
Sierpinski’s Triangle
Polyglot FP for Fun and Profit

Haskell and Scala
Take the very first baby steps on the path to doing graphics in Haskell and Scala

Learn about a simple yet educational recursive algorithm producing images that are pleasing to the eye

Learn how functional programs deal with the side effects required to draw images

See how libraries like Gloss and Doodle make drawing Sierpinski’s triangle a doddle

inspired by, and based on, the work of

Paul E. Hudak

@philip_schwarzslides by https://www.slideshare.net/pjschwarz

Cats Effect

Gloss
Doodle

https://www.slideshare.net/pjschwarz/natural-transformations

The Sierpiński triangle (sometimes spelled Sierpinski), also called
the Sierpiński gasket or Sierpiński sieve, is a fractal attractive fixed
set with the overall shape of an equilateral triangle,
subdivided recursively into smaller equilateral triangles.

Originally constructed as a curve, this is one of the basic examples
of self-similar sets—that is, it is a mathematically generated pattern that
is reproducible at any magnification or reduction.

It is named after the Polish mathematician Wacław Sierpiński, but
appeared as a decorative pattern many centuries before the work of
Sierpiński.

From Wikipedia, the free encyclopedia

Sierpiński triangleHere is Wikipedia’s
definition of the
Sierpinski triangle.

https://en.wikipedia.org/wiki/Fractal_curve
https://en.wikipedia.org/wiki/Attractive_fixed_set
https://en.wikipedia.org/wiki/Equilateral_triangle
https://en.wikipedia.org/wiki/Recursion
https://en.wikipedia.org/wiki/Self-similarity
https://en.wikipedia.org/wiki/Poland
https://en.wikipedia.org/wiki/Mathematician
https://en.wikipedia.org/wiki/Wac%C5%82aw_Sierpi%C5%84ski

The first thing we are going to do is look at a Haskell program that draws Sierpinski’s triangle.

The program is presented by Paul Hudak in chapter 3 of his book titled The Haskell School of
Expression. The chapter in question is called Simple Graphics.

The program is presented in section 3.4 Some Examples. In preceding sections 3.1 to 3.3, the author
gives the reader an introduction to how to do graphics in Haskell:

3.1 Basic Input/Output
While this section is topical, interesting and useful, I think it is best, for our purposes,
to tackle it in a second stage, once we have familiarised ourselves with the logic for
drawing the Sierpinski triangle. Let’s skip the section for now and come back to it later.

3.2 Graphics Windows
If you are a programmer and you have already done any non-zero amount of graphics, you’ll be
able to understand the graphics-specific aspects of the program without reading this section,
so let’s skip it.

3.3 Drawing Graphics Other Than Text
All we need from this section are a couple of lines of code.

So here is the plan:

1. dive right into the Haskell code for Sierpinski’s triangle
2. have a first go at writing an equivalent Scala program
3. look at the book’s section on Basic Input/Output in Haskell
4. have a go at using Cats Effect to adapt the Scala program so that it manages side effects the

same way the Haskell program does.

That’s not all though: we’ll be doing more after that! Paul E. Hudak

@philip_schwarz

There are some simple fractal images that are pleasing to the eye yet very easy to describe and draw.

One such image is called Sierpinski’s Triangle, which can be described via successive drawings of a triangle.

The first drawing is a single triangle.

The second drawing subdivides the first triangle into three triangles, each one-half the original in both length and
height.

The third drawing subdivides each of the triangles in the second drawing in a similar way.

Now imagine this ad infinitum, and there you have Sierpinski’s Triangle.

Of course, we cannot actually show this infinitely-dense triangle in a graphics window, because we are limited by
pixel size (and our eyes would not be sharp enough to see the details).

So to draw Sierpinski’s Triangle we will stop subdividing the triangles when we reach some predetermined image
size, and then just draw each tiny triangle completely at that point.

Figure 3.1: First three constructions of Sierpinski’s Triangle

First I will define a function fillTri that draws a blue-filled triangle, given x and y coordinates and a size (all in pixel coordinates):

import SOEGraphics

fillTri :: Window -> Int -> Int -> Int -> IO ()
fillTri w x y size = …

The rest of the algorithm is relly very easy (and elegant), and is presented in one fell swoop:

minSize :: Int
minSize = 8

sierpinskiTri :: Window -> Int -> Int -> Int -> IO ()
sierpinskiTri w x y size =
if size <= minSize
then fillTri w x y size
else let size2 = size `div` 2
in do sierpinskiTri w x y size2

sierpinskiTri w x (y - size2) size2
sierpinskiTri w (x + size2) y size2

Note the recursive calls to sierpinskiTri; when the size drops to 8 or less, fillTri is called instead.

Here is the implementation of fillTri:

fillTri :: Window -> Int -> Int -> Int -> IO ()
fillTri w x y size =
drawInWindow w

(withColor Blue
(polygon [(x,y),(x + size,y),(x,y - size)]))

And here are the SOEGraphics functions and data that fillTri depends on:

polygon :: [Point] -> Graphic
polygon pts :: = Draws a closed polygon with vertices pts.

The last point is connected back to the first, and thus the polygon can be filled with a color.

type Point = (Int,Int)

withColor :: Color -> Graphic -> Graphic
withColor c g = Changes the color of drawings in a Graphic – the default colour is white.

data Color = Black | Blue | Green | Cyan | Red | Magenta | Yellow | White

drawInWindow :: Window -> Graphic -> IO ()
drawInWindow w g = Draws a given Graphic value on a given Window.

Using sierpinskiTri is easy enough; The only trickery is to use a number that is a power of two for the initial size, to make the subdivisions
look most uniform by avoiding rounding errors.

main :: IO ()
main =
runGraphics(
do w <- openWindow "Sierpinski's Triangle" (400,400)

sierpinskiTri w 50 300 256
)

And here are the SOEGraphics functions and data that main depends on:

runGraphics :: IO() -> IO()
runGraphics action = Runs a graphics “action”. This is needed because of special operating system

tasks that need to be set up to perform graphics IO.

openWindow :: Title -> Size -> IO Window
openWindow title size = Creates a new, unique window

– title: the string displayed in the title bar of the graphics window
– size: the size of the window, i.e. it width and its height

type Title = String
type Size = (Int, Int)

Sadly, the book contains only a single figure
with a sample result of running the program.

