

Foo.flatMap(fooThree) { y =>
Foo.flatMap(fooFour) { z =>

Foo(x + y + z)
}

}
}

assert(fooResult.value == 9)

object Foo extends Monad[Foo] {
def unit[A](a: => A): Foo[A] =

new Foo[A]{ def value = a }
def flatMap[A, B](ma: Foo[A])(f: A => Foo[B]): Foo[B] =

ma flatMap f
def apply[A](a: => A): Foo[A] =

unit(a)
}

In FPiS, the approach taken to coding the IO monad is a third approach that is shown on this slide and which
ultimately is equivalent to the sum of the previous two approaches, but uses different Scala idioms.

Instead of a Foo class, there is a Foo trait.

Instead of instantiating the Monad interface by newing one up, we define an object (a singleton) that implements
the interface.

The Foo singleton object defines an apply function that allows us to create an instance of the Foo class by doing
Foo(x) rather than Foo.unit(x).

Computing the sum of the three wrapped values by chaining flatMaps is almost identical to how it was done in
the first approach.

val fooTwo = Foo(2)
val fooThree = Foo(3)
val fooFour = Foo(4)
val fooNine = Foo(9)

trait Monad[F[_]] {
def flatMap[A,B](ma: F[A])(f: A => F[B]): F[B]
def unit[A](a: => A): F[A]

}

desugars to

val fooPlainResult =
fooTwo flatMap { x =>

fooThree flatMap { y =>
fooFour map { z =>

x + y + z
}

}
}

assert(fooPlainResult.value == 9)

val fooSweetenedResult =
for {

x <- fooTwo
y <- fooThree
z <- fooFour

} yield x + y + z

assert(fooSweetenedResult.value == 9)

On this slide we compare the joint first two approaches, with the third approach and show only the code in which the third approach
differs from the joint first two approaches in that it uses different idioms, but ultimately results in code with the same capabilities.

case class Foo[A](value:A) {
def map[B](f: A => B): Foo[B] =

Foo(f(value))
def flatMap[B](f: A => Foo[B]): Foo[B] =

f(value)
}

sealed trait Foo[A] { self =>
def value: A
def map[B](f: A => B): Foo[B] =

new Foo[B]{ def value = f(self.value) }
def flatMap[B](f: A => Foo[B]): Foo[B] =

f(self.value)
}

val fooMonad: Monad[Foo] = new Monad[Foo] {
def unit[A](a: => A): Foo[A] =

Foo(a)
def flatMap[A, B](ma: Foo[A])(f: A => Foo[B]): Foo[B] =

f(ma.value)

object Foo extends Monad[Foo] {
def unit[A](a: => A): Foo[A] =

new Foo[A]{ def value = a }
def flatMap[A, B](ma: Foo[A])(f: A => Foo[B]): Foo[B] =

ma flatMap f
def apply[A](a: => A): Foo[A] =

unit(a)
}

val fooResult =
fooMonad.flatMap(fooTwo) { x =>

fooMonad.flatMap(fooThree) { y =>
fooMonad.flatMap(fooFour) { z =>

fooMonad.unit(x + y + z)
}

}
}

assert(fooResult.value == 9)

val fooResult =
Foo.flatMap(fooTwo) { x =>

Foo.flatMap(fooThree) { y =>
Foo.flatMap(fooFour) { z =>

Foo(x + y + z)
}

}
}

assert(fooResult.value == 9)

different ways of defining Foo

different
ways of

instantiating
the Monad
interface

different ways of referring
to the Monad instance
when chaining flatMaps

@philip_schwarz

In the past five slides, we had a go at answering the following questions, but concentrating on the how rather
than the what or the why:

• what is a monad
• what is a for comprehension?
• why does IO need map and flatMap in order to be used in a for comprehension?
• how do the particular idioms used to implement the IO monad compare with alternative idioms?

We looked at the mechanics of what a monad is and how it can be implemented, including some of the idioms
that can be used. We did that by looking at the simplest possible monad, the identity monad, which does
nothing.

In the next four slides we turn more to the what and the why and go through a very brief recap of what a
monad is from a particular point of view that is useful for our purposes in this slide deck.

If you already familiar with the concept of a monad, then feel free to skip the next five slides.

