
‘go-to’ general-purpose 
sequential collections 

from Java To Scala

@philip_schwarzslides by https://www.slideshare.net/pjschwarz

based on excerpts from the following

https://www.slideshare.net/pjschwarz/natural-transformations


The simple idea of this slide deck is that it collects in a single place 
quite a bit of information that can be used to gain a basic 
understanding of some key differences between the ’goto’ sequential 
collections of Java and Scala.

Hopefully the authors of the books referenced in this deck will forgive 
me for sharing excerpts from their books, and just as hopefully, such 
sharing will promote the books, which have much more to offer than 
what I have highlighted for the purposes of this deck.

@philip_schwarz



Chapter 9. Collections

I must say that I didn’t expect this chapter to amount to much. When I started writing it, I thought I would end up with an API 
document—types and operations. 

The basic idea is simple: a collection distinguishes between objects in the collection and those not in the collection. What 
more was there to say?

What I discovered is that collections are a far richer topic than I ever suspected, both in their structure and the possibilities 
they offer for communicating intent. 

The concept of collections blends several different metaphors. The metaphor you emphasize changes how you use collections. 

Each of the collection interfaces communicates a different variation on the theme of a sack of objects. 

Each of the implementations also communicates variations, mostly with regard to performance. The result is that mastering 
collections is a big part of learning to communicate well with code.
…

Kent Beck
@KentBeck



Sidebar: Performance

Most programmers don’t have to worry about the performance of small-scale operations most of the time. This is a refreshing 
change from the old days, when performance tuning was daily business. However, computing resources are not infinite. When 
experience has shown that performance needs to be better and measurement has shown where the bottlenecks are, it is 
important to express performance-related decisions clearly. Many times, better performance results in less of some other 
quality in the code, like readability or flexibility. It is important to pay as little as possible for the needed performance.

Coding for performance can violate the principle of local consequences. A small change to one part of a program can degrade 
performance in another part. If a method works efficiently only if the collection it is passed can test for membership quickly, 
then an innocent substitution of ArrayList for HashSet elsewhere in the program can make the method intolerably slow. 
Distant consequences are another argument for coding carefully when coding for performance.

Performance is connected with collections because most collections can grow without limit. The data structure holding the 
characters I am typing right now needs to be able to hold millions of characters. I would like inserting the millionth character 
to be just as fast as inserting the first.

My overall strategy for performance coding with collections is to use the simplest possible implementation at first and pick a 
more specialized collection class when it becomes necessary. When I make performance-related decisions I try to localize 
them as much as possible even if that requires some changes to the design. Then, when the performance is good enough 
again, I stop tuning.

Kent Beck
@KentBeck



Issues

Collections are used to express several orthogonal concepts in programs. In principle, you should express yourself as precisely
as possible. With collections, this means using the most general possible interface as a declaration and the most specific
implementation class. However, this is not an absolute rule.
…

The first concept expressed by collections is their size. Arrays (which are primitive collections) have a fixed size, set when the
array is created. Most collections can change size after they are created.

A second concept expressed through collections is whether or not the order of elements is important.
…

Another issue to be expressed by collections is the uniqueness of elements.
…

How are the elements accessed? Sometimes it is enough to iterate over the elements, doing some calculation with them one at
a time. At other times it is important to be able to store and retrieve elements with a key.

Finally, performance considerations are communicated through choice of collection. If a linear search is fast enough, a
generic Collection is good enough. If the collection grows too large it will be important to be able to test for or access elements
by a key, suggesting a Set or Map. Time and space can both be optimized through the judicious selection of collections.

Kent Beck
@KentBeck



Interfaces

Readers of collection-based code are looking for answers to different questions when they look at the interfaces you have
declared for your variables and the implementations you chose for those variables.

The interface declaration tells the reader about the collection: whether the collection is in a particular order, whether there
are duplicate elements, and whether there is any way to look up elements by key or only through iteration.

The interfaces described below are:
• Array— Arrays are the simplest and least flexible collection: fixed size, simple accessing syntax, and fast.
• Iterable— The basic collection interface, allowing a collection to be used for iteration but nothing else.
• Collection— Offers adding, removing, and testing for elements.
• List— A collection whose elements are ordered and can be accessed by their location in the collection (i.e., “give me the
third element”).
…

Kent Beck
@KentBeck

https://learning.oreilly.com/library/view/implementation-patterns/9780321413093/ch09.html
https://learning.oreilly.com/library/view/implementation-patterns/9780321413093/ch09.html
https://learning.oreilly.com/library/view/implementation-patterns/9780321413093/ch09.html
https://learning.oreilly.com/library/view/implementation-patterns/9780321413093/ch09.html


Array

Arrays are the simplest interface for collections. Unfortunately, they don’t have the same protocol as other collections, so it’s
harder to change from an array to a collection than from one kind of collection to another.

Unlike most collections, the size of an array is fixed when it is created. Arrays are also different as they are built into the
language, not provided by a library.

