
Sequence	and	Traverse
Part	2

@philip_schwarzslides	by

Paul	ChiusanoRunar	Bjarnason
@pchiusano@runarorama

learn	about	the	sequence	and	traverse	functions	
through	the	work	of

Adelbert	Chang
@adelbertchang

@odersky
Martin	Odersky

FP in Scala

@derekwyatt
Derek	Wyatt

Let’s start by very quickly recapping a key
idea we covered in part 1

@philip_schwarz

trait Monad[F[_]] extends Functor[F] {

def unit[A](a: => A): F[A]

def flatMap[A,B](ma: F[A])(f: A => F[B]): F[B]

def map[A,B](ma: F[A])(f: A => B): F[B] =
flatMap(ma)(a => unit(f(a)))

def map2[A,B,C](ma: F[A], mb: F[B])(f: (A, B) => C): F[C] =
flatMap(ma)(a => map(mb)(b => f(a, b)))

def sequence[A](lma: List[F[A]]): F[List[A]] =
lma.foldRight(unit(List[A]()))((ma, mla) => map2(ma, mla)(_ :: _))

def traverse[A,B](la: List[A])(f: A => F[B]): F[List[B]] =
la.foldRight(unit(List[B]()))((a, mlb) => map2(f(a), mlb)(_ :: _))

}

type Validated[A] = Either[Throwable,A]

val eitherM = new Monad[Validated] {

def unit[A](a: => A): Validated[A] = Right(a)

def flatMap[A,B](ma:Validated[A])(f:A => Validated[B]):Validated[B] =
ma match {

case Left(l) => Left(l)
case Right(a) => f(a)

}
}

def parseIntsValidated(a: List[String]): Either[Throwable,List[Int]] =
eitherM.traverse(a)(i => Try(i.toInt).toEither)

val optionM = new Monad[Option] {

def unit[A](a: => A): Option[A] = Some(a)

def flatMap[A,B](ma:Option[A])(f:A => Option[B]):Option[B] =
ma match {

case Some(a) => f(a)
case None => None

}
}

def parseIntsMaybe(a: List[String]): Option[List[Int]] =
optionM.traverse(a)(i => Try(i.toInt).toOption)

trait Functor[F[_]] {
def map[A,B](fa: F[A])(f: A => B): F[B]

}

In	part	1	of	this	presentation	we	saw	how:	

• map2 can	be	implemented	using	map and	flatMap
• traverse and	sequence can	be	implemented	using	unit and	

map2
• since	every	monad has	unit,	map and	flatMap,	every	

monad also	has	traverse and	sequence

e.g.	if	we	define	the	Optionmonad	and	the	Either monad,	
then	they	get	sequence and	traverse for	free

So in part 1 we coded up the monad trait and included in it a sequence method and a
traversemethod.

What about the Scala standard library? Does its notion of a monad include sequence
and traversemethods?

@philip_schwarz

To qualify as a monad, a type has to satisfy
three laws that connect flatmap and unit.

In Scala we do not have a unit that we can call here, because in Scala every
monad has a different expression that gives the unit value, therefore in
Scalamap is a primitive function that is also defined on every monad.

As you have seen, flatMap was available as an
operation on each of these types, whereas the unit
in Scala is different for each monad. Quite often it
is just the name of the monad type applied to an
argument, e.g. List(x), but sometimes it is different.

You could see a monad in Scala as a trait M, where M is the
monad and T is the type parameter. It would have a flatMap
method and a unit method

Monads
in	

Scala

In	Scala,	Option and	Either are	monads,	and	yes,	we	can	see	that	they	have	a	flatMap function	and	a	map function

But	do	Option and	Either have	sequence and	traverse functions?	It	doesn’t	look	like	it:

Option and Either in the standard library

As we mentioned earlier in this chapter, both Option and Either exist in the
Scala standard library (Option API is at http://mng.bz/fiJ5; Either API is at
http://mng.bz/106L), and most of the functions we’ve defined here in this chapter
exist for the standard library versions.

You’re encouraged to read through the API for Option and Either to understand
the differences. There are a few missing functions, though, notably sequence,
traverse, and map2.
…

Functional Programming in Scala

Let’s	look	for	the	traverse and	sequence functions	in	the	Index	of	Martin	Odersky’s	Scala book:

It	looks	like	there	are	sequence and	traverse functions	in	Future,	but	not	in	Option and	Either.

scala.concurrent.Future.traverse

Asynchronously and non-blockingly transforms a TraversableOnce[A] into
a Future[TraversableOnce[B]] using the provided function A => Future[B].

This is useful for performing a parallel map. For example, to apply a function to all items of
a list in parallel:

val myFutureList = Future.traverse(myList)(x => Future(myFunc(x)))

scala.concurrent.Future.sequence

Simple version of Future.traverse. Asynchronously and non-blockingly transforms
a TraversableOnce[Future[A]] into a Future[TraversableOnce[A]].

Useful for reducing many Futures into a single Future.

People	sometimes	end	up	writing	their	own	traverse functions	for	Option,	Either,	etc.