There turns out to be a startling number of operations that can be defined in
the most general possible way in terms of sequence and/or traverse

We can see that a chain of flatMap calls (or an equivalent for-comprehension) is like an imperative program with statements that
assign to variables, and the monad specifies what occurs at statement_boundaries.

For example, with Id, nothing at all occurs except unwrapping and rewrapping in the Id constructor.

…

With the Option monad, a statement may return None and terminate the program.

With the List monad, a statement may return many results, which causes statements that follow it to potentially run multiple
times, once for each result.

The Monad contract doesn’t specify what is happening between the lines, only that whatever is happening satisfies the laws of
associativity and identity.

@runarorama @pchiusano

Functional
Programming

in Scala

// the Identity Monad – does absolutely nothing
case class Id[A](a: A) {

def map[B](f: A => B): Id[B] =
this flatMap { a => Id(f(a)) }

def flatMap[B](f: A => Id[B]): Id[B] =
f(a)

}

val result: Id[String] =
for {

hello <- Id("Hello, ")
monad <- Id("monad!")

} yield hello + monad

assert(result == Id("Hello, monad!"))

“An imperative program with statements
that assign to variables“

“with Id, nothing at all occurs except
unwrapping and rewrapping in the Id
constructor”

A chain of flatMap calls (or an equivalent for-comprehension) is
like an imperative program with statements that assign to variables,
and the monad specifies what occurs at statement boundaries.

Functional
Programming

in Scala

For example, with Id, nothing at
all occurs except unwrapping and
rewrapping in the Id constructor.

“the monad specifies what
occurs at statement boundaries“

// the Option Monad
sealed trait Option[+A] {

def map[B](f: A => B): Option[B] =
this flatMap { a => Some(f(a)) }

def flatMap[B](f: A => Option[B]): Option[B] =
this match {

case None => None
case Some(a) => f(a)

}

}
case object None extends Option[Nothing] {

def apply[A] = None.asInstanceOf[Option[A]]
}
case class Some[+A](get: A) extends Option[A]

A chain of flatMap calls (or an equivalent for-comprehension) is
like an imperative program with statements that assign to variables,
and the monad specifies what occurs at statement boundaries.

Functional
Programming

in Scala

“With the Option monad, a
statement may return None and
terminate the program”

val result =
for {

firstNumber <- Some(333)
secondNumber <- Some(666)

} yield firstNumber + secondNumber

assert(result == Some(999))

val result =
for {

firstNumber <- Some("333")
secondNumber <- Some("666")

} yield firstNumber + secondNumber

assert(result == Some("333666"))

val result =
for {

firstNumber <- Some(333)
secondNumber <- None[Int]

} yield firstNumber + secondNumber

assert(result == None)

val result =
for {

firstNumber <- None[String]
secondNumber <- Some("333")

} yield firstNumber + secondNumber

assert(result == None)

“An imperative program with statements
that assign to variables“

“With the Option
monad, a statement may
return None and
terminate the program”

“the monad specifies what
occurs at statement boundaries”

// The List Monad
sealed trait List[+A] {

def map[B](f: A => B): List[B] =
this flatMap { a => Cons(f(a), Nil) }

def flatMap[B](f: A => List[B]): List[B] =
this match {

case Nil =>
Nil

case Cons(a, tail) =>
concatenate(f(a), (tail flatMap f))

}
}
case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]

object List {
def concatenate[A](left:List[A], right:List[A]):List[A] =

left match {
case Nil =>

right
case Cons(head, tail) =>

Cons(head, concatenate(tail, right))
}

}

val result =
for {

letter <- Cons("A", Cons("B", Nil))
number <- Cons(1, Cons(2, Nil))

} yield letter + number

assert(
result
== Cons("A1",Cons("A2",Cons("B1",Cons("B2",Nil))))

)

A chain of flatMap calls (or an equivalent for-comprehension) is
like an imperative program with statements that assign to variables,
and the monad specifies what occurs at statement boundaries.

Functional Programming in Scala

With the List monad, a
statement may return many
results, which causes statements
that follow it to potentially run
multiple times, once for each
result.

“An imperative program with statements
that assign to variables“

“With the List monad, a statement may return
many results, which causes statements that follow it to
potentially run multiple times, once for each result.”

