
Direct Style Effect Systems
The Print[A] Example
A Comprehension Aid

Part 1

Context is King

Noel Welsh
@noelwelsh

Direct-style Effects Explained

Adam Warski
@adamwarski

Daniel Westheide
@kaffeecoder

The type of a singleton object

based on

@philip_schwarzslides by https://fpilluminated.com/

=> ?=>

https://fpilluminated.com/

Noel Welsh
@noelwelsh

Have you read this blog post by Noel Welsh?

https://www.inner-product.com/posts/direct-style-effects/

Direct-style effects, also known as algebraic effects and effect
handlers, are the next big thing in programming languages.

At the same time I see some confusion about direct-style effects. In
this post I want to address this confusion by explaining the what, the
why, and the how of direct-style effects using a Scala 3
implementation as an example.

Noel Welsh is, of course, the co-author of Scala with Cats, and author of the upcoming Functional Programming Strategies

Noel Welsh
@noelwelsh

• What We Care About

• Direct and Monadic Style

• Description and Action

• Reasoning and Composing with Effects

• The Design Space of Effect Systems

• Direct-style Effect Systems in Scala 3

• Composition of Direct-Style Effects

• Effects That Change Control Flow

• Capturing, Types, and Effects

• Conclusions and Further Reading

The subject of this deck is the small Print[A] program seen in the blog post section highlighted below.

In order to understand the program, I had to fill two lacunae. The first one was minor, but the other one was not, and filling it was long
overdue. In the passage below, Noel kind of alludes to it when he speaks of machinery that is new in Scala 3 and is probably unfamiliar
to many readers.

The intention behind this deck is to share the following:
1. The two bits of knowledge that I used to fill the above lacunae. I acquired the first one from a book written by Daniel Westheide ,

and the second one from a blog post by Adam Warski.
2. The process that I followed to reach an understanding of the program, in case someone else finds bits of it useful.

Noel Welsh
@noelwelsh

Direct-style Effect Systems in Scala 3

Let’s now implement a direct-style effect system in Scala 3. This requires some machinery that is new in Scala 3.
Since that’s probably unfamiliar to many readers we’re going to start with an example, explain the programming
techniques behind it, and then explain the concepts it embodies.

Our example is a simple effect system for printing to the console. The implementation is below. You can save
this in a file (called, say, Print.scala) and run it with scala-cli with the command scala-cli Print.scala.

Before we get started, we need as context the blog post section
highlighted below. See next slide for the contents of that section.

• What We Care About

• Direct and Monadic Style

• Description and Action

• Reasoning and Composing with Effects

• The Design Space of Effect Systems

• Direct-style Effect Systems in Scala 3

• Composition of Direct-Style Effects

• Effects That Change Control Flow

• Capturing, Types, and Effects

• Conclusions and Further Reading

Noel Welsh
@noelwelsh

Description and Action

Any effect system must have a separation between describing the effects that should occur, and actually carrying out those
effects. This is a requirement of composition. Consider perhaps the simplest effect in any programming language: printing to the
console. In Scala we can accomplish this as a side effect with println:

 println("OMG, it's an effect")

Imagine we want to compose the effect of printing to the console with the effect that changes the color of the text on the
console. With the println side effect we cannot do this. Once we call println the output is already printed; there is no opportunity
to change the color.

Let me be clear that the goal is composition. We can certainly use two side effects that happen to occur in the correct order to
get the output with the color we want.

 println("\u001b[91m") // Color code for bright red text
 println("OMG, it's an effect")

However this is not the same thing as composing an effect that combines these two effects. For example, the example above
doesn’t reset the foreground color so all subsequent output will be bright red. This is the classic problem of side effects: they
have “action at a distance” meaning one part of the program can change the meaning of another part of the program. This in
turns means we cannot reason locally, nor can we build programs in a compositional way.

What we really want is to write code like

 Effect.println("OMG, it's an effect").foregroundBrightRed

which limits the foreground colour to just the given text. We can only do that if we have a separation between describing the
effect, as we have done above, and actually running it.