I have been using Scala for 6/7 years now and by far the most common question that I have seen
at work, that people ask me, and in chat rooms, etc, is how do I do something like
Future.traverse except instead of Future I want it with like Option or Either, and in the standard
library you don’t get that.

The response ends up being, you can write your own little traverseOption, and then now you
want to do it for Either and if you look at enough of these things, you notice there is a common
pattern here, you have one thing here that is sort of lifting of an empty list into some effect, and
then we have this notion of combining two effectful values.

The standard library does not have an abstraction that talks about these things so you need to
either write these yourself or reinvent applicative, and … actually write a generic traverse once
and for all.

note:	no	map2 method	is	being	used	here	to	implement	traverse

Adelbert	Chang
@adelbertchang

The Functor, Applicative, Monad talk

The Future.sequence method transforms a TraversableOnce collection of futures into a
future TraversableOnce of values. For instance, in the following example, sequence is used
to transform a List[Future[Int]] to a Future[List[Int]]:

The Future.traverse method will change a TraversableOnce of any element type into a TraversableOnce of
futures and "sequence" that into a future TraversableOnce of values. For example, here a List[Int] is transformed
into a Future[List[Int]] by Future.traverse:

scala> val fortyTwo = Future { 21 + 21 }
fortyTwo: scala.concurrent.Future[Int] = Future(Success(42))

scala> val fortySix = Future { 23 + 23 }
fortySix: scala.concurrent.Future[Int] = Future(<not completed>)

scala> val futureNums = List(fortyTwo, fortySix)
futureNums: List[scala.concurrent.Future[Int]] = List(Future(Success(42)), Future(Success(46)))

scala> val futureList = Future.sequence(futureNums)
futureList: scala.concurrent.Future[List[Int]] = Future(<not completed>)

scala> futureList.value
res50: Option[scala.util.Try[List[Int]]] = Some(Success(List(42, 46)))

scala> val traversed = Future.traverse(List(1, 2, 3)) { i => Future(i) }
traversed: scala.concurrent.Future[List[Int]] = Future(<not completed>)

scala> traversed.value
res51: Option[scala.util.Try[List[Int]]] = Some(Success(List(1, 2, 3)))

scala.concurrent.Future’s	sequence	and	traverse

Future.sequence
Do you remember way back to Chapter 4 when we described the complexity involved with
using actors to multiply a whackload of matrices together? The core of the problem
revolved around the non-determinacy of responses from actors that were performing the
multiplications. We had to remember who got what in order to maintain the right order
of the responses. In a word, it was icky.

Futures provide a much better solution to this problem. Multiplying the matrices together isn't all
that big of a deal—you just gotta do the math—the bookkeeping and maintenance of trying
to parallelize the computation is the real pain, and futures have a free solution to it.

Let's set the stage for multiplying matrices with a mock Matrix class that multiplies things
together and produces a resulting Some[Matrix] if things work and a None if they don't.[4]
First, our Matrix class:

case class Matrix(rows: Int, columns: Int) {
// "Multiply" the two matrices, ensuring that
// the dimensions line up
def mult(other: Matrix): Option[Matrix] = {

if (columns == other.rows) {
// multiply them...
Some(Matrix(rows, other.columns))

} else {
None

}
}

}

scala> Matrix(3,5) mult Matrix(5,7)
res55: Option[Matrix] = Some(Matrix(3,7))

scala> Matrix(3,5) mult Matrix(4,7)
res56: Option[Matrix] = None

Example	of	using	scala.concurrent.Future.sequence

Next, we define a function that will multiply a sequence of matrices together using foldLeft:

def matrixMult(matrices: Seq[Matrix]): Option[Matrix] = {
matrices.tail.foldLeft(Option(matrices.head)) { (acc, m) =>
acc flatMap { a => a mult m }

}
}

scala> val matricesAllLinedUp = List(Matrix(3,4), Matrix(4,5), Matrix(5,6), Matrix(6,7))
matricesAllLinedUp: List[Matrix] = List(Matrix(3,4), Matrix(4,5), Matrix(5,6), Matrix(6,7))

scala> matrixMult(matricesAllLinedUp)
res63: Option[Matrix] = Some(Matrix(3,7))

scala> val matricesNotAllLiningUp = List(Matrix(3,4), Matrix(5,5), Matrix(5,6), Matrix(6,7))
matricesNotAllLiningUp: List[Matrix] = List(Matrix(3,4), Matrix(5,5), Matrix(5,6), Matrix(6,7))

scala> matrixMult(matricesNotAllLiningUp)
res64: Option[Matrix] = None

Finally, we'll create matrices, a bunch of matrices that we'll multiply together:

…
val matrices = …

OK, the set up is finished. We have enough of a strawman in place that we can start multiplying them together in parallel. Next,
we need to break up the matrices sequence into groups—groups of five hundred should do. We'll then transform that
sequence of groups into a sequence of futures that are performing the multiplications.

val futures = matrices.grouped(500).map { ms =>
Future(matrixMult(ms))

}.toSeq

The futures value now contains forty futures that are all multiplying their sequence of matrices. If
the ExecutionContext they're running on happens to have forty available threads, they'll all go in
parallel; if not, they'll be executed in bits and pieces, but hopefully saturating your CPUs as much as
possible.[5]

Once they're finished, we will have forty resulting matrices (or, if there was a dimensional
problem somewhere, we'll have one or more None values). We still need to multiply those forty
together into one final matrix. This is the part that was so damn tricky with the actor-
based solution. Questions arise:

1.How do we know when they're all done?
2.In what order did the responses return?
3.How do we ensure we're multiplying the final forty in the right order?