“the monad specifies what
occurs at statement boundaries”

After that recap on monads in general, let’s go back to our IO monad.

def fahrenheitToCelsius(f: Double): Double =
(f - 32) * 5.0/9.0

def fahrenheitToCelsius(f: Double): Double =
(f - 32) * 5.0/9.0

def converter: Unit = {
println("Enter a temperature in degrees Fahrenheit: ")
val d = readLine.toDouble
println(fahrenheitToCelsius(d))

}

sealed trait IO[A] { self =>
def run: A
def map[B](f: A => B): IO[B] =

new IO[B] { def run = f(self.run) }
def flatMap[B](f: A => IO[B]): IO[B] =

new IO[B] { def run = f(self.run).run }
}

object IO extends Monad[IO] {
def unit[A](a: => A): IO[A] =

new IO[A] { def run = a }
def flatMap[A,B](fa: IO[A])(f: A => IO[B]) =

fa flatMap f
def apply[A](a: => A): IO[A] =

unit(a)
}

def converter: IO[Unit] =
for {

_ <- PrintLine("Enter a temperature in degrees Fahrenheit: ")
d <- ReadLine.map(_.toDouble)
_ <- PrintLine(fahrenheitToCelsius(d).toString)

} yield ()

def ReadLine: IO[String] = IO { readLine }
def PrintLine(msg: String): IO[Unit] = IO { println(msg) }

trait Monad[F[_]] {
def unit[A](a: => A): F[A]
def flatMap[A,B](fa: F[A])(f: A => F[B]): F[B]

}

Here on the left hand side is the initial converter program, which
has side effects because when it runs, it calls readLine, which is an
impure function, since it doesn’t take any arguments, and println,
which is an impure function because it doesn’t have a return value.

And below is the new converter program, which instead of having side effects, is an effectful program in that
when it runs, instead of calling impure functions like println and readLine, which result in side effects, simply
produces a description of a computation with side effects. The result of running the converter is an IO action, i.e.
a pure value. Once in possession of an IO action, it is possible to interpret the IO action, i.e. to execute the side-
effect producing computation that it describes, which is done by invoking the run method of the IO action.

The run function is
the only impure
function in the
whole program. It is
polymorphic in A.
When A is Unit
then run is an
impure function
because it doesn’t
return anything.
When A is anything
else then run is an
impure function
because it doesn’t
take any
arguments.

@philip_schwarz

What are the analogous notions when using the Scala IO monad?

One thing is instantiating an IO value, so that it wraps some side-effecting code, and another is
having the wrapped side-effecting code executed, which is done by invoking the IO value’s run
function.

Invoking the converter function results in the instantiation of two IO values, one nested inside
another. When we invoke the run function of the outer of those IO values, it results in the
following:
• invocation of the run function of the inner IO value
• instantiation of five further IO values
• Invocation of the run function of the above five IO values

def converter: IO[Unit] =
for {
_ <- PrintLine("Enter a temperature in degrees Fahrenheit: ")
d <- ReadLine.map(_.toDouble)
_ <- PrintLine(fahrenheitToCelsius(d).toString)

} yield ()

Remember when in part 1 we saw that Haskell’s IO values are not executed on the spot, that only expressions that have IO as their
outer constructor are executed, and that in order to get nested IO values to be executed we have to use functions like sequence_?

On the next slide I have a go at visualising the seven IO values
that are created when we first call converter and then invoke
the run function of the outer IO value that the latter returns.

IO

IO

IO

IO

IO

IO

IO

flatMap

flatMap

map
map

IO { run = f(self.run).run }

IO { run = readLine }

IO { run = println(msg) }

f

IO { run = f(self.run).run }

f

IO { run = f(self.run) }

IO { run = println(msg) }

PrintLine(fahrenheitToCelsius(d).toString)ReadLine

IO { run = f(self.run) }

PrintLine("Enter a temperature in Fahrenheit: ")

()

f

1
new IO

2
new IO

3
run

4
run

toDouble

5
new IO

6
new IO

7
new IO

8
run

9
run

run
10

new IO

new IO
12

run
13

run
14

f“122”

Unit

122.0

“122”