In upcoming slides we’ll run the program
ourselves, so we can do it more justice, by
generating several Sierpinski triangles.

import SOEGraphics

minSize :: Int
minSize = 8

fillTri :: Window -> Int -> Int -> Int -> IO ()
fillTri w x y size =
drawInWindow w
(withColor Blue
(polygon [(x,y),(x + size,y),(x,y - size)]))

sierpinskiTri :: Window -> Int -> Int -> Int -> IO ()
sierpinskiTri w x y size =
if size <= minSize
then fillTri w x y size
else let size2 = size `div` 2
in do sierpinskiTri w x y size2

sierpinskiTri w x (y - size2) size2
sierpinskiTri w (x + size2) y size2

main :: IO ()
main =
runGraphics(
do w <- openWindow "Sierpinski's Triangle" (400,400)

sierpinskiTri w 50 300 256
)

Here is the entirety of the Haskell
program that we have just seen.

Any program that displays some kind of result to the user does so by causing side effects. In our case, instead of printing something to the
screen or to a file, the program draws triangles on the screen.

In a program that does not use functional programming, any and all functions are allowed to cause side effects.

As an example, let’s take Haskell functions sierpinskiTri and fillTri and rewrite them in Scala without using functional programming.

import java.awt.{Color, Graphics}

def sierpinskiTri(g:Graphics, x: Int, y: Int, size: Int): Unit =
if size <= minSize
then fillTri(g, x, y, size)
else
val halfSize = size / 2
sierpinskiTri(g, x, y, halfSize)
sierpinskiTri(g, x, y - halfSize, halfSize)
sierpinskiTri(g, x + halfSize, y, halfSize)

def fillTri(g:Graphics, x: Int, y: Int, size: Int): Unit =
val xs = Array(x, x + size, x)
val ys = Array(y, y, y - size)
g.setColor(Color.blue)
g.fillPolygon(xs, ys, 3)

import SOEGraphics

sierpinskiTri :: Window -> Int -> Int -> Int -> IO ()
sierpinskiTri w x y size =
if size <= minSize
then fillTri w x y size
else let size2 = size `div` 2
in do sierpinskiTri w x y size2

sierpinskiTri w x (y - size2) size2
sierpinskiTri w (x + size2) y size2

fillTri :: Window -> Int -> Int -> Int -> IO ()
fillTri w x y size =
drawInWindow w
(withColor Blue
(polygon [(x,y),(x + size,y),(x,y - size)]))

The Scala version of the fillTri function is side-effecting. When it executes g.fillPolygon(xs, ys, 3), a triangle gets drawn on the screen
as a side effect. We can tell that the function is performing side effects because its return type is Unit: since it is not returning anything of value,
it must be performing one or more side effects that are of value. Even if a function does return something of value, it can still perform side
effects. In a Scala program that does not use functional programming, any and all functions may perform side effects.

@philip_schwarz

We just discussed the Scala version of the fillTri function and said that it is side-effecting. What about the Haskell version?

The polygon and withColor functions that it invokes do not perform any side effects: they both return a value of type Graphic.

The fillTri function takes the Graphic value returned by withColor and passes it to the drawInWindow function, returning
whatever it returns. While the drawInWindow function does not perform any side effects, it returns a value that describes the
performing of a side effect.

The return value of drawInWindow has type IO () and is called an IO action, because at some suitable later point in the execution of
the program, it will be executed, and at that point it will produce a side effect.

Rather than being side-effecting, i.e. producing a side effect, the drawInWindow function is said to be effectful: it returns a value
representing an effect.

If the type of the returned value were that of a list, the effect would be that of multiplicity (the value would represent zero or more
answers). If, instead, the type of the returned value were Maybe (Option in Scala), then the effect would be that of optionality (the value
would be either present or absent).

The actual type of the returned value is IO (). The returned value is an action, a value describing the effect of performing a side effect.

The side effect is not performed at the time when the action is created, but rather at a later time, when the action is executed.

drawInWindow :: Window -> Graphic -> IO()

polygon :: [Point] -> Graphic
withColor :: Color -> Graphic -> Graphic

fillTri :: Window -> Int -> Int -> Int -> IO ()
fillTri w x y size =
drawInWindow w
(withColor Blue
(polygon [(x,y),(x + size,y),(x,y - size)]))

Now that we have discussed both the Scala version and the Haskell version of the fillTri function, let’s discuss the sierpinskiTri
function, starting with the Scala version.

Just like in the fillTri function, its return type is Unit: it does not return anything of value, so it must be performing some side effect that
is of value. While it does not directly perform side effects, it does perform them indirectly. In the base case, it calls the fillTri function,
which performs the side effect of drawing a triangle on the screen. In the recursive case, the function calls itself sequentially three times, so
it indirectly performs the side effects performed by those three recursive invocations.

Let’s contrast that with the behaviour of the Haskell sierpinskiTri function.

Just like the fillTri function, its return type is IO (): it returns something of value, namely an action describing the performing of a side
effect. In the base case, sierpinskiTri just returns the simple action returned by fillTri. In the recursive case, sierpinskiTri takes
the three actions returned by the three recursive invocations of itself, and returns a composite action whose side effect, to be produced
later, when the composite action is executed, consists of three side effects produced by sequentially executing the three actions returned
by the recursive calls. The composite action is created by wrapping in a ‘do’ the three actions returned by the recursive calls.

def sierpinskiTri(g:Graphics, x: Int, y: Int, size: Int): Unit =
if size <= minSize
then fillTri(g, x, y, size)
else
val halfSize = size / 2
sierpinskiTri(g, x, y, halfSize)
sierpinskiTri(g, x, y - halfSize, halfSize)
sierpinskiTri(g, x + halfSize, y, halfSize)

def fillTri(g:Graphics, x: Int, y: Int, size: Int): Unit =
val xs = Array(x, x + size, x)
val ys = Array(y, y, y - size)
g.setColor(Color.blue)
g.fillPolygon(xs, ys, 3)

sierpinskiTri :: Window -> Int -> Int -> Int -> IO ()
sierpinskiTri w x y size =
if size <= minSize
then fillTri w x y size
else let size2 = size `div` 2
in do sierpinskiTri w x y size2

sierpinskiTri w x (y - size2) size2
sierpinskiTri w (x + size2) y size2

fillTri :: Window -> Int -> Int -> Int -> IO ()
fillTri w x y size =
drawInWindow w
(withColor Blue
(polygon [(x,y),(x + size,y),(x,y - size)]))

As we said in the previous slide, in the Haskell program, the side effects are not produced during the execution of sierpinskiTri. The side
effects are produced when the action that is the value of main is executed.