Next, let’s take a quick glance at Noel’s program,
just to get an idea of its size and constituent parts.

@main def go(): Unit = {
// Declare some `Prints`
val message: Print[Unit] =

Print.println("Hello from direct-style land!")

// Composition
val red: Print[Unit] =

Print.println("Amazing!").prefix(Print.print("> ").red)

// Make some output
Print.run(message)
Print.run(red)

}

object Print {
def print(msg: Any)(using c: Console): Unit =

c.print(msg)

def println(msg: Any)(using c: Console): Unit =
c.println(msg)

def run[A](print: Print[A]): A = {
given c: Console = Console
print

}

/** Constructor for `Print` values */
inline def apply[A](inline body: Console ?=> A): Print[A] =

body
}

extension [A](print: Print[A]) {

/** Insert a prefix before `print` */
def prefix(first: Print[Unit]): Print[A] =

Print {
first
print

}

/** Use red foreground color when printing */
def red: Print[A] =

Print {
Print.print(Console.RED)
val result = print
Print.print(Console.RESET)
result

}
}

type Print[A] = Console ?=> A

// For convenience, so we don't have
// to write Console.type everywhere.
type Console = Console.type

Because this program is small, it might be
tempting to assume that it is trivial to
understand. In that respect, I found its size
to be deceptive. See the next slide for the
dependencies that exist between its
modules.

@main def go(): Unit = …

object Print {…}

type Print = …

type Console = …

object Console
extends Ansicolor {…}

extension [A](print: Print[A]){…}

0

1

2

To understand how the program works, let us consider each component in turn,
in the order imposed by the numeric labels shown next to the components.

3

4

5

object Console extends Ansicolor {…} 0
The first component to consider is Console. All we need to say
about it, is that it is a singleton object providing two methods
that are used by the program to write to the console.

/** Prints an object to `out` using its `toString` method.
*
* @param obj the object to print; may be null.
* @group console-output
*/

def print(obj: Any): Unit = …

/** Prints out an object to the default output, followed
* by a newline character.
*
* @param x the object to print.
* @group console-output
*/

def println(x: Any): Unit = …

The next component to consider is the following type alias definition.

What is Console.type, and why is Console needed?

Console.type is the singleton type of singleton object Console.

If you already knew that, you can skip the next two slides, which provide a bit more detail on that topic.

As to the reason for defining Console, it is convenience.

Since the program contains references to the type of Console, it is less verbose and less distracting to
reference the type with Console than with Console.type.

// For convenience, so we don't have
// to write Console.type everywhere.
type Console = Console.type

1

Evaluation semantics

Scala’s singleton objects are instantiated lazily. To illustrate that, let’s print something to the standard output in the body of our Colors object:

object Colors {
 println("initialising common colors")
 val White: Color = new Color(255, 255, 255)
 val Black: Color = new Color(0, 0, 0)
 val Red: Color = new Color(255, 0, 0)
 val Green: Color = new Color(0, 255, 0)
 val Blue: Color = new Color(0, 0, 255)
}

If you re-start the REPL, you won’t see anything printed to the standard output just yet.

As soon as you access the Colors object for the first time, though, it will be initialised
and you will see something printed to the standard output.

Accessing the object after that will not print anything again, because the object has
already been initialised. Let’s try this out in the REPL:

scala> val colors = Colors
initialising common colors
val colors: Colors.type = Colors$@4e060c41

scala> val blue = colors.Blue
val blue: Color = Color@61da01e6

This lazy initialization is pretty similar to how the singleton pattern is often implemented in Java.
Daniel Westheide
 @kaffeecoder

The type of a singleton object

As we have seen in the REPL output above, the type of the expression Colors is not Colors,
but Colors.type, and the toString value in that REPL session was Colors$@4e060c41.

That last part is the object id and will be a different one every time you start a new Scala REPL.

What can we learn from this? For one, Colors itself is not a type, or a class, it is an instance of a type.