None of those questions have any meaning anymore, now that we're using futures to do
all of the bookkeeping for us. We just have to transform the sequence of futures into
a single future that holds a sequence of results. When we have that single future, we can
easily transform the results using the matrixMult function we used to multiply all of the
intermediates.

The only difference here is that the intermediate matrices aren't of type Matrix but of
type Option[Matrix], so we need to flatten them before sending them to matrixMult. However,
that has nothing to do with the concurrency.

Now, multResultFuture holds a future Option[Matrix], whose value we can grab in our usual way:

val multResultFuture = Future.sequence(futures) map { r =>
matrixMult(r.flatten)

}

val finished = Await.result(multResultFuture, 1.second)

And we're done! You understand, of course, that there was more code in that example to
simply set up the problem and evaluate it than there was to actually perform the
"complicated" parallelization, right? If we did that with actors, the reverse would most certainly
have been true!

If you need to scrape a bit of your brain off the floor and shove it back in through your ear due to the
fact that your mind was just blown, I'll completely understand.

derekwyatt

@derekwyatt

Remember how the behaviour of Option.sequence (or Either.sequence) is affected by the
presence of one or more None values (Left values) in the list being sequenced?

assert(sequence(List(Some(1),Some(2),Some(3))) == Some(List(1, 2, 3)))
assert(sequence(List(Some(1),None,Some(3))) == None)
assert(sequence(List(None,None,None)) == None)

assert(sequence(List(Right(1),Right(2),Right(3))) == Right(List(1, 2, 3)))
assert(sequence(List(Right(1),Left(-2),Right(3))) == Left(-2))
assert(sequence(List(Left(0),Left(-1),Left(-2))) == Left(0))

Does Future.sequence behave in a similar way? Let’s see in the next slide.

@philip_schwarz

val futures: List[Future[Int]] = List(Future(2/2), Future(2/1), Future(2/0))

val futureList: Future[List[Int]] = Future.sequence(futures)

Await.ready(futureList, Duration.Inf)

val expectedFutures = List(
"Future(Success(1))",
"Future(Success(2))",
"Future(Failure(java.lang.ArithmeticException: / by zero))")

assert(futures.toString == expectedFutures.toString)
assert(futureList.toString == "Future(Failure(java.lang.ArithmeticException: / by zero))")

val futures: List[Future[Int]] = List(Future(2/2), Future(2/1))

val futureList: Future[List[Int]] = Future.sequence(futures)

Await.ready(futureList, Duration.Inf)

assert(futures.toString == "List(Future(Success(1)), Future(Success(2)))")
assert(futureList.toString == "Future(Success(List(1, 2)))")

val futures: List[Future[Int]] = List(Future(Nil(5)), Future(1/0), Future("".toInt))

val futureList: Future[List[Int]] = Future.sequence(futures)

Await.ready(futureList, Duration.Inf)

val expectedFutures = List(
"Future(Failure(java.lang.IndexOutOfBoundsException: 5))",
"Future(Failure(java.lang.ArithmeticException: / by zero))",
"Future(Failure(java.lang.NumberFormatException: For input string: \"\"))")

assert(futures.toString == expectedFutures.toString)
assert(futureList.toString == "Future(Failure(java.lang.IndexOutOfBoundsException: 5))")

if all the futures in a list succeed,
then the future obtained by
sequencing the list also succeeds and
its value is a list.

if one of the futures in a list fails due
to some exception, then the future
obtained by sequencing the list also
fails due to that same exception

if multiple futures in a list fail due
to exceptions, then the future
obtained by sequencing the list fails
due to the same exception that
caused the first of the multiple
futures to fail.

behaviour	of	Future.sequence
when	one	or	more	Futures	fail

@philip_schwarz

private val postCodesServiceUrl: String = "http://api.postcodes.io/postcodes/<postCode>"
private val worldClockWebServiceUrl: String = "http://worldclockapi.com/api/json/gmt/now"
private val darkSkyWebServiceUrl: String = "https://api.darksky.net/forecast/0137524efeb07e2938ed5b3d200e92c2/<lat>,<long>"
private val internetChuckNorrisDatabaseUrl: String = "https://api.icndb.com/jokes/random"

Example	– calling	web	services	to	create	a	List[Future[String]] and	then	seqencing	it	into	a	Future[List[String]]

def info(postCode: String) = Action.async {

val futureLatAndLong: Future[(String,String)] = getLatAndLongFromPostCodeService(postCode)
val futureDateAndTime: Future[String] = getDateAndTimeFromWorldClockService
val futureRandomJoke: Future[String] = getRandomJokeFromChuckNorrisDatabaseService

val futureWeather: Future[String] = for {
(lat,long) <- futureLatAndLong
weather <- getWeatherFactsFromDarkSkyService(lat, long)