122.0 122.0

Unit

Unit

d=122.0

Unit Unit

Unit

Unit

d=122.0

msg=“50.0”

Simple IO Monad def converter: IO[Unit] =
for {
_ <- PrintLine("Enter a temperature in Fahrenheit: ")
d <- ReadLine.map(_.toDouble)
_ <- PrintLine(fahrenheitToCelsius(d).toString)

} yield ()

11

The seven IO values that get created when we invoke the converter function.
Their run functions get invoked (in sequence) when we invoke the run function
of the topmost IO value, which is the one returned by the converter function.

converter

converter.run

1
new IO

2
new IO

1
new IO

…
run
14

When we call converter, two IO values are created
(see 1 and 2), with the first nested inside the second.

If we also invoke the run function of the
outermost IO value returned by the
converter function (see 3) then five more
IO values are created (see 5,6,7,11,12) and
their run functions are invoked in sequence
(see 8,9,10,13,14).

@philip_schwarz

IO

IO

IO

IO

IO

IO

IO

flatMap

flatMap

map
map

IO { run = f(self.run).run }

IO { run = readLine }

IO { run = println(msg) }

f

IO { run = f(self.run).run }

f

IO { run = f(self.run) }

IO { run = println(msg) }

PrintLine(fahrenheitToCelsius(d).toString)ReadLine

IO { run = f(self.run) }

PrintLine("Enter a temperature in Fahrenheit: ")

()

f

1
new IO

2
new IO

3
run

4
run

toDouble

5
new IO

6
new IO

7
new IO

8
run

9
run

run
10

new IO

new IO
12

run
13

run
14

converter

f“122”

Unit

122.0

“122”

122.0 122.0

Unit

Unit

d=122.0

Unit Unit

Unit

Unit

d=122.0

msg=“50.0”

converter.run

1

new IO

2

new IO

1

new IO

…

run

14

Simple IO Monad

sealed trait IO[A] { self =>
def run: A
def map[B](f: A => B): IO[B] =
new IO[B] { def run = f(self.run) }

def flatMap[B](f: A => IO[B]): IO[B] =
new IO[B] { def run = f(self.run).run }

}

object IO extends Monad[IO] {
def apply[A](a: => A): IO[A] =
unit(a)

def unit[A](a: => A): IO[A] =
new IO[A] { def run = a }

def flatMap[A,B](fa: IO[A])
(f: A => IO[B]) =

fa flatMap f
}

def fahrenheitToCelsius(f: Double): Double =
(f - 32) * 5.0/9.0

def ReadLine: IO[String] =
IO { readLine }

def PrintLine(msg: String): IO[Unit] =
IO { println(msg) }

def converter: IO[Unit] =
for {
_ <- PrintLine("Enter a temperature in Fahrenheit: ")
d <- ReadLine.map(_.toDouble)
_ <- PrintLine(fahrenheitToCelsius(d).toString)

} yield ()

11 does not get exercised

Same diagram as on the previous slide, but
accompanied by the converter program
code, to help understand how execution of
the code results in creation of the IO values
and execution of their run functions.

That’s quite a milestone. We are now able to write programs which instead of having side effects, produce an IO action describing a
computation with side effects, and then at a time of our choosing, by invoking the run method of the IO action, we can interpret
the description, i.e. execute the computation, which results in side effects.

Rather than showing you a sample execution of the temperature converter, let’s go back to our current objective, which is to write
the strLen program in Scala.

To write the strLen program in Scala we need the Scala equivalent of the following Haskell IO actions:

getLine :: IO String
putStr :: String -> IO ()
putStrLn :: String -> IO ()

We noticed that while the Haskell IO actions can be seen as pure functions, the corresponding Scala functions are impure because they
have side effects (they violate one or more of the rules for pure functions):

getLine :: World -> (String, World) def readLine() : String
putStr :: String -> World -> ((), World) def print(x: Any) : Unit
putStrLn :: String -> World -> ((), World) def println(x: Any) : Unit

We have now seen how it is possible to define a Scala IO type using which we can then implement pure functions that are analogous to
the Haskell IO actions:

getLine :: World -> (String, World) def ReadLine: IO[String]
putStr :: String -> World -> ((), World) def Print(msg: String): IO[Unit] (I added this, since we are going to need it)
putStrLn :: String -> World -> ((), World) def PrintLine(msg: String): IO[Unit]