The openWindow function returns a value of type IO Window, i.e. an action describing the performance of a side effect which produces a
Window value.

The main action is the result of carrying out the following steps:
• taking the action returned by openWindow and the action returned by sierpinskiTri and combining them into a composite action.
• passing the composite action to runGraphics, which returns an enriched composite action describing both the side effects described

by the composite action plus some additional side effects needed to perform graphics IO.

i.e. the main action is the action returned by the runGraphics function.

It is only when the main action is executed that any side effects are produced. i.e. the triangles get drawn only when the action that is the
value of main gets executed.

main :: IO ()
main =
runGraphics(
do w <- openWindow "Sierpinski's Triangle" (400,400)

sierpinskiTri w 50 300 256
)

runGraphics :: IO() -> IO() - Runs a graphics “action”. This is needed because of special operating system
tasks that need to be set up to perform graphics IO.

openWindow :: Title -> Size -> IO Window - Creates a new, unique window

class SierpinskiJPanel(x:Int, y:Int, size:Int, minSize:Int, colour:Color) extends JPanel:

override def paintComponent(g: Graphics): Unit =
sierpinskiTriangle(g)

def sierpinskiTriangle(g: Graphics): Unit =
g.setColor(colour)
sierpinskiTriangle(g, x, y, size)

def sierpinskiTriangle(g: Graphics, x: Int, y: Int, size: Int): Unit =
if size <= minSize
then fillTriangle(g, x, y, size)
else

val halfSize = size / 2
sierpinskiTriangle(g, x, y, halfSize)
sierpinskiTriangle(g, x, y - halfSize, halfSize)
sierpinskiTriangle(g, x + halfSize, y, halfSize)

def fillTriangle(g: Graphics, x: Int, y: Int, size: Int): Unit =
val xs = Array(x, x + size, x)
val ys = Array(y, y, y - size)
g.fillPolygon(xs, ys, 3)

import java.awt.{Color, Graphics}
import javax.swing.{JPanel, JFrame}

@main def sierpinski: Unit =

val title = "Sierpinski’s Triangle"
val windowPosition = (0,0)
val width = 600
val height = 600
val backgroundColour = Color.white
val triangleColour = Color.blue
val triangleSize = 512
val triangleXPos = 50
val triangleYPos = 550

val minSize = 8

JFrame.setDefaultLookAndFeelDecorated(true)
val frame = new JFrame("Sierpinski")
frame.setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE)
frame.setBackground(backgroundColour);
frame.setSize(width, height);

val sierpinskiTriangle =
SierpinskiJPanel(

triangleXPos,
triangleYPos,
triangleSize,
minSize,
triangleColour

)
frame.add(sierpinskiTriangle);
frame.setVisible(true)

In the past few slides, we took Haskell functions sierpinskiTri and fillTri and rewrote them in
Scala without using functional programming. This slide reproduces the two functions and adds code so
that we now have a complete Scala program that draws the same triangles as the Haskell program.

We saw that the way the Haskell program manages side effects is by using functions that create actions,
i.e. pure values that merely describe side effects, and combining such actions into more complex
composite actions, and eventually producing side effects by executing a topmost composite action that
is the result of the whole program.

The Scala program is not written using functional programming: it manages side effects simply by
allowing any and all functions to produce side effects on the spot, as part of their execution.

Earlier on I said that we planned to run the Haskell program ourselves, so that we could do it more justice, by
generating several triangles. Alas, it turns out that running the program would require a bit of Yak shaving.

I’d rather spend that time rewriting the program using a more modern graphics library.

Whilst we will do that in upcoming slides, for now let’s just run the Scala program, which produces the same
results as the Haskell one – see the next two slides.

@philip_schwarz

minSize = 512 minSize = 256 minSize = 128 minSize = 64

minSize = 32 minSize = 16 minSize = 8 minSize = 4

minSize = 4 minSize = 8

The previous slides provided only a basic, and at times
handwavy, introduction to Haskell’s IO type.

Now that we have seen a little bit of eye candy, let’s get a
better understanding of the IO type, by looking at the
following section of Paul Hudak’s book: 3.1 Basic
Input/Output.

If you want a more comprehensive introduction to the
subject, one that also covers the equivalent Scala concepts,
then consider looking at the slide decks shown on this slide.

If on the other hand, you are well versed in the subject, feel
free to skip the next 4 slides.

@philip_schwarz

Graphics in Haskell is consistent with the notion of computation via calculation, although it is special enough to warrant the use of special terminology and
notation.
…
Graphics is a special case of input/output (IO) processing in Haskell, and thus I will begin with a discussion of this more general idea.

3.1 Basic Input/Output.

In general, how does Haskell’s “expression-oriented” notion of “computation by calculation” accommodate these various kinds of input and output?

The answer is fairly simple: In Haskell, there is a special kind of value called an action. When a Haskell system evaluates an expression that yields an action, it
knows not to try and display the result in the standard output area, but rather, to “take the appropriate action”. There are primitive actions - such as writing a
single character to a file or receiving a single character from the keyboard – as well as compound actions – such as printing an entire string to a file. Haskell
expressions that evaluate to actions are commonly called commands, because they command the Haskell system to perform some kind of action. Haskell
functions that yield actions when they are applied are also commonly called commands.

Commands are still just expressions, of course, and some commands return a value for subsequent use by the program: keyboard input, for instance. A command
that returns a value of type T has type IO T; if no useful value is returned the command has type IO (). The simplest example of a command is return x, which
for a value x::T immediately returns x and has type IO T.
…

The Haskell Report defines the result of a program as the value of the name main in the module Main. On the other hand, the
Hugs implementation of Haskell allows you to type whatever expression you wish to the Hugs prompt, and it will evaluate it for
you. But in either case, the Haskell system “executes a program” by evaluating an expression, which (for a well-behaved
program) eventually yields a value. The system must then display the value on your computer screen in some way that makes
sense to you. Most systems will try to display the result in the same way that you would type it in as part of your program. So an
integer is printed as an integer, a string as a astring, a list as a list, and so on. I will refer to the area of the computer screen where
this result is printed as the standard output area, which may vary from one implementation to another.

But what if a program is intended to write to a file or print a file on a printer or, the main topic of this chapter, draw a picture in
a graphics window? These are examples of output, and there are related questions about input: For example, how does a
program receive input from a keyboard or mouse?