} yield weather

val listOfFutureItems: List[Future[String]] = List(futureDateAndTime, futureWeather, futureRandomJoke)
val futureListOfItems: Future[List[String]] = Future.sequence(listOfFutureItems)

val futurePageContent = futureListOfItems.map {
_.mkString("\n") }.recover { case error: Throwable => s"The following error was encountered: ${error.getMessage}" }

futurePageContent map { Ok(_) }
}

list	of	futures

future	of	list

Future.sequence

e.g. http://localhost:9000/info?postCode=tw181ql
GET /info controllers.DateTimeWeatherJokeController.info(postCode: String)

All the futures in List(futureDateAndTime,
futureWeather, futureRandomJoke) are successful, so
sequencing the list results in a future list whose
values we display.

private def getDateAndTimeFromWorldClockService: Future[String] =
for {
response: JsValue <- getDataFromWebService(worldClockWebServiceUrl)
dateAndTime: String = getCurrentDateTimeFrom(response)

} yield dateAndTime

private def getDataFromWebService(url: String): Future[JsValue] =
wsClient.url(url).get.map { response =>
response.status match {
case 200 => response.body[JsValue]
case code => throw new RuntimeException(s"${url} responded with ${code}")

}
}

Example	of	what	happens	when	things	go	wrong:	erroneous	host	

private val worldClockWebServiceUrl: String = "http://worldclockapiz.com/api/json/gmt/now"

The future returned by getDataFromWebService fails
due to an exception.

This failed future is the first one in
List(futureDateAndTime, futureWeather,
futureRandomJoke).

Sequencing the list results in a failed future, so
we inform the user by showing them the message of
the exception.

private def getDateAndTimeFromWorldClockService: Future[String] =
for {
response: JsValue <- getDataFromWebService(worldClockWebServiceUrl)
dateAndTime: String = getCurrentDateTimeFrom(response)

} yield dateAndTime

private def getDataFromWebService(url: String): Future[JsValue] =
wsClient.url(url).get.map { response =>
response.status match {
case 200 => response.body[JsValue]
case code => throw new RuntimeException(s"${url} responded with ${code}")

}
}

Example	of	what	happens	when	things	go	wrong:	erroneous	API

private val worldClockWebServiceUrl: String = "http://worldclockapi.com/api/jsonz/gmt/now"

The future returned by getDataFromWebService is
successful, but its status is 404, so we throw an
exception, which causes the first future in
List(futureDateAndTime, futureWeather,
futureRandomJoke), to fail.

Sequencing the list results in a failed future and
so we inform the user by showing them the message
of the exception.

private def getDateAndTimeFromWorldClockService: Future[String] =
for {
response: JsValue <- getDataFromWebService(worldClockWebServiceUrl)
dateAndTime: String = getCurrentDateTimeFrom(response)

} yield dateAndTime

private def getCurrentDateTimeFrom(jsonValue: JsValue): String = {
val dateAndTime = validateString(jsonValue \ "currentDateTimez")
s"Date and Time: $dateAndTime"

}

private def validateString(result: JsLookupResult): String =
result.validate[String] match {
case successfulParsingResult: JsSuccess[String] =>
successfulParsingResult.get

case erroneousParsingResult: JsError =>
s"Error accessing field:${erroneousParsingResult.toString}"

}

Example	of	what	happens	when	things	go	wrong:	looking	for	nonexistent	field	in	response	

We fail to extract dateAndTime from the response of
worldClockWebServiceUrl, but all the futures in
List(futureDateAndTime, futureWeather,
futureRandomJoke) are successful, because we
replace the missing dateAndTime with an error
message.

Sequencing the list of futures results in a future
list and when we display the values in the list,
the first one contains the error message.

12.1 Generalizing monads

By now we’ve seen various operations, like sequence and traverse, implemented many times for different monads, and in the last chapter we generalized
the implementations to work for any monad F
…
Here, the implementation of traverse is using map2 and unit, and we’ve seen that map2 can be implemented in terms of flatMap:
…

trait Monad[F[_]] extends Functor[F] {

def unit[A](a: => A): F[A]

def flatMap[A,B](fa: F[A])(f: A => F[B]): F[B]

def map[A,B](fa: F[A])(f: A => B): F[B] =
flatMap(fa)(a => unit(f(a)))

def map2[A,B,C](fa: F[A], fb: F[B])(f: (A, B) => C): F[C] =
flatMap(fa)(a => map(fb)(b => f(a, b)))

def sequence[A](lfa: List[F[A]]): F[List[A]] =
traverse(lfa)(fa => fa)

def traverse[A,B](as: List[A])(f: A => F[B]): F[List[B]] =
as.foldRight(unit(List[B]()))((a, mbs) => map2(f(a), mbs)(_ :: _))

}

What you may not have noticed is that a large number of the useful combinators on
Monad can be defined using only unit and map2. The traverse combinator is
one example—it doesn’t call flatMap directly and is therefore agnostic to whether
map2 is primitive or derived. Furthermore, for many data types, map2 can be
implemented directly, without using flatMap.