Also, while there can be an arbitrary number of values of type Meeple, there can only be exactly one
value of type Colors.type, and that value is bound to the name Colors.

Because of this, Colors.type is called a singleton type.

Since Colors itself is not a type, you cannot define a function with the following signature:

 def pickColor(colors: Colors): Color

You can define a function with this signature, though:

 def pickColor(colors: Colors.type): Color Daniel Westheide
 @kaffeecoder

The next component to look at is the following type alias definition:

On the left hand side of the definition we have Print[A], which is a description of an effect.

But what does the right hand side of the definition mean?

It is the type of a Context Function.

type Print[A] = Console ?=> A 2

Noel Welsh
@noelwelsh

A Print[A] is a description: a program that when run may print to the console and also
compute a value of type A. It is implemented as a context function.

You can think of a context function as a normal function with given (implicit) parameters.

In our case a Print[A] is a context function with a Console given parameter (Console is a
type in the Scala standard library.)

Adam Warski wrote a great blog post on Context Functions called Context is King.

To further understand what a Context Function is, let’s look at some excerpts from that post.

https://docs.scala-lang.org/scala3/reference/contextual/context-functions.html

What is a context function?

Before we dive into usage examples and consider why you would be at all interested in using context functions, let’s see what they are and
how to use them.

A regular function can be written in Scala in the following way:

 val f: Int => String = (x: Int) => s"Got: $x"

A context function looks similar, however, the crucial difference is that the parameters are implicit. That is, when using the function, the
parameters need to be in the implicit scope, and provided earlier to the compiler e.g. using given; by default, they are not passed explicitly.

The type of a context function is written down using ?=> instead of =>, and in the implementation, we can refer to the implicit parameters
that are in scope, as defined by the type. In Scala 3, this is done using summon[T], which in Scala 2 has been known as implicitly[T]. Here,
in the body of the function, we can access the given Int value:

 val g: Int ?=> String = s"Got: ${summon[Int]}"

Just as f has a type Function1, g is an instance of ContextFunction1:

 val ff: Function1[Int, String] = f
 val gg: ContextFunction1[Int, String] = g

Context functions are regular values that can be passed around as parameters or stored in collections.

Adam Warski
@adamwarski

Context is King

https://blog.softwaremill.com/context-is-king-20f533474cb3

https://blog.softwaremill.com/context-is-king-20f533474cb3

Adam Warski
@adamwarski

Context is King

We can invoke a context function by explicitly providing the implicit parameters:

 println(g(using 16))

Or we can provide the value in the implicit scope. The compiler will figure out the rest:

 println {
 given Int = 42
 g
 }

Sidenote: you should never use “common” types such as Int or String for given/implicit values. Instead, anything that ends up in the implicit
scope should have a narrow, custom type, to avoid accidental implicit scope contamination.

val g: Int ?=> String = s"Got: ${summon[Int]}"

In the next excerpt, Adam looks at an
example usage of context functions.

Adam Warski
@adamwarski

Context is King

Sane ExecutionContexts
Let’s start looking at some usages! If you’ve been doing any programming using Scala 2 and Akka, you’ve probably encountered
the ExecutionContext. Almost any method that was dealing with Futures probably had the additional implicit ec: ExecutionContext parameter
list.

For example, here’s what a simplified fragment of a business logic function that saves a new user to the database, if a user with the given email
does not yet exist, might look like in Scala 2:

 case class User(email: String)

 def newUser(u: User)(implicit ec: ExecutionContext): Future[Boolean] = {
 lookupUser(u.email).flatMap {
 case Some(_) => Future.successful(false)
 case None => saveUser(u).map(_ => true)
 }
 }

 def lookupUser(email: String)(implicit ec: ExecutionContext): Future[Option[User]] = ???
 def saveUser(u: User)(implicit ec: ExecutionContext): Future[Unit] = ???

We assume that the lookupUser and saveUser methods interact with the database in some asynchronous or synchronous way.

Note how the ExecutionContext needs to be threaded through all of the invocations. It’s not a deal-breaker, but still an annoyance and one
more piece of boilerplate.