To make these ideas clearer, let’s consider a few examples. A very useful command is the putStr command, which prints a string argument to the standard
output area, and has type String -> IO (). The () simply indicates that there is no useful result returned from this action; its sole purpose is to print its
argument to the standard output area. So the program:

module Main where
main = putStr “Hello World\n”

is the canonical “Hello World” program, which is often the first program that people write in a new language.

Where the file-writing function writeFile has type:

writeFile :: FilePath -> String -> IO ()
type FilePath = String

So far we have only used actions having type IO () (i.e. output actions). But what about input? As above, we will consider input from both the user and the file
system.

To get a line of input from the user (which will be typed in the standard input area of the computer screen, usually the same as the standard output area) we can
use the function:

getLine :: IO String

Suppose, for example, that we wish to read a line of input using this function, and then write that line (a string) to a file. To do this we write the compound

Suppose now that we want to perform two actions, such as first writing to a file named “testFile.txt”, then printing to the
standard output area. Haskell has a special keyword, do, to denote the beginning of a sequence of commands such as this, and
so we can write:

do writeFile “testFile.txt” “Hello File System”
putStr “Hello World\n” A do expression allows us to sequence an arbitrary

number of commands, each of type IO (), using layout
to distinguish them. When used in this way, the result of
a do expression also has type IO ().

command:

do s <- getLine
writeFile “testFile.txt” s

actionList = [putStr “Hello World\n” ,
writeFile “testFile.txt” “Hello File System”,
putStr “File successfully written.”]

However, a list of actions is just a list of values; they actually don’t do anything until they are sequenced appropriately using a do expression, and then returned
as the value main of the overall program. Still, it is often convenient to place actions into a list as above, and the Haskell Report and Libraries have some useful
functions for turning them into commands. In particular, the function sequence_ in the Standard Prelude, when used with IO, has type:

sequence_ :: [IO a] -> IO ()

and can thus be applied to the actionList above to yield the single command

main = sequence_ actionList

Note the syntax for binding s to the result of executing the getLine command; because the type of getLine is IO String, the
type of s is String. Its value is then used in the next line as an argument to the writeFile command.

Similarly, we can read the entire contents of a file using the command readFile :: FilePath -> IO String. For example:

do s <- readFile “testFile.txt”
putStr s

There are many other commands available for file, system, and user IO, some in the Standard Prelude, and some in various
libraries … I will not discuss any of these here; rather, in the next section I will concentrate on graphics IO.

Before that, however, I want to emphasize that, despite the special do syntax, Haskell’s IO commands are no different in status
from any other Haskell function or value. For example, it is possible to create a list of actions, such as:

From the function putChar :: Char -> IO (), which prints a single character to the standard output area, we can define the function putStr used earlier,
which prints an entire string. To do this, let’s first define a function that converts a list of characters (i.e. a string) into a list of IO actions:

putCharList :: String -> [IO ()]
putCharList [] = []
putCharList (c:cs) = putChar c:putCharList cs

With this, putStr is easily defined:

putStr :: String -> IO ()
putStr s = sequence_ (putCharList s)

Note that the expression putCharList is a list of actions, and sequence_ is used to turn them into a single (compound)
command, just as we did earlier. …

IO processing in Haskell is consistent with everything you have learned about programming with expressions and reasoning
through calculation, although that may not be completely obvious yet. Indeed, it turns out that a do expression is just syntax for
a more primitive way of combining actions using functions. This secret will be revealed in full in Chapter 18.

Now that we have a better understanding of Haskell’s IO
type, let’s turn to the equivalent concept in Scala and see if
we can use it to make the Scala program behave more like the
Haskell one.

As we saw earlier, Haskell’s IO type is a monad. While there is
no predefined IO monad in the Scala standard library, we can
use the IO monad provided by the Scala library Cats Effect.

We can modify the three highlighted functions on the right so
that rather than being side-effecting, i.e. returning Unit, they
are effectful, i.e. they return IO[Unit]. But we cannot do the
same for the paintComponent function, because it
overrides a function defined by JPanel, which is provided by
Swing (a GUI widget toolkit), and so we cannot change
paintComponent‘s signature.

Because our Scala program uses AWT (Abstract Windowing
Toolkit) and Swing, it cannot avoid relying on side effects, but
at least we can change the core of the program from being
side-effecting to being effectful. We can get paintComponent
to use the program’s pure core to create an IO action, which it
then executes.

See the next slide for the required changes.

class SierpinskiJPanel(x:Int, y:Int, size:Int, minSize:Int, colour:Color)
extends JPanel:

override def paintComponent(g: Graphics): Unit =
sierpinskiTriangle(g)

def sierpinskiTriangle(g: Graphics): Unit =
g.setColor(colour)
sierpinskiTriangle(g, x, y, size)

def sierpinskiTriangle(g: Graphics, x: Int, y: Int, size: Int): Unit =
if size <= minSize
then fillTriangle(g, x, y, size)
else

val halfSize = size / 2
sierpinskiTriangle(g, x, y, halfSize)
sierpinskiTriangle(g, x, y - halfSize, halfSize)
sierpinskiTriangle(g, x + halfSize, y, halfSize)

def fillTriangle(g: Graphics, x: Int, y: Int, size: Int): Unit =
val xs = Array(x, x + size, x)
val ys = Array(y, y, y - size)
g.fillPolygon(xs, ys, 3)

import cats.effect.unsafe.implicits._
import cats.effect.IO

class SierpinskiJPanel(x:Int, y:Int, size:Int, minSize:Int, colour:Color) extends JPanel:

override def paintComponent(g: Graphics): Unit =
sierpinskiTriangle(g).unsafeRunSync()

def sierpinskiTriangle(g: Graphics): IO[Unit] =
for

_ <- IO{ g.setColor(colour) }
_ <- sierpinskiTriangle(g, x, y, size)

yield ()

def sierpinskiTriangle(g: Graphics, x: Int, y: Int, size: Int): IO[Unit] =
if size <= minSize
then fillTriangle(g, x, y, size)
else

val halfSize = size / 2
for

_ <- sierpinskiTriangle(g, x, y, halfSize)
_ <- sierpinskiTriangle(g, x, y - halfSize, halfSize)
_ <- sierpinskiTriangle(g, x + halfSize, y, halfSize)

yield ()

def fillTriangle(g: Graphics, x: Int, y: Int, size: Int): IO[Unit] =
val xs = Array(x, x + size, x)
val ys = Array(y, y, y - size)
IO{ g.fillPolygon(xs, ys, 3) }

import java.awt.{Color, Graphics}
import javax.swing.{JPanel, JFrame}

@main def sierpinski: Unit =

val title = "Sierpinski’s Triangle"
val windowPosition = (0,0)
val width = 600
val height = 600
val backgroundColour = Color.white
val triangleColour = Color.blue
val triangleSize = 512
val triangleXPos = 50
val triangleYPos = 550

val minSize = 8

JFrame.setDefaultLookAndFeelDecorated(true)
val frame = new JFrame("Sierpinski")
frame.setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE)
frame.setBackground(backgroundColour);
frame.setSize(width, height);

val sierpinskiTriangle =
SierpinskiJPanel(

triangleXPos,
triangleYPos,
triangleSize,
minSize,
triangleColour

)
frame.add(sierpinskiTriangle);
frame.setVisible(true)