All this suggests a variation on Monad—the Monad interface has flatMap and unit as primitives, and derives map2, but we can obtain a different
abstraction by letting unit and map2 be the primitives. We’ll see that this new abstraction, called an applicative functor, is less powerful than a monad, but
we’ll also see that limitations come with benefits.

FP in Scala

12.2 The Applicative trait

Applicative functors can be captured by a new interface, Applicative, in which map2 and unit are primitives.

This establishes that all applicatives are functors. We implement map in terms of map2 and unit, as we’ve done before for particular data types.

trait Applicative[F[_]] extends Functor[F] {

// primitive combinators

def map2[A,B,C](fa: F[A], fb: F[B])(f: (A, B) => C): F[C]

def unit[A](a: => A): F[A]

// derived combinators

def map[B](fa: F[A])(f: A => B): F[B] =
map2(fa, unit(()))((a, _) => f(a))

def traverse[A,B](as: List[A])(f: A => F[B]): F[List[B]]
as.foldRight(unit(List[B]()))((a, fbs) => map2(f(a), fbs)(_ :: _))

}
Functional Programming in Scala
(by	Paul	Chiusano	and	Runar	Bjarnason)

@pchiusano @runarorama

Defining	Applicative in	terms	of	primitive	combinators	map2 and	unit

12.6 Traversable functors

We discovered applicative functors by noticing that our traverse and sequence functions (and several other operations)
didn’t depend directly on flatMap. We can spot another abstraction by generalizing traverse and sequence once again.
Look again at the signatures of traverse and sequence:

Any time you see a concrete type constructor like List showing up in an abstract interface like Applicative, you may want to
ask the question, “What happens if I abstract over this type constructor?” Recall from chapter 10 that a number of data types
other than List are Foldable. Are there data types other than List that are traversable? Of course!

EXERCISE 10.12

On the Applicative trait, implement sequence over a Map rather than a List:

def sequenceMap[K,V](ofa: Map[K,F[V]]): F[Map[K,V]]

def traverse[F[_],A,B](as: List[A])(f: A => F[B]): F[List[B]]
def sequence[F[_],A](fas: List[F[A]]): F[List[A]]

def sequenceMap[K,V](ofa: Map[K,F[V]]): F[Map[K,V]] =
(ofa foldLeft unit(Map.empty[K,V])) {

case (acc, (k, fv)) =>
map2(acc, fv)((m, v) => m + (k -> v))

}

by	Runar	Bjarnason								@runarorama

Functional Programming in Scala
(by	Paul	Chiusano	and	Runar	Bjarnason)

@pchiusano @runarorama

An example of using sequenceMap,
is not included. See the next slide
for one.

@philip_schwarz

trait Applicative[F[_]] extends Functor[F] {

 def map2[A,B,C](fa: F[A], fb: F[B])(f: (A, B) => C): F[C]
def unit[A](a: => A): F[A]

 def map[A,B](fa: F[A])(f: A => B): F[B] =
map2(fa, unit(()))((a, _) => f(a))

def traverse[A,B](as: List[A])(f: A => F[B]): F[List[B]] =
as.foldRight(unit(List[B]()))((a, mbs) => map2(f(a), mbs)(_ :: _))

 def sequence[A](lfa: List[F[A]]): F[List[A]] =
 lfa.foldRight(unit(List[A]()))((fa, lfa) => map2(fa, lfa)(_ :: _))

def sequenceMap[K,V](ofa: Map[K,F[V]]): F[Map[K,V]] =
(ofa foldLeft unit(Map.empty[K,V])) {
case (acc, (k, fv)) =>
map2(acc, fv)((m, v) => m + (k -> v))

}
}

val optionApplicative = new Applicative[Option] {

def map2[A, B, C](fa: Option[A], fb: Option[B])(f: (A, B) => C): Option[C] =
(fa, fb) match {
case (Some(a), Some(b)) => Some(f(a,b))
case _ => None

}

def unit[A](a: => A): Option[A] = Some(a)
}

assert(optionApplicative.sequenceMap(Map("1" -> Some(1), "2" -> Some(2))) == Some(Map("1" -> 1, "2" -> 2)))
assert(optionApplicative.sequenceMap(Map("1" -> Some(1), "x" -> None)) == None)

assert(Map("1" -> 1, "2" -> 2).foldLeft(0){ case (acc, (k, v)) => acc + v } == 3)
assert(Map("1" -> 1, "2" -> 2).foldLeft(""){ case (acc, (k, v)) => acc + k } == "12")

sequenceMap is defined usingMap.foldLeft:

Here are two simple, contrived examples of usingMap.foldLeft.
In the first one we reduce a Map to the sum of its values. In
the second one we reduce it to the concatenation of its keys.

foldLeft[B](z: B)(op: (B, A) => B): B

And here is an example creating an
optionApplicative and using its sequenceMap
function to turn a Map[String,Option[Int]]
into an Option[Map[String,Int]] .

Note how just like when sequencing a List of
Option, if there are any None values then the
result of the sequencing is None.