Conversely, we can think of the Haskell IO actions as being pure, in that instead of having side effects, they return IO values, i.e.
descriptions of computations that produce side effects but only at the time when the descriptions are interpreted:

getLine :: IO String def ReadLine: IO[String]
putStr :: String -> IO () def Print(msg: String): IO[Unit]
putStrLn :: String -> IO () def PrintLine(msg: String): IO[Unit]

getLine :: IO String
putStr :: String -> IO ()
putStrLn :: String -> IO ()

strLen :: IO ()
strLen =

do
putStr "Enter a string: "
xs <- getLine
putStr "The string has "
putStr (show (length xs))
putStrLn " characters”

def ReadLine: IO[String] = IO { readLine }
def Print(msg: String): IO[Unit] = IO { print(msg) }
def PrintLine(msg: String): IO[Unit] = IO { println(msg) }

def strLen: IO[Unit] =
for {

_ <- Print("Enter a string: ")
xs <- ReadLine; _ <- PrintLine(xs.toString)
_ <- Print("The string has ")
_ <- Print(xs.length.toString)
_ <- PrintLine(" characters")

} yield ()

Here is how we are now able to implement the
Haskell strLen program in Scala.

scala> val strLenDescription: IO[Unit] = strLen
strLenDescription: IO[Unit] = StrLen $IO$$anon$12@591e1a98

scala> strLenDescription.run
Enter a string: Haskell
The string has 7 characters

scala>

> strLen
Enter a string: Haskell
The string has 7 characters

>

def readLine(): String
def print(x: Any): Unit
def println(x: Any): Unit

When we get the REPL to evaluate the Haskell program, the result is an IO value that the REPL then executes, which results in side effects. When
we execute the Scala program, it produces an IO value whose run function we then invoke, which results in side effects.

Scala predefined functions

unlike the
Haskell getLine,
method, the
Scala readLine
method doesn’t
echo to the
screen, so we
added this

Now that we have successfully translated the Haskell strLen program into Scala, let’s return to the task of translating
into Scala the impure Haskell functions of the Game of Life.

Now that we have a Scala IO monad, translating the first three functions is straightforward.

cls :: IO ()
cls = putStr "\ESC[2J"

goto :: Pos -> IO ()
goto (x,y) =

putStr ("\ESC[" ++ show y ++ ";"
++ show x ++ "H")

writeat :: Pos -> String -> IO ()
writeat p xs = do goto p

putStr xs

def cls: IO[Unit] =
putStr("\u001B[2J")

def goto(p: Pos): IO[Unit] = p match {
case (x,y) => putStr(s"\u001B[${y};${x}H")

}

def writeAt(p: Pos, s: String): IO[Unit] =
for {

_ <- goto(p)
_ <- putStr(s)

} yield ()

putStr :: String -> IO () =
… (predefined)

def putStr(s: String): IO[Unit] =
IO { scala.Predef.print(s) }

@philip_schwarz

In order to translate the next two Haskell functions, we need the Scala equivalent of the Haskell sequence_ function, which takes a foldable
structure containing monadic actions, and executes them from left to right, ignoring their result.

Earlier in FPiS we came across this statement: “because IO forms a Monad, we can use all the monadic combinators we wrote previously.”

In the code accompanying FPiS, the Monad type class contains many combinators, and among them are two combinators both called sequence_.

trait Functor[F[_]] {
def map[A,B](a: F[A])(f: A => B): F[B]

}

trait Monad[F[_]] extends Functor[F] {
def unit[A](a: => A): F[A]
def flatMap[A,B](fa: F[A])(f: A => F[B]): F[B]

def map[A,B](a: F[A])(f: A => B): F[B] =
flatMap(a)(a => unit(f(a)))

// monadic combinators
…

}

…
def sequence_[A](fs: Stream[F[A]]): F[Unit] = foreachM(fs)(skip)
def sequence_[A](fs: F[A]*): F[Unit] = sequence_(fs.toStream)

def as[A,B](a: F[A])(b: B): F[B] = map(a)(_ => b)
def skip[A](a: F[A]): F[Unit] = as(a)(())

def foldM[A,B](l: Stream[A])(z: B)(f: (B,A) => F[B]): F[B] =
l match {

case h #:: t => flatMap(f(z,h))(z2 => foldM(t)(z2)(f))
case _ => unit(z)