All we have to do is add the code highlighted in green. The main function
remains unchanged. The paintComponent function first creates an
action that describes the side effects needed to draw triangles on the
screen, and then performs those side effects by running the action.

import Cats Effect

minSize = 8 minSize = 2

Let’s run the modified program,
to verify that it still works.

We have not tried using
minSize of 2 yet. Let’s do it!

Remember a few slides ago, when saw Paul Hudak saying the following?

a do expression is just syntax for a more primitive way of combining
actions using functions. This secret will be revealed in full in Chapter 18.

Let’s take a look at the relevant section in the next three slides (actually, feel free to ignore the third one).@philip_schwarz

18.2 The Monad Class

There are several classes in Haskell that are related to the notion of a monad, which can be viewed as a generalization of the principles that underlie IO. Because
of this, although the names of classes and methods may seem unusual, these “monadic” operations are rather intuitive and useful for general programming2.

There are three classes associated with Monads: Functor …, Monad … and MonadPlus …

The Monad class defines four basic operators: (>>=) (often pronounced “bind”), (>>) (often pronounced “sequence”), return, and fail:

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
return :: a -> m a
fail :: String -> m a

m >> k = m >>= _ -> k
fail s = error s

The default methods for (>>) and fail define behaviours that are almost always just what is needed. Therefore, most
instances of Monad need only define (>>=) and return.

Before giving examples of particular instances of Monad, I will first reveal another secret in Haskell, namely that the do syntax
is actually shorthand for use of the monadic operators! The rules for this are a bit more involved than those for other syntax
we’ve seen, but are still straightforward. The first rule is this:

do e => e

So something like do putStr “Hello World” is equivalent to just putStr “Hello World”.

2 Moggi (Moggi, 1989) was one of the first to point out the value of monads in describing the semantics of programming languages,
and Wadler first popularized their use in functional programming (Wadler, 1992; Peyton Jones and Wadler, 1993).

The next rule is:

do e1; e2; …; en
=> e1 >> do e2; …; en

For example, combining this rule with the previous one means that:

do writeFile “testFile.txt” “Hello File System”
putStr “Hello World”

is equivalent to:

writeFile “testFile.txt” “Hello File System” >>
putStr “Hello World”

Note now that the sequencing of two commands is just the application of the function (>>) to two values of type IO ().
There is no magic here – it is all just functional programming.

DETAILS
What is the type of (>>) ? From the type class declaration we know that its most general
type is:

(>>) :: Monad m => m a -> m b -> m b

However, in the case above, its two arguments both have type IO (), so the type of
(>>) must be:

(>>) :: IO () -> IO () -> IO ()

That is, m = IO, a = () and b = (). Thus, the type of the result is IO (), as expected.

The rule for pattern matching is the most complex, because we must deal with the situation where the pattern match fails:

do pat <- e1; e2; …; en
=> let ok pat = do e2; …; en

ok _ = fail “…”
in e1 >>= ok

The right way to think of (>>=) above is simply this: It “executes” e1, and then applies ok to the result.
What happens after that is defined by ok. If the match succeeds, the rest of the commands are executed,
otherwise the operation fail in the monad class is called, which in most cases (because of the default
method) results in an error.

A special case of the above rule is the case where the pattern pat is just a name, in which case the match
cannot fail, so the rule simplifies to:

do x <- e1; e2; …; en
=> e1 >>= \x -> do e2; …; en

The final rule deals with the let notation within a do expression:

do let <- declist; e2; …; en
=> let <- declist in do e2; …; en

As mentioned earlier, because you already understand Haskell IO, you should have a fair amount of intuition about what the monadic operators do. Unfortunately,
we can’t look very closely at the instance of Monad for the type IO, because it ultimately relies on the state of the underlying operating system, which we don’t
have direct access to other than through primitive operations that communicate with it. Even then, these operations vary from system to system. Nevertheless, a
proper implementation of IO in Haskell is obliged to obey the following monad laws…

DETAILS
Although we have not used this feature, note that a let inside of
a do can take multiple definitions, as implied by the name declist.

DETAILS
The string argument to fail is a compiler-generated error-
message, preferably giving some indication of the location of the
patter-math failure.

In the next slide we take the Haskell sierpinskiTri function and
show how, instead of sequencing IO actions using ‘do’, it can do so
using sequence_ or >>.

sierpinskiTri :: Window -> Int -> Int -> Int -> IO ()
sierpinskiTri w x y size =
if size <= minSize
then fillTri w x y size
else let size2 = size `div` 2
in do sierpinskiTri w x y size2

sierpinskiTri w x (y - size2) size2
sierpinskiTri w (x + size2) y size2

sierpinskiTri :: Window -> Int -> Int -> Int -> IO ()
sierpinskiTri w x y size =
if size <= minSize
then fillTri w x y size
else let size2 = size `div` 2
in sierpinskiTri w x y size2 >>

sierpinskiTri w x (y - size2) size2 >>
sierpinskiTri w (x + size2) y size2

sierpinskiTri :: Window -> Int -> Int -> Int -> IO ()
sierpinskiTri w x y size =
if size <= minSize
then fillTri w x y size
else let size2 = size `div` 2
in sequence_

[sierpinskiTri w x y size2,
sierpinskiTri w x (y - size2) size2,
sierpinskiTri w (x + size2) y size2]

sequence multiple IO
actions using ‘do’

sequence a list of IO
actions using sequence_

sequence multiple IO
actions using >>

In the nex slide, we use Cats and Cats Effect
to do something similar with the two Scala
sierpinskiTriangle functions.