It would be great if we could capture the fact that we require the ExecutionContext in some abstract way …

Turns out, with Scala 3 we can! That’s what context functions are for. Let’s define a type alias:

type Executable[T] = ExecutionContext ?=> Future[T]

Any method where the result type is an Executable[T], will require a given (implicit) execution context to obtain the result (the Future).

Here’s what our code might look like after refactoring:

 case class User(email: String)

 def newUser(u: User): Executable[Boolean] = {
 lookupUser(u.email).flatMap {
 case Some(_) => Future.successful(false)
 case None => saveUser(u).map(_ => true)
 }
 }

 def lookupUser(email: String): Executable[Option[User]] = ???
 def saveUser(u: User): Executable[Unit] = ???

The type signatures are shorter — that’s one gain. The code is otherwise unchanged — that’s another gain.

For example, the lookupUser method requires an ExecutionContext. It is automatically provided by the compiler since it is in scope — as
specified by the top-level context function method signature.

Adam Warski
@adamwarski

Context is King

case class User(email: String)

 def newUser(u: User)(implicit ec: ExecutionContext): Future[Boolean] = {
 lookupUser(u.email).flatMap {
 case Some(_) => Future.successful(false)
 case None => saveUser(u).map(_ => true)
 }
 }

 def lookupUser(email: String)(implicit ec: ExecutionContext): Future[Option[User]] = ???
 def saveUser(u: User)(implicit ec: ExecutionContext): Future[Unit] = ???

type Executable[T] = ExecutionContext ?=> Future[T]

 case class User(email: String)

 def newUser(u: User): Executable[Boolean] = {
 lookupUser(u.email).flatMap {
 case Some(_) => Future.successful(false)
 case None => saveUser(u).map(_ => true)
 }
 }

 def lookupUser(email: String): Executable[Option[User]] = ???
 def saveUser(u: User): Executable[Unit] = ???

This slide and the next one are
just a recap of the changes that
Adam made when he introduced
context functions.

The next component to look at is singleton object Print.

The print and println functions are straightforward: given a message and an implicit console, they
display the message by passing it to the corresponding console functions.

The run function is also straightforward: given a Print[A], i.e. a value (context function) describing a
printing effect (a functional effect), it carries out (runs) the effect, which causes the printing (the side
effect) to take place (to get done). The way it does this is by making available an implicit Console, and
returning Print[A], which causes the latter (i.e. a context function) to be invoked.

3object Print {
def print(msg: Any)(using c: Console): Unit =
c.print(msg)

def println(msg: Any)(using c: Console): Unit =
c.println(msg)

def run[A](print: Print[A]): A = {
given c: Console = Console
print

}

/** Constructor for `Print` values */
…<we’ll come back to this later>…

}

type Print[A] = Console ?=> A

The next component we need to look at is the main function:

Hold on a second! We saw on the previous slide that Print.println
returns Unit, so how can the type of message be Print[Unit]?

val message: Print[Unit] =
Print.println("Hello from direct-style land!")

Noel’s explanation can be found on the next slide.

@main def go(): Unit = {
// Declare some `Prints`
val message: Print[Unit] =
Print.println("Hello from direct-style land!")

// Composition
//…<we’ll come back to this later>…

// Make some output
Print.run(message)
//…<we’ll come back to this later>…

}

4

Noel Welsh
@noelwelsh

Context function types have a special rule that makes constructing them easier: a normal expression will be
converted to an expression that produces a context function if the type of the expression is a context function.

Let’s unpack that by seeing how it works in practice. In the example above we have the line

 val message: Print[Unit] =
 Print.println("Hello from direct-style land!")

Print.println is an expression with type Unit, not a context function type.

However Print[Unit] is a context function type. This type annotation causes Print.println to be converted
to a context function type.

You can check this yourself by removing the type annotation:

 val message =
 Print.println("Hello from direct-style land!")