}
def foldM_[A,B](l: Stream[A])(z: B)(f: (B,A) => F[B]): F[Unit] =

skip { foldM(l)(z)(f) }

def foreachM[A](l: Stream[A])(f: A => F[Unit]): F[Unit] =
foldM_(l)(())((u,a) => skip(f(a)))

…

scala> val strLenDescriptions: IO[Unit] = IO.sequence_(strLen,strLen)
strLenDescriptions: IO[Unit] = StrLen$IO$$anon$12@3620d817
scala> strLenDescriptions.run
Enter a string: Haskell
The string has 7 characters
Enter a string: Scala
The string has 5 characters
scala>

The first one takes a
stream of monadic
actions, and the
second one takes
zero or more
monadic actions.

As you can see, the
two sequence_
combinators rely on
several other
combinators.

We are not going to spend any time looking at the
other combinators.

Let’s just try out the second sequence_ function by
passing it two strLen IO actions.

That works.

“We don’t necessarily endorse writing code this way in Scala. But it does demonstrate that FP is not in any way
limited in its expressiveness—every program can be expressed in a purely functional way, even if that functional
program is a straightforward embedding of an imperative program into the IO monad” - FPiS

So if we change the parameter type of Monad’s sequence_ function from F[A]* to List[F[A]]

def sequence_[A](fs: List[F[A]]): F[Unit] = sequence_(fs.toStream)

then we can translate from Haskell into Scala the two functions that use the sequence_ function

showcells :: Board -> IO ()
showcells b = sequence_ [writeat p "O" | p <- b]

wait :: Int -> IO ()
wait n = sequence_ [return () | _ <- [1..n]]

def showCells(b: Board): IO[Unit] =
IO.sequence_(b.map{ writeAt(_, "O") })

def wait(n:Int): IO[Unit] =
IO.sequence_(List.fill(n)(IO.unit(())))

life :: Board -> IO ()
life b =

do cls
showcells b
wait 500000
life (nextgen b)

main :: IO ()
main = life(pulsar)

> main

And now we can finally complete our Scala Game of Life
program by translating the last two impure functions:

def life(b: Board): IO[Unit] =
for {

_ <- cls
_ <- showCells(b)
_ <- goto(width+1,height+1) // move cursor out of the way
_ <- wait(1_000_000)
_ <- life(nextgen(b))

} yield ()

val main: IO[Unit] = life(pulsar)

> main.run

alternative version using similar syntactic sugar to the Haskell one:

IO.sequence_(for { p <- b } yield writeAt(p, "O"))

def putStr(s: String): IO[Unit] =
IO { scala.Predef.print(s) }

def cls: IO[Unit] =
putStr("\u001B[2J")

def goto(p: Pos): IO[Unit] =
p match { case (x,y) => putStr(s"\u001B[${y};${x}H") }

def writeAt(p: Pos, s: String): IO[Unit] =
for {

_ <- goto(p)
_ <- putStr(s)

} yield ()

def showCells(b: Board): IO[Unit] =
IO.sequence_(b.map{ writeAt(_, "O") })

def wait(n:Int): IO[Unit] =
IO.sequence_(List.fill(n)(IO.unit(())))

def life(b: Board): IO[Unit] =
for {

_ <- cls
_ <- showCells(b)
_ <- goto(width+1,height+1) // move cursor out of the way
_ <- wait(1_000_000)
_ <- life(nextgen(b))

} yield ()

val main = life(pulsar)

trait Monad[F[_]] {
def unit[A](a: => A): F[A]
def flatMap[A,B](fa: F[A])(f: A => F[B]): F[B]
…
def sequence_[A](fs: List[F[A]]): F[Unit] =

sequence_(fs.toStream)
def sequence_[A](fs: Stream[F[A]]): F[Unit] =

foreachM(fs)(skip)
…

}

Here is the Scala translation of all the Haskell impure functions in the Game of Life, plus the IO monad that they all use.
We have stopped calling them impure functions. We are now calling them pure IO functions. Note how the run function of IO is
still highlighted with a red background because it is the only function that is impure, the only one that has side effects.