@philip_schwarz

def sierpinskiTriangle(g: Graphics): IO[Unit] =
for
_ <- IO{ g.setColor(colour) }
_ <- sierpinskiTriangle(g, x, y, size)

yield ()

def sierpinskiTriangle(g:Graphics, x:Int, y:Int, size:Int):IO[Unit] =
if size <= minSize
then fillTriangle(g, x, y, size)
else
val halfSize = size / 2
for
_ <- sierpinskiTriangle(g, x, y, halfSize)
_ <- sierpinskiTriangle(g, x, y - halfSize, halfSize)
_ <- sierpinskiTriangle(g, x + halfSize, y, halfSize)

yield ()

def sierpinskiTriangle(g: Graphics): IO[Unit] =
List(
IO{ g.setColor(colour) },
sierpinskiTriangle(g, x, y, size)

).sequence_

def sierpinskiTriangle(g:Graphics, x:Int, y:Int, size:Int):IO[Unit] =
if size <= minSize
then fillTriangle(g, x, y, size)
else
val halfSize = size / 2
List(
sierpinskiTriangle(g, x, y, halfSize),
sierpinskiTriangle(g, x, y - halfSize, halfSize),
sierpinskiTriangle(g, x + halfSize, y, halfSize)

).sequence_

def sierpinskiTriangle(g: Graphics): IO[Unit] =
IO{ g.setColor(colour) } >> sierpinskiTriangle(g, x, y, size)

def sierpinskiTriangle(g:Graphics, x:Int, y:Int, size:Int):IO[Unit] =
if size <= minSize
then fillTriangle(g, x, y, size)
else
val halfSize = size / 2
sierpinskiTriangle(g, x, y, halfSize) >>
sierpinskiTriangle(g, x, y - halfSize, halfSize) >>
sierpinskiTriangle(g, x + halfSize, y, halfSize)

import cats.implicits._

putting actions in a list and sequencing
them using sequence_

sequencing actions using >>

sequencing actions using
a for comprehension

def sierpinskiTriangle(g: Graphics): IO[Unit] =
IO{ g.setColor(colour) } flatMap { _ =>
sierpinskiTriangle(g, x, y, size)

}

def sierpinskiTriangle(g:Graphics, x:Int, y:Int, size:Int):IO[Unit] =
if size <= minSize
then fillTriangle(g, x, y, size)
else
val halfSize = size / 2
sierpinskiTriangle(g, x, y, halfSize) flatMap { _ =>
sierpinskiTriangle(g, x, y - halfSize, halfSize) flatMap { _ =>
sierpinskiTriangle(g, x + halfSize, y, halfSize)

}
}

sequencing actions using flatMap

I said earlier that instead of going through the Yak shaving required to run the Haskell program, I’d rather rewrite the program
using a more modern graphics library.

There is a library called Gloss, whose documentation says the following:

• Gloss hides the pain of drawing simple vector graphics behind a nice data type and a few display functions.

• Get something cool on the screen in under 10 minutes.

That’s exactly what we need. In the next two slides we identify the few things that we’ll need in order to draw the Sierpinski
triangle, and come up with a new version of the program that uses Gloss instead of SOEGraphics.

First we create a Picture, e.g. a Circle with a radius of 80 pixels.

A picture is drawn on a Display, so we create a Display that consists
of a window that has the desired title and is of the desired size (width
an height) and is located at the desired position (x and y coordinates).

To draw a picture, we call the display function with a Display, the
desired background colour for the Display, and the Picture to be
drawn on the Display.

Just like the drawInWindow function in the SOEGraphics library, the
display function in the Gloss library does not produce any side
effects: it returns an IO action.

On the next slide we see the code for
the new Haskell version of the program.

While there isn’t a Picture that is a triangle, there is one that is a Polygon. We’ll create triangles using this.

We can put a number of pictures in a list and then use Pictures to compose them into a single picture.We’ll
compose into a single picture the three triangles produced by recursive calls to sierpinskiTriangle.

We can change the default color of a Picture.

We can translate a picture - we’ll use this to get the final picture into the same position as in the existing
Haskell program.

Also (not shown), there are uncapitalised aliases for picture constructors: color, pictures, polygon, etc.

fillTriangle :: Int -> Int -> Int -> Picture
fillTriangle x y size =
let xPos = fromIntegral x

yPos = fromIntegral y
side = fromIntegral size
bottomLeftPoint = (xPos , yPos)
bottomRightPoint = (xPos + side, yPos)
topPoint = (xPos , yPos + side)
triangle = polygon [bottomLeftPoint,

bottomRightPoint,
topPoint]

colouredTriangle = color triangleColour triangle
in colouredTriangle

sierpinskiTriangle :: Int -> Int -> Int -> Picture
sierpinskiTriangle x y size =
if size <= minSize
then fillTriangle x y size
else
let halfSize = size `div` 2
in pictures [sierpinskiTriangle x y halfSize,

sierpinskiTriangle x (y + halfSize) halfSize,
sierpinskiTriangle (x + halfSize) y halfSize]

import Graphics.Gloss
windowTitle = "Sierpinski”
windowPosition = (0,0)
width = 600
height = 600
windowDimensions = (width, height)
backgroundColour = white
horizontalShift = -(fromIntegral width)/2
verticalShift = -(fromIntegral height)/2

windowDisplay :: Display
windowDisplay =
InWindow windowTitle

windowDimensions
windowPosition

triangleColour = red
triangleSize = 512
triangleXPos = 50
triangleYPos = 50

minSize :: Int
minSize = 8

main :: IO ()
main = let triangle = sierpinskiTriangle triangleXPos triangleYPos triangleSize

shiftedTriangle = (translate horizontalShift verticalShift triangle)
in display windowDisplay backgroundColour shiftedTriangle

import Graphics.Gloss
windowTitle = "Sierpinski”
windowPosition = (0,0)
width = 600
height = 600
windowDimensions = (width, height)
backgroundColour = white
horizontalShift = -(fromIntegral width)/2
verticalShift = -(fromIntegral height)/2

windowDisplay :: Display
windowDisplay =
InWindow windowTitle

windowDimensions
windowPosition

triangleColour = red
triangleSize = 512
triangleXPos = 50
triangleYPos = 50

minSize :: Int
minSize = 8

main :: IO ()
main = let triangle = sierpinskiTriangle triangleXPos triangleYPos triangleSize

shiftedTriangle = (translate horizontalShift verticalShift triangle)
in display windowDisplay backgroundColour shiftedTriangle

Here again are the the current version of the Haskell
program (on the left), which uses SOEGraphics, and the
new version (below), which uses Gloss.

import SOEGraphics

minSize :: Int
minSize = 8

fillTri :: Window -> Int -> Int -> Int -> IO ()
fillTri w x y size =
drawInWindow w