This will not compile.

object Print {
def print(msg: Any)(using c: Console): Unit =
c.print(msg)

def println(msg: Any)(using c: Console): Unit =
c.println(msg)

def run[A](print: Print[A]): A = {
given c: Console = Console
print

}

/** Constructor for `Print` values */
…<we’ll come back to this later>…

}

object Print {
def print(msg: Any): Print[Unit] =
summon[Console].print(msg)

def println(msg: Any): Print[Unit] =
summon[Console].println(msg)

def run[A](print: Print[A]): A = {
given c: Console = Console
print

}

/** Constructor for `Print` values */
…<we’ll come back to this later>…

}

FWIW, looking back at Print, I couldn’t help trying out the following successful
modification, which changes the print and println functions from side-effecting, i.e.
invoking them causes side effects, to effectful, i.e. they return a functional effect, a
description of a computation which, when executed, will cause side effects.

Note that in the following, the above modification does not change the need for message to be annotated with type Print[Unit]

My explanation is that with or without the modification, expression Print.println("Hello from direct-style land!") cannot be evaluated without
a console being available, but none are available, so message cannot be of type Unit. Without the modification, the expression is automatically converted to a
context function, whereas with the modification, the value of the expression is already a context function. In both cases, the context function cannot be
invoked (due to no console being available), so message has to be assigned the context function.

val message: Print[Unit] =
 Print.println("Hello from direct-style land!")

@main def go(): Unit = {
// Declare some `Prints`
val message: Print[Unit] =

Print.println("Hello from direct-style land!")

// Composition
//…<we’ll come back to this later>…

// Make some output
Print.run(message)
//…<we’ll come back to this later>…

}

object Print {
def print(msg: Any)(using c: Console): Unit =

c.print(msg)

def println(msg: Any)(using c: Console): Unit =
c.println(msg)

def run[A](print: Print[A]): A = {
given c: Console = Console
print

}

/** Constructor for `Print` values */
…<we’ll come back to this later>…

}type Print[A] = Console ?=> A

// For convenience, so we don't have
// to write Console.type everywhere.
type Console = Console.type

Let’s run the code that we have seen so far:

It works!

$ sbt run
 [info] welcome to sbt 1.9.9 (Eclipse Adoptium Java 17.0.7)
 …
 [info] running go
 Hello from direct-style land!
 [success] Total time: 1 s, completed 5 May 2024, 17:15:32

Noel Welsh
@noelwelsh

…
Imagine we want to compose the effect of printing to the console with the effect that changes the color of
the text on the console. With the println side effect we cannot do this. Once we call println the output is
already printed; there is no opportunity to change the color.
…
What we really want is to write code like

 Effect.println("OMG, it's an effect").foregroundBrightRed

which limits the foreground colour to just the given text. We can only do that if we have a separation between
describing the effect, as we have done above, and actually running it.

Remember this?

@main def go(): Unit = {
// Declare some `Prints`
val message: Print[Unit] =
Print.println("Hello from direct-style land!")

// Composition
val red: Print[Unit] =
Print.println("Amazing!").prefix(Print.print("> ").red)

// Make some output
Print.run(message)
Print.run(red)

}

The final component that needs looking at (see next
slide) supports exactly the above approach to
composing effects.

Here on the right (highlighted in yellow) is an example
of its usage (viewing this code has been postponed until
now).

The red effect composes the effect of printing ”> ” with
the effect of changing the string’s color to red, and then
composes the resulting effect with the effect of
printing “Amazing!”, which is done by prefixing the
string printed in red by the former effect, with the
string printed by the latter effect.

Noel Welsh
@noelwelsh

extension [A](print: Print[A]) {

/** Insert a prefix before `print` */
def prefix(first: Print[Unit]): Print[A] =
Print {
first
print

}

 /** Use red foreground color when printing */
 def red: Print[A] =
 Print {

Print.print(Console.RED)
 val result = print

Print.print(Console.RESET)
 result
 }
}

5 @main def go(): Unit = {
// Declare some `Prints`
val message: Print[Unit] =
Print.println("Hello from direct-style land!")