PURE IO FUNCTIONS
sealed trait IO[A] { self =>

def run: A
def map[B](f: A => B): IO[B] =

new IO[B] { def run = f(self.run) }
def flatMap[B](f: A => IO[B]): IO[B] =

new IO[B] { def run = f(self.run).run }
}

object IO extends Monad[IO] {
def unit[A](a: => A): IO[A] =

new IO[A] { def run = a }
def flatMap[A,B](fa: IO[A])(f: A => IO[B]) =

fa flatMap f
def apply[A](a: => A): IO[A] =

unit(a)
}

IO MONAD

The run function is the only impure function in the whole program. It is polymorphic in A.
When A is Unit then run is an impure function because it doesn’t return anything. When A is
anything else then run is an impure function because it doesn’t take any arguments.

type Pos = (Int, Int)

type Board = List[Pos]

val width = 20

val height = 20

def neighbs(p: Pos): List[Pos] = p match {
case (x,y) => List(

(x - 1, y - 1), (x, y - 1),
(x + 1, y - 1), (x - 1, y),
(x + 1, y), (x - 1, y + 1),
(x, y + 1), (x + 1, y + 1)) map wrap }

def wrap(p:Pos): Pos = p match {
case (x, y) => (((x - 1) % width) + 1,

((y - 1) % height) + 1) }

def survivors(b: Board): List[Pos] =
for {

p <- b
if List(2,3) contains liveneighbs(b)(p)

} yield p

def births(b: Board): List[Pos] =
for {

p <- rmdups(b flatMap neighbs)
if isEmpty(b)(p)
if liveneighbs(b)(p) == 3

} yield p

def rmdups[A](l: List[A]): List[A] = l match {
case Nil => Nil
case x::xs => x::rmdups(xs filter(_ != x)) }

def nextgen(b: Board): Board =
survivors(b) ++ births(b)

def isAlive(b: Board)(p: Pos): Boolean =
b contains p

def isEmpty(b: Board)(p: Pos): Boolean =
!(isAlive(b)(p))

def liveneighbs(b:Board)(p: Pos): Int =
neighbs(p).filter(isAlive(b)).length

val glider: Board = List((4,2),(2,3),(4,3),(3,4),(4,4))

val gliderNext: Board = List((3,2),(4,3),(5,3),(3,4),(4,4))

val pulsar: Board = List(
(4, 2),(5, 2),(6, 2),(10, 2),(11, 2),(12, 2),

(2, 4),(7, 4),(9, 4),(14, 4),
(2, 5),(7, 5),(9, 5),(14, 5),
(2, 6),(7, 6),(9, 6),(14, 6),

(4, 7),(5, 7),(6, 7),(10, 7),(11, 7),(12, 7),

(4, 9),(5, 9),(6, 9),(10, 9),(11, 9),(12, 9),
(2,10),(7,10),(9,10),(14,10),
(2,11),(7,11),(9,11),(14,11),
(2,12),(7,12),(9,12),(14,12),

(4,14),(5,14),(6,14),(10,14),(11,14),(12,14)])

And here again are the Scala pure functions that we wrote in part 1.