(withColor Blue
(polygon [(x,y),(x + size,y),(x,y - size)]))

sierpinskiTri :: Window -> Int -> Int -> Int -> IO ()
sierpinskiTri w x y size =
if size <= minSize
then fillTri w x y size
else let size2 = size `div` 2
in do sierpinskiTri w x y size2

sierpinskiTri w x (y - size2) size2
sierpinskiTri w (x + size2) y size2

main :: IO ()
main =
runGraphics(

do w <- openWindow "Sierpinski's Triangle" (400,400)
sierpinskiTri w 50 300 256

)

fillTriangle :: Int -> Int -> Int -> Picture
fillTriangle x y size =
let xPos = fromIntegral x

yPos = fromIntegral y
side = fromIntegral size
bottomLeftPoint = (xPos , yPos)
bottomRightPoint = (xPos + side, yPos)
topPoint = (xPos , yPos + side)
triangle = polygon [bottomLeftPoint,

bottomRightPoint,
topPoint]

colouredTriangle = color triangleColour triangle
in colouredTriangle

sierpinskiTriangle :: Int -> Int -> Int -> Picture
sierpinskiTriangle x y size =
if size <= minSize
then fillTriangle x y size
else
let halfSize = size `div` 2
in pictures [sierpinskiTriangle x y halfSize,

sierpinskiTriangle x (y + halfSize) halfSize,
sierpinskiTriangle (x + halfSize) y halfSize]

Let’s run the Scala program again (on the left), and the new Haskell program (on the right).

Principles

A few principles guide the design of Doodle, and differentiate it from other graphics libraries. The section explains these principles.

Pictures are Created by Composition

In Doodle a picture is constructed by combining together smaller pictures. For example, we can create a row by putting pictures beside each other. This
idea of creating complex things from simpler things is known as composition.

There are several implications of this, which means that Doodle operates differently to many other graphics libraries. This first is that Doodle does not draw
anything on the screen until you explicitly ask it to, say by calling the draw method. A picture represents a description of something we want to draw. A
backend turns this description into something we can see (which might be on the screen or in a file). This separation of description and action is known as
the interpreter pattern. The description is a “program” and a backend is an “interpreter” that runs that program. In the graphics world the approach that
Doodle takes is sometimes known as retained mode, while the approach of drawing immediately to the screen is known as immediate mode.

Another implication is that Doodle can allow relative layout of objects. In Doodle we can say that one picture is next to another and Doodle will work out
where on the screen they should be. This requires a retained mode API as you need to keep around information about a picture to work out how much space
it takes up.

A final implication is that pictures have no mutable state. This is needed for composition so you can, for example, put a picture next to itself and have things
render correctly.

All of these ideas are core to functional programming, so you may have seen them in other contexts if you have experienced with functional programming. If
not, don’t worry. You’ll quickly understand them once you start using Doodle, as Doodle makes the ideas very concrete.

To conclude this slide deck, let’s write a new, much simpler version of the Scala program, using
Doodle, a library which, like Haskell’s Gloss, adopts the concepts of picture composition and of
the separation between, on the one hand, creating a picture, a description of something to be
drawn, and on the other hand, doing the actual drawing, by processing/interpreting the picture.

https://www.creativescala.org/doodle/

https://github.com/creativescala/doodle

Doodle: Compositional Vector Graphics

https://en.wikipedia.org/wiki/Retained_mode
https://en.wikipedia.org/wiki/Immediate_mode_(computer_graphics)

Image is based on composition and the interpreter pattern.

Composition basically means that we build big Images out of small Images. For example, if we have an Image
describing a red square and an Image describing a blue square

val redSquare = Image.square(100).fillColor(Color.red)
val blueSquare = Image.square(100).fillColor(Color.blue)

we can create an Image describing a red square next to a blue square by combining them together.

val combination = redSquare.beside(blueSquare)

The Image library is the easiest way to create images using Doodle. The tradeoff the Image library makes is
that it only support a (large but limited) subset of operations that are supported across all the backends.

The interpreter pattern means that we separate describing the Image from rendering it. Writing

Image.square(100)

doesn’t draw anything. To draw an image we need to call the draw() method. This separation is important for
composition; if we were to immediately draw we would lose composition.

…
Image.triangle(width, height) creates an isoceles triangle with the given width and height.

Are you thinking what I am
thinking? Yes, this should simplify
things: instead of creating three
different triangles, as we have
being doing up to now, we create a
single triangle and then place it
both above itself and next to itself.

Doodle: Compositional Vector Graphics

By the way, did you notice that
while the triangles that we have
been drawing up to now have
been isosceles (two equal sides
and two equal angles), the
triangles on the Wikipedia page
are equilateral (three equal sides
and three equal angles)? Let’s
switch to equilateral triangles.

On the next slide: a simple Scala program that draws the Sierpinski
Triangle using Doodle. Also: an example of the program’s output.

Subsequent slides show many more examples.
@philip_schwarz

val minSize = 64

def sierpinskiTriangle(size: Int): Image =
if size <= minSize
then fillTriangle(size)
else

val triangle = sierpinskiTriangle(size / 2)
triangle above (triangle beside triangle)

def fillTriangle(size: Int): Image =
Image.triangle(size,size)

.strokeColor(Color.red)

@main def sierpinski: Unit =
sierpinskiTriangle(512)
.draw(Frame.size(660, 660)

.title("Sierpinski’s Triangle")

.background(Color.white)

.fillColor(Color.red))

val frameTitle = "Sierpinski’s Triangle"
val frameWidth = 660
val frameHeight = 660
val frameBackgroundColour = Color.white
val frame = Frame.size(frameWidth, frameHeight)

.title(title)

.background(frameBackgroundColour)

.fillColor(Color.red)

val triangleSize = 512
val triangleColour = Color.red

val minSize = 64

def sierpinskiTriangle(size: Int): Image =
if size <= minSize
then fillTriangle(size)
else
val triangle = sierpinskiTriangle(size / 2)
triangle above (triangle beside triangle)

def fillTriangle(size: Int): Image =
Image.triangle(size,size)

.strokeColor(triangleColour)

@main def sierpinski: Unit =
sierpinskiTriangle(triangleSize)
.draw(frame)

Same code as on the previous slide, except that
we have extracted several explaining variables
and we are now showing the required imports.

import doodle.core.Transform.translate
import doodle.core._
import doodle.image._
import doodle.image.syntax._
import doodle.image.syntax.core._
import doodle.java2d._
import doodle.java2d.effect.Frame

minSize = 512 minSize = 256 minSize = 128 minSize = 64

minSize = 32 minSize = 16 minSize = 8 minSize = 4

minSize = 8 minSize = 4

minSize = 8 minSize = 4

Just for fun, same as the previous slide, but without colouring in the triangles.