Example
using	the	sequenceMap function	
of	an	Applicative[Option]

@philip_schwarz

But traversable data types are too numerous for us to write specialized sequence and traverse methods for each of them.
What we need is a new interface. We’ll call it Traverse:6

6 The name Traversable is already taken by an unrelated trait in the Scala standard library.

The interesting operation here is sequence. Look at its signature closely. It takes F[G[A]] and swaps the order of F and G, so
long as G is an applicative functor. Now, this is a rather abstract, algebraic notion. We’ll get to what it all means in a minute, but
first, let’s look at a few instances of Traverse.

EXERCISE 12.13

Write Traverse instances for List, Option, and Tree.

case class Tree[+A](head: A, tail: List[Tree[A]])

trait Traverse[F[_]] {

def traverse[M[_]:Applicative,A,B](fa: F[A])(f: A => M[B]): M[F[B]]
sequence(map(fa)(f))

def sequence[M[_]:Applicative,A](fma: F[M[A]]): M[F[A]] =
traverse(fma)(ma => ma)

}

Functional Programming in Scala
(by	Paul	Chiusano	and	Runar	Bjarnason)

@pchiusano @runarorama

If you are confused by the fact that Traverse’s traverse function uses amap function that is not defined anywhere, then you are not
alone, but don’t worry: we’ll find out more about Traverse’smap function very soon.

In the meantime, think of that traversemethod as not having a body, i.e. being abstract. I reckon the body is there to point out that
if Traverse did have a map function then it could be used to implement traverse.

In the next slide we’ll see examples of Traverse instances that implement traverse without using such amap function.

val listTraverse = new Traverse[List] {
override def traverse[M[_],A,B](as: List[A])(f: A => M[B])(implicit M: Applicative[M]): M[List[B]] =

as.foldRight(M.unit(List[B]()))((a, fbs) => M.map2(f(a), fbs)(_ :: _))
}

val optionTraverse = new Traverse[Option] {
override def traverse[M[_],A,B](oa: Option[A])(f: A => M[B])(implicit M: Applicative[M]): M[Option[B]] =

oa match {
case Some(a) => M.map(f(a))(Some(_))
case None => M.unit(None)

}
}

case class Tree[+A](head: A, tail: List[Tree[A]])

val treeTraverse = new Traverse[Tree] {
override def traverse[M[_],A,B](ta: Tree[A])(f: A => M[B])(implicit M: Applicative[M]): M[Tree[B]] =

M.map2(f(ta.head), listTraverse.traverse(ta.tail)(a => traverse(a)(f)))(Tree(_, _))
} by	Runar	Bjarnason								@runarorama

trait Applicative[F[_]] extends Functor[F] {

 def map2[A,B,C](fa: F[A], fb: F[B])(f: (A, B) => C): F[C]

def unit[A](a: => A): F[A]

 def map[A,B](fa: F[A])(f: A => B): F[B] =
map2(fa, unit(()))((a, _) => f(a))

def traverse[A,B](as: List[A])(f: A => F[B]): F[List[B]] =
as.foldRight(unit(List[B]()))((a,mbs) => map2(f(a),mbs)(_::_))

 def sequence[A](lfa: List[F[A]]): F[List[A]] =
 traverse(lfa)(fa => fa)
}

trait Functor[F[_]] {

def map[A,B](fa: F[A])(f: A => B): F[B]

}

trait Traverse[F[_]] {

def traverse[M[_]:Applicative,A,B](fa: F[A])(f: A => M[B]): M[F[B]]

def sequence[M[_]:Applicative,A](fma: F[M[A]]): M[F[A]] =
traverse(fma)(ma => ma)

}

Answer to Exercise 12.13:
Write Traverse instances for
List, Option, and Tree.

In the next four slides we are goint to try out the three traversable instances we have just
seen: listTraverse, optionTraverse and treeTraverse.

@philip_schwarz

implicit val optionApplicative = new Applicative[Option] {

def map2[A, B, C](fa: Option[A], fb: Option[B])(f: (A, B) => C): Option[C] =
(fa, fb) match {
case (Some(a), Some(b)) => Some(f(a,b))
case _ => None

}

def unit[A](a: => A): Option[A] = Some(a)
}

trait Applicative[F[_]] extends Functor[F] {

 def map2[A,B,C](fa: F[A], fb: F[B])(f: (A, B) => C): F[C]

def unit[A](a: => A): F[A]

 def map[A,B](fa: F[A])(f: A => B): F[B] =
map2(fa, unit(()))((a, _) => f(a))

def traverse[A,B](as: List[A])(f: A => F[B]): F[List[B]] =
as.foldRight(unit(List[B]()))((a,mbs) => map2(f(a),mbs)(_::_))

 def sequence[A](lfa: List[F[A]]): F[List[A]] =
 traverse(lfa)(fa => fa)
}

val listTraverse = new Traverse[List] {
override def traverse[M[_],A,B](as: List[A])(f: A => M[B])(implicit M: Applicative[M]): M[List[B]] =
as.foldRight(M.unit(List[B]()))((a, fbs) => M.map2(f(a), fbs)(_ :: _))

}

trait Functor[F[_]] {
def map[A,B](fa: F[A])(f: A => B): F[B]

}

trait Traverse[F[_]] {
def traverse[M[_]:Applicative,A,B](fa: F[A])(f: A => M[B]): M[F[B]]
def sequence[M[_]:Applicative,A](fma: F[M[A]]): M[F[A]] =
traverse(fma)(ma => ma)

}

import scala.util.{Try,Success,Failure}
val parseInt:String=>Option[Int] = (s:String) => Try(s.toInt) match {
case Success(n) => Option(n)
case Failure(_) => None
}

The function we use to traverse the list is the
optionApplicative’s own unit function, which just lifts
its argument into an Option, so the result is always an
Option of the original list.