PURE FUNCTIONS

~/dev/scala/game-of-life--> sbt run
…
[info] running gameoflife.GameOfLife

OOO OOO

O O O O
O O O O
O O O O
OOO OOO

OOO OOO
O O O O
O O O O
O O O O

OOO OOO

[error] (run-main-0) java.lang.StackOverflowError
[error] java.lang.StackOverflowError
[error] at gameoflife.GameOfLife$IO$$anon$3.flatMap(GameOfLife.scala:162)
[error] at gameoflife.GameOfLifeIO.flatMap(GameOfLife.scala:164)
[error] at gameoflife.GameOfLifeIO.flatMap(GameOfLife.scala:160)
[error] at gameoflife.GameOfLife$Monad.map(GameOfLife.scala:137)
[error] at gameoflife.GameOfLife$Monad.map$(GameOfLife.scala:137)
[error] at gameoflife.GameOfLifeIO.map(GameOfLife.scala:160)
[error] at gameoflife.GameOfLife$Monad.as(GameOfLife.scala:145)
[error] at gameoflife.GameOfLife$Monad.as$(GameOfLife.scala:145)
[error] at gameoflife.GameOfLifeIO.as(GameOfLife.scala:160)
[error] at gameoflife.GameOfLife$Monad.skip(GameOfLife.scala:146)
[error] at gameoflife.GameOfLife$Monad.skip$(GameOfLife.scala:146)
[error] at gameoflife.GameOfLifeIO.skip(GameOfLife.scala:160)
[error] at gameoflife.GameOfLife$Monad.$anonfun$sequence_$1(GameOfLife.scala:141)
[error] at gameoflife.GameOfLife$Monad.$anonfun$foreachM$1(GameOfLife.scala:157)
[error] at gameoflife.GameOfLife$Monad.foldM(GameOfLife.scala:150)
[error] at gameoflife.GameOfLife$Monad.foldM$(GameOfLife.scala:148)
[error] at gameoflife.GameOfLifeIO.foldM(GameOfLife.scala:160)
[error] at gameoflife.GameOfLife$Monad.$anonfun$foldM$1(GameOfLife.scala:150)
[error] at gameoflife.GameOfLife$IO$$anon$2.run(GameOfLife.scala:123)
[error] at gameoflife.GameOfLife$IO$$anon$2.run(GameOfLife.scala:123)
… hundreds of identical intervening lines
[error] at gameoflife.GameOfLife$IO$$anon$2.run(GameOfLife.scala:123)
[error] stack trace is suppressed; run last Compile / bgRun for the full output
[error] Nonzero exit code: 1
[error] (Compile / run) Nonzero exit code: 1
[error] Total time: 4 s, completed 20-Jun-2020 16:36:01
~/dev/scala/game-of-life-->

Let’s run the Scala Game Of Life program.

It prints the first generation and then fails with a StackOverflowError!!!

On the console, the following line is repeated hundreds of times:

[error]at gameoflife.GameOfLife$IO$$anon$2.run(GameOfLife.scala:123)

Line number 123 is the body of the IO flatMap function, highlighted below in grey.

It turns out that if we decrease the parameter that we pass to the wait function from
1,000,000 (1M IO actions!!!) down to 10,000 then the generations are displayed on the
screen at a very fast pace, but the program no longer encounters a StackOverflowError.

Alternatively, if we increase the stack size from the default of 1M up to 70M then the
program also no longer crashes, and it displays a new generation every second or so.

~/dev/scala/game-of-life--> export SBT_OPTS="-Xss70M"

sealed trait IO[A] { self =>
def run: A
def map[B](f: A => B): IO[B] =
new IO[B] { def run = f(self.run) }

def flatMap[B](f: A => IO[B]): IO[B] =
new IO[B] { def run = f(self.run).run }

}

_ <- wait(10_000)

O O
OO OOOO OO
O O

OOOOOOOO
O OOOO O
OOOOOOOO

OOOOOO
O O
O O
O O
OOOOOO

OOOOOO
OOOOOOOO
OO OO
OOOOOOOO
OOOOOO
OOOO

OO OO OO
O O
O O
O O
O O
O O
OO

O O
OO OO
OOO OOO
OO OO
O O

OO OO
O O O O
O O O O
O O O O
OO OO

OO OO
O O O O
OOOOO OOOOOO
O O O O
OO OO

OO OO
O O O O
O O O O
O O O O
OO OO

O
O OOOOOO OOO
O O O O

O O OO O O
OOOO OO OOOO
O O OO O O

O O OO O O
O O O OO
O O OO O O

O O O OO
OOOO OOOOO
O O O OO

O OO OO O
O OOO OOO O
O OO OO O

O O O O
OO O O O OO
O O O O

Let’s try a Pentadecathlon, which is a period-15 oscillator

@philip_schwarz

That’s it for Part 2.

The first thing we are going to do in part 3 is find out why the current Scala IO monad can result in
programs that encounter a StackOverflowError, and how the IO monad can be improved so that the
problem is avoided.

After fixing the problem, we are then going to switch to the IO monad provided by the Cats Effect library.

Translation of the Game of Life into Unison also slips to part 3.

See you there!