// Composition
val red: Print[Unit] =
Print.println("Amazing!").prefix(Print.print("> ").red)

// Make some output
Print.run(message)
Print.run(red)

}

object Print {
def print(msg: Any)(using c: Console): Unit =
c.print(msg)

def println(msg: Any)(using c: Console): Unit =
c.println(msg)

def run[A](print: Print[A]): A = {
given c: Console = Console
print

}

 /** Constructor for `Print` values */
 inline def apply[A](inline body: Console ?=> A): Print[A] =
 body
}

Running a Print[A] uses another bit of special sauce:
if there is a given value of the correct type in scope of a
context function, that given value will be automatically
applied to the function. This is also what makes direct-
style composition, an example of which is shown above,
work. The calls to Print.print are in a context where
a Console is available, and so will be evaluated once
the surrounding context function is run.

We use the same trick (see green box) with Print.apply, which is a general purpose constructor. You can call apply with any expression and it will be converted
to a context function. (As far as I know it is not essential to use inline, but all the examples I learned from do this so I do it as well. I assume it is an optimization.)

Context function types have a
special rule that makes
constructing them easier: a normal
expression will be converted to an
expression that produces a
context function if the type of the
expression is a context function.

Here (on the left)
you can see how
functions prefix
and red (used on
the right) are
implemented

extension [A](print: Print[A]) {

/** Insert a prefix before `print` */
def prefix(first: Print[Unit]): Print[A] =
Print {
first(ev$0)
print(ev$0)

}(ev$0)

 /** Use red foreground color when printing */
 def red: Print[A] =
 Print {
 Print.print(Console.RED)(ev$0)
 val result: A = print(ev$0)
 Print.print(Console.RESET)(ev$0)
 result
 }(ev$0)
}

5To help understand the extension functions for
composing effects, here is their code again but
with IntelliJ IDEA’s X-Ray Mode switched on.

ev$0 stands for evidence, and its type is Console.

Remember how Adam modified his code to use context functions? See the next slide
for an important point that he made in his blog post after reflecting on those changes.

Adam Warski
@adamwarski

Context is King

Executable as an abstraction

However, the purely syntactic change we’ve seen above — giving us cleaner type signatures — isn’t the only difference. Since we now have an abstraction for “a
computation requiring an execution context”, we can build combinators that operate on them. For example:

 // retries the given computation up to `n` times, and returns the
 // successful result, if any
 def retry[T](n: Int, f: Executable[T]): Executable[T]

 // runs all of the given computations, with at most `n` running in
 // parallel at any time
 def runParN[T](n: Int, fs: List[Executable[T]]): Executable[List[T]]

This is possible because of a seemingly innocent syntactic, but huge semantical difference. The result of a method:

 def newUser(u: User)(implicit ec: ExecutionContext): Future[Boolean]

is a running computation, which will eventually return a boolean. On the other hand:

 def newUser(u: User): Executable[Boolean]

returns a lazy computation, which will only be run when an ExecutionContext is provided (either through the implicit scope or explicitly). This makes it possible to
implement operators as described above, which can govern when and how the computations are run.

If you’ve encountered the IO, ZIO or Task datatypes before, this might look familiar. The basic idea behind those datatypes is similar: capture asynchronous
computations as lazily evaluated values, and provide a rich set of combinators, forming a concurrency toolkit. Take a look at cats-effect, Monix, or ZIO for more
details!

type Executable[T] = ExecutionContext ?=> Future[T]

https://typelevel.org/cats-effect/
https://monix.io/
https://zio.dev/

// retries the given computation up to `n` times, and returns the
// successful result, if any
def retry[T](n: Int, f: Executable[T]): Executable[T] = …

// runs all of the given computations, with at most `n` running in
// parallel at any time
def runParN[T](n: Int, fs: List[Executable[T]]): Executable[List[T]] = …

extension [A](print: Print[A]) {
/** Insert a prefix before `print` */
def prefix(first: Print[Unit]): Print[A] = …