@main def sierpinski: Unit =
val title = "Sierpinski’s Triangle"
val windowPosition = (0,0)
val width = 600
val height = 600
val backgroundColour = Color.white
val triangleColour = Color.blue
val triangleSize = 512
val triangleXPos = 50
val triangleYPos = 550
val minSize = 8

JFrame.setDefaultLookAndFeelDecorated(true)
val frame = new JFrame("Sierpinski")
frame.setDefaultCloseOperation(
JFrame.EXIT_ON_CLOSE)

frame.setBackground(backgroundColour);
frame.setSize(width, height);

val sierpinskiTriangle =
SierpinskiJPanel(
triangleXPos,
triangleYPos,
triangleSize,
minSize,
triangleColour

)
frame.add(sierpinskiTriangle);
frame.setVisible(true)

class SierpinskiJPanel(
x:Int, y:Int, size:Int, minSize:Int, colour:Color)

extends JPanel:

override def paintComponent(g: Graphics): Unit =
sierpinskiTriangle(g).unsafeRunSync()

def sierpinskiTriangle(g: Graphics): IO[Unit] =
IO{ g.setColor(colour) } >>
sierpinskiTriangle(g, x, y, size)

def sierpinskiTriangle(g: Graphics, x: Int, y: Int, size: Int): IO[Unit] =
if size <= minSize
then fillTriangle(g, x, y, size)
else
val halfSize = size / 2
sierpinskiTriangle(g, x, y, halfSize) >>
sierpinskiTriangle(g, x, y - halfSize, halfSize) >>
sierpinskiTriangle(g, x + halfSize, y, halfSize)

def fillTriangle(g: Graphics, x: Int, y: Int, size: Int): IO[Unit] =
val xs = Array(x, x + size, x)
val ys = Array(y, y, y - size)
IO{ g.fillPolygon(xs, ys, 3) }

val frameTitle = "Sierpinski’s Triangle"
val frameWidth = 660
val frameHeight = 660
val frameBackgroundColour = Color.white
val frame = Frame.size(frameWidth, frameHeight)

.title(title)

.background(frameBackgroundColour)
val triangleSize = 512
val triangleColour = Color.red
val minSize = 128

def sierpinskiTriangle(size: Int): Image =
if size <= minSize
then fillTriangle(size)
else
val triangle = sierpinskiTriangle(size / 2)
triangle above (triangle beside triangle)

def fillTriangle(size: Int): Image =
Image.triangle(size,size)

.strokeColor(triangleColour)

@main def sierpinski: Unit =
sierpinskiTriangle(triangleSize).draw(frame)

For comparison, here are the
two Scala programs together
(the new one is on the right).

@philip_schwarz

def sierpinskiTriangle(g: Graphics, x: Int, y: Int, size: Int): IO[Unit] =
if size <= minSize
then fillTriangle(g, x, y, size)
else

val halfSize = size / 2
sierpinskiTriangle(g, x, y, halfSize) >>
sierpinskiTriangle(g, x, y - halfSize, halfSize) >>
sierpinskiTriangle(g, x + halfSize, y, halfSize)

def sierpinskiTriangle(size: Int): Image =
if size <= minSize
then fillTriangle(size)
else

val triangle = sierpinskiTriangle(size / 2)
triangle above (triangle beside triangle)

def fillTriangle(g: Graphics, x: Int, y: Int, size: Int): IO[Unit] =
val xs = Array(x, x + size, x)
val ys = Array(y, y, y - size)
IO{ g.fillPolygon(xs, ys, 3) }

def fillTriangle(size: Int): Image =
Image.triangle(size,size)

.strokeColor(triangleColour)

Create a single Image, i.e. a description of a
triangle to be drawn, and then use
composition to create a more complex Image
by combining the Image with itself, twice!

Rather than immediately drawing
a triangle, return a description of
the triangle to be drawn.

Create three different IO actions, each
describing the drawing of a triangle,
and then compose the three into a
single combined IO action.

Rather than immediately drawing a
triangle, suspend the actual
drawing by wrapping the call to
fillPolygon in an IO action.

sierpinskiTriangle(g).unsafeRunSync() sierpinskiTriangle(triangleSize).draw(frame)

First create an IO action, a pure value,
and then execute the action, which has
the side effect of drawing the triangle.

First create an Image, a pure value, and
then call draw on the Image, which has
the side effect of drawing the triangle.

Deferring side effects with the IO monad Deferring side effects with Doodle’s ‘retained mode’

Uh-oh, I forgot that when we switched to Doodle, we said that we were also going to switch from isosceles triangles to equilateral ones!

We are currently creating a triangle as follows:

Image.triangle(width = size, height = size)

But that creates a triangle with b=size; h=size; a = !
"

"
+ ℎ".

i.e. in the resulting triangle, the length b of the base differs from the length a of the other two sides of the triangle.

In order to create a triangle whose three sides are all of the same length 𝑏 (i.e. a = b), we need to specify the correct height h as a function of 𝑏, i.e. h = #
" 𝑏

(3 is also known as Theodorus’ constant).

Let’s define a function heightFromWidth, which given the width of an equilateral triangle, computes its height:

Now we can create an equilateral triangle as follows:

Image.triangle(width = size, height = EquilateralTriangle.heightFromWidth(size))

object EquilateralTriangle:
// From https://en.wikipedia.org/wiki/Square_root_of_3:
// The square root of 3 ...is also known as Theodorus' constant,
// after Theodorus of Cyrene, who proved its irrationality.
private val constantOfTheodorus: Double = Math.sqrt(3)

// From https://en.wikipedia.org/wiki/Equilateral_triangle:
// The altitude (height) h from any side a is √3÷2×a
private val widthToHeightMultiplier = constantOfTheodorus / 2

def heightFromWidth(width: Double): Double =
widthToHeightMultiplier * width

In the final slides of this deck, we just compare the
Sierpinski triangles drawn using isosceles triangles,
with those drawn using equilateral triangles.

minSize = 512

minSize = 256

minSize = 128

minSize = 64

minSize = 32

minSize = 16

minSize = 8

That’s all! I hope you found
this slide deck useful.