If the list contains any string that can’t be parsed into an integer then the result is None.

assert(listTraverse.sequence(List(Option("a"), Option("b"), Option("c"))) == Option(List("a", "b", "c")))

assert(listTraverse.traverse(List("a", "b", "c"))(optionApplicative.unit(_)) == Option(List("a", "b", "c")))

assert(listTraverse.sequence(List(Option("1"), Option("2"), Option("3"))) == Option(List("1", "2", "3")))

assert(listTraverse.traverse(List("1", "2", "3"))(parseInt) == Option(List(1, 2, 3)))

assert(listTraverse.sequence(List(Option("1"), None, Option("3"))) == None)

assert(listTraverse.traverse(List("1", "x", "3"))(parseInt) == None)

If all the strings in the list can be parsed into integers then the result
of traversing the list is an Option of a list of the parsed integers.
If any of the strings in the list cannot be parsed into an integer then
the result of traversing is None.

Sample	usage	of	a	Traverse[List]
with	an	Applicative[Option]

Going	from	List[Option]	to	Option[List]	

trait Applicative[F[_]] extends Functor[F] {

 def map2[A,B,C](fa: F[A], fb: F[B])(f: (A, B) => C): F[C]

def unit[A](a: => A): F[A]

 def map[B](fa: F[A])(f: A => B): F[B] =
map2(fa, unit(()))((a, _) => f(a))

def traverse[A,B](as: List[A])(f: A => F[B]): F[List[B]] =
as.foldRight(unit(List[B]()))((a,mbs) => map2(f(a),mbs)(_::_))

 def sequence[A](lfa: List[F[A]]): F[List[A]] =
 traverse(lfa)(fa => fa)
}

trait Functor[F[_]] {
def map[A,B](fa: F[A])(f: A => B): F[B]

}

trait Traverse[F[_]] {
def traverse[M[_]:Applicative,A,B](fa: F[A])(f: A => M[B]): M[F[B]]
def sequence[M[_]:Applicative,A](fma: F[M[A]]): M[F[A]] =
traverse(fma)(ma => ma)

}

The map2 function of this instance of
Applicative[List] works well with this
instance of Traverse[Option]. It causes
optionTraverse’s traverse to apply ‘Some’ to
every list element.
See next slide for what happens when we use a
different instance of Applicative[List].

Sample	usage	of	a	Traverse[Option]
with	an	Applicative[List]

Going	from	Option[List]	to	List[Option]	

val optionTraverse = new Traverse[Option] {
override def traverse[M[_],A,B](oa: Option[A])(f: A => M[B])(implicit M: Applicative[M]): M[Option[B]] =
oa match {
case Some(a) => M.map(f(a))(Some(_))
case None => M.unit(None)

}
}

val toChars : String => List[Char] = s => s.toList

assert(optionTraverse.traverse(Option("123"))(toChars) == List(Some('1'),Some('2'), Some('3')))
assert(optionTraverse.sequence(Some(List('1','2','3'))) == List(Some('1'),Some('2'), Some('3')))

implicit val listApplicative = new Applicative[List] {
def map2[A, B, C](fa: List[A], fb: List[B])(f: (A, B) => C): List[C] =

for {
a <- fa
b <- fb

} yield f(a,b)

def unit[A](a: => A): List[A] = List(a)
}

assert(listApplicative.map2(List(1,2,3),List(3,2,1))(_ + _) == List(4,3,2,5,4,3,6,5,4))
assert(listApplicative.map2(List(1,2,3),List(3,2))(_ + _) == List(4,3,5,4,6,5))
assert(listApplicative.map2(List(1,2,3),List())(_ + _) == List())

Sample behaviour of the map2 method of this
instance of Applicative[List].

trait Applicative[F[_]] extends Functor[F] {

 def map2[A,B,C](fa: F[A], fb: F[B])(f: (A, B) => C): F[C]

def unit[A](a: => A): F[A]

 def map[B](fa: F[A])(f: A => B): F[B] =
map2(fa, unit(()))((a, _) => f(a))

def traverse[A,B](as: List[A])(f: A => F[B]): F[List[B]] =
as.foldRight(unit(List[B]()))((a,mbs) => map2(f(a),mbs)(_::_))

 def sequence[A](lfa: List[F[A]]): F[List[A]] =
 traverse(lfa)(fa => fa)
}

trait Functor[F[_]] {
def map[A,B](fa: F[A])(f: A => B): F[B]

}

trait Traverse[F[_]] {
def traverse[M[_]:Applicative,A,B](fa: F[A])(f: A => M[B]): M[F[B]]
def sequence[M[_]:Applicative,A](fma: F[M[A]]): M[F[A]] =
traverse(fma)(ma => ma)

}

The map2 function of this instance of
Applicative[List] does not work well
with this instance of Traverse[Option]. It
causes optionTraverse’s traverse to apply ‘Some’
to only the first element of the list.