 /** Use red foreground color when printing */
 def red: Print[A] = …
}

type Executable[T] = ExecutionContext ?=> Future[T] type Print[A] = Console ?=> A

This is possible because of a seemingly innocent syntactic, but huge semantical difference. The
result of a method:

 def newUser(u: User)(implicit ec: ExecutionContext): Future[Boolean]

is a running computation, which will eventually return a boolean. On the other hand:

 def newUser(u: User): Executable[Boolean]

returns a lazy computation, which will only be run when an ExecutionContext is provided (either
through the implicit scope or explicitly). This makes it possible to implement operators as
described above, which can govern when and how the computations are run.

This is possible because of a seemingly innocent syntactic, but huge semantical
difference. The result of a method:

def print(msg: Any)(using c: Console): Unit

is a printing side effect. On the other hand:

 def print(msg: Any): Print[Unit]

returns a lazy computation, which will only be run when a Console is provided (either
through the given scope or explicitly). This makes it possible to implement operators
as described above, which can govern how the computations are composed.

I am seeing the following similarity with the Print[A] program

While it is quite possible to increase the similarity by changing Print[Unit] to Print[A] or Print[B], it makes sense not to do so because the prefix function discards the value of its parameter.

‡

‡

Let’s uncomment the last few bits of code and run the program again:

And yes, we now see two messages rather than one, the second one being printed by the composite effect.

As a recap, in the next slide we see the whole program.

$ sbt run
 [info] welcome to sbt 1.9.9 (Eclipse Adoptium Java 17.0.7)
 …
 [info] running go
 Hello from direct-style land!
> Amazing!

 [success] Total time: 1 s, completed 5 May 2024, 17:15:32

Noel Welsh
@noelwelsh

@main def go(): Unit = {
// Declare some `Prints`
val message: Print[Unit] =
Print.println("Hello from direct-style land!")

// Composition
val red: Print[Unit] =
Print.println("Amazing!").prefix(Print.print("> ").red)

// Make some output
Print.run(message)
Print.run(red)

}

object Print {
def print(msg: Any)(using c: Console): Unit =
c.print(msg)

def println(msg: Any)(using c: Console): Unit =
c.println(msg)

def run[A](print: Print[A]): A = {
given c: Console = Console
print

}

/** Constructor for `Print` values */
inline def apply[A](inline body: Console ?=> A): Print[A] =
body

}

extension [A](print: Print[A]) {

/** Insert a prefix before `print` */
def prefix(first: Print[Unit]): Print[A] =
Print {
first
print

}

/** Use red foreground color when printing */
def red: Print[A] =
Print {
Print.print(Console.RED)
val result = print
Print.print(Console.RESET)
result

}
}

type Print[A] = Console ?=> A

// For convenience, so we don't have
// to write Console.type everywhere.
type Console = Console.type

To conclude Part 1, in the next and slide, Noel
describes the concepts behind his program.

Noel Welsh
@noelwelsh

That’s the mechanics of how direct-style effect systems work in Scala: it all comes down to context functions.

Notice what we have in these examples: we write code in the natural direct style, but we still have an informative
type, Print[A], that helps us reason about effects and we can compose together values of type Print[A].

I’m going to deal with composition of different effects and more in just a bit. First though, I want describe the concepts behind
what we’ve done.

Notice in direct-style effects we split effects into two parts: context functions that define the effects we need, and the actual
implementation of those effects. In the literature these are called algebraic effects and effect handlers respectively. This is an
important difference from IO, where the same type indicates the need for effects and provides the implementation of those
effects.

Also notice that we use the argument type of context functions to indicate the effects we need, rather the result type as in
monadic effects. This difference avoids the “colored function” problem with monads. We can think of the arguments as
specifying requirements on the environment or context in which the context functions [operate?], hence the name.

Now let’s look at composition of effects, and effects that modify control flow.

https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/

That’s it for Part 1. If you liked it, consider checking out
https://fpilluminated.com/ for more content like this.

https://fpilluminated.com/