Sample	usage	of	a	Traverse[Option]
with	an	Applicative[List]

Going	from	Option[List]	to	List[Option]	

val optionTraverse = new Traverse[Option] {
override def traverse[M[_],A,B](oa: Option[A])(f: A => M[B])(implicit M: Applicative[M]): M[Option[B]] =
oa match {
case Some(a) => M.map(f(a))(Some(_))
case None => M.unit(None)

}
}

val toChars : String => List[Char] = s => s.toList

assert(optionTraverse.traverse(Option("123"))(toChars) == List(Some('1')))
assert(optionTraverse.sequence(Some(List('1','2','3'))) == List(Some('1')))

Sample behaviour of the map2 method of this
instance of Applicative[List].

implicit val listApplicative = new Applicative[List] {
def map2[A, B, C](fa: List[A], fb: List[B])(f: (A, B) => C): List[C] =
(fa, fb) match {
case (Nil,_) => Nil
case (_,Nil) => Nil
case (ha::ta,hb::tb) => f(ha,hb) :: map2(ta,tb)(f)

}

def unit[A](a: => A): List[A] = List(a)
}

assert(listApplicative.map2(List(1,2,3),List(3,2,1))(_ + _) == List(4,4,4))
assert(listApplicative.map2(List(1,2,3),List(3,2))(_ + _) == List(4,4))
assert(listApplicative.map2(List(1,2,3),List())(_ + _) == List())

This	slide	differs	from	the	previous	one	in	that	we	use	a	different	instance	of	
Applicative[List],	which	results	in	the	sequence and	traverse functions	of	
optionTraverse behaving	differently

implicit val optionApplicative = new Applicative[Option] {

def map2[A, B, C](fa: Option[A], fb: Option[B])(f: (A, B) => C): Option[C] =
(fa, fb) match {
case (Some(a), Some(b)) => Some(f(a,b))
case _ => None

}

def unit[A](a: => A): Option[A] = Some(a)
}

trait Applicative[F[_]] extends Functor[F] {

 def map2[A,B,C](fa: F[A], fb: F[B])(f: (A, B) => C): F[C]

def unit[A](a: => A): F[A]

 def map[A,B](fa: F[A])(f: A => B): F[B] =
map2(fa, unit(()))((a, _) => f(a))

def traverse[A,B](as: List[A])(f: A => F[B]): F[List[B]] =
as.foldRight(unit(List[B]()))((a,mbs) => map2(f(a),mbs)(_::_))

 def sequence[A](lfa: List[F[A]]): F[List[A]] =
 traverse(lfa)(fa => fa)
}

trait Functor[F[_]] {
def map[A,B](fa: F[A])(f: A => B): F[B]

}

trait Traverse[F[_]] {
def traverse[M[_]:Applicative,A,B](fa: F[A])(f: A => M[B]): M[F[B]]
def sequence[M[_]:Applicative,A](fma: F[M[A]]): M[F[A]] =
traverse(fma)(ma => ma)

}

import scala.util.{Try,Success,Failure}
val parseInt:String=>Option[Int] = (s:String) => Try(s.toInt) match {
case Success(n) => Option(n)
case Failure(_) => None
}

Sample	usage	of	a	Traverse[Tree]
with	an	Applicative[Option].

Going	from	Tree[Option]	to	Option[Tree]	

val treeTraverse = new Traverse[Tree] {
override def traverse[M[_],A,B](ta: Tree[A])(f: A => M[B])(implicit M: Applicative[M]): M[Tree[B]] =
M.map2(f(ta.head), listTraverse.traverse(ta.tail)(a => traverse(a)(f)))(Tree(_, _))

}
val listTraverse = new Traverse[List] {
override def traverse[M[_],A,B](as: List[A])(f: A => M[B])(implicit M: Applicative[M]): M[List[B]] =
as.foldRight(M.unit(List[B]()))((a, fbs) => M.map2(f(a), fbs)(_ :: _))

}

assert(treeTraverse.traverse(Tree("1", List(Tree("2", Nil), Tree("3", Nil))))(parseInt) == Some(Tree(1, List(Tree(2, Nil), Tree(3, Nil)))))

assert(treeTraverse.sequence(Tree(Option(1),List(Tree(Option(2),Nil),Tree(Option(3),Nil)))) == Option(Tree(1,List(Tree(2,Nil),Tree(3,Nil)))))

assert(treeTraverse.traverse(Tree("1", List(Tree("x", Nil), Tree("3", Nil))))(parseInt) == None)

assert(treeTraverse.sequence(Tree(Option(1), List(Tree(None, Nil), Tree(Option(3), Nil)))) == None)

Note that treeTraverse uses listTraverse!

To	be	continued	in	part	III