Arrays are more efficient in time and space than other collections for simple operations. The timing tests I did to accompany
writing this suggest that array access (i.e. elements[i]) is more than ten times faster than the equivalent ArrayList operation
(elements.get(i)). (As these numbers vary substantially in different operating environments, if you care about the performance
difference you should time the operations yourself.)

The flexibility of the other collection classes makes them more valuable in most cases, but arrays are a handy trick to be able
to pull out when you need more performance in a small part of an application.

Iterable

Declaring a variable Iterable only says that it contains multiple values. Iterable is the basis for the loop construct in Java 5. Any
object declared as Iterable can be used in a for loop. This is implemented by quietly calling the method iterator().

One of the issues to be communicated when using collections is whether clients are expected to modify them. Unfortunately,
Iterable and its helper, Iterator, provide no way to state declaratively that a collection shouldn’t be modified. Once you have
an Iterator, you can invoke its remove() method, which deletes an element from the underlying Iterable. While your Iterables
are safe from having elements added, they can have elements removed without the object that owns the collection being
notified. Kent Beck

@KentBeck



As described in …, there are a few ways to ensure that a collection is not modified: wrapping it in a unmodifiable collection,
creating a custom iterator that throws an exception when a client tries to modify the collection, or returning a safe copy.

Iterable is simple. It doesn’t even allow you to measure the size of instances; all you can do is iterate over the elements. Sub-
interfaces of Iterable provide more useful behavior.

Collection

Collection inherits from Iterable, but it adds methods to add, remove, search for and count elements.

Declaring a variable or method as a Collection leaves many options for an implementation class.

By leaving the declaration as vaguely specified as possible, you retain the freedom to change implementation classes later
without having the change ripple through the code.

Collections are a bit like the mathematical notion of sets, except that the operations performing the equivalent of union,
intersection, and difference (addAll(), retainAll(), and removeAll()) modify the receiver instead of returning newly allocated
collections.

List

To Collection, List adds the idea that elements are in a stable order. An element can be retrieved by providing its index to the
collection. A stable sequence is important when the elements of a collection interact with each other. For example, a queue of
messages that should be processed in their arrival order should be stored in a list.

Kent Beck
@KentBeck



Implementations

Choosing implementation classes for collections is primarily a matter of performance. As with all performance issues, it is best 
to pick a simple implementation to begin with and then tune based on experience.
…
In this section, each interface introduces alternative implementations. Because performance considerations dominate the
choice of implementation class, each set of alternatives is accompanied by performance measurements for important
operations. Appendix, “Performance Measurement,” provides the source code for the tool I used to gather this data.

By far the majority of collections are implemented by ArrayList, with HashSet a distant second (~3400 references to ArrayList
in Eclipse+JDK versus ~800 references to HashSet). The quick-and-dirty solution is to choose whichever of these classes suits
your needs. However, for those times when experience shows that performance matters, the remainder of this section
presents the details of the alternative implementations.

A final factor in choosing a collection implementation class is the size of the collections involved. The data presented below
shows the performance of collections sized one to one hundred thousand. If your collections only contain one or two
elements, your choice of implementation class may be different than if you expect them to scale to millions of elements. In
any case, the gains available from switching implementation classes are often limited, and you’ll need to look for larger-scale
algorithmic changes if you want to further improve performance.

Kent Beck
@KentBeck



Collection

The default class to use when implementing a Collection is ArrayList.

The potential performance problem with ArrayList is that contains(Object) and other operations that
rely on it like remove(Object) take time proportional to the size of the collection.

If a performance profile shows one of these methods to be a bottleneck, consider replacing
your ArrayList with a HashSet.

Before doing so, make sure that your algorithm is insensitive to discarding duplicate elements.

When you have data that is already guaranteed to contain no duplicates, the switch won’t make a
difference.

Figure 9.2 compares the performance of ArrayList and HashSet. (See Appendix A for the details of how I
collected this information.)

Kent Beck
@KentBeck

https://learning.oreilly.com/library/view/implementation-patterns/9780321413093/ch09.html
https://learning.oreilly.com/library/view/implementation-patterns/9780321413093/app01.html


List

To the Collection protocol, List adds the idea that the elements are in a stable order. The two
implementations of List in common use are ArrayList and LinkedList.

The performance profiles of these two implementations are mirror images. ArrayList is fast
at accessing elements and slow at adding and removing elements, while LinkedList is slow at
accessing elements and fast at adding and removing elements (see Figure 9.3). If you see a
profile dominated by calls to add() or remove(), consider switching an ArrayList to a
LinkedList.

Kent Beck
@KentBeck



Unmodifiable Collections

As mentioned in the discussion of Iterable above, even the most basic collection interfaces allow collections to be modified. If
you are passing a collection to untrusted code, you can ensure that it won’t be modified by having Collections wrap it in an
implementation that throws a runtime exception if clients try to modify it. There are variants that work
with Collection, List, Set, and Map.

Kent Beck
@KentBeck



2.5 Arrays
It is instructive to compare the treatment of lists and arrays in Java, keeping in mind the Substitution Principle and the
Get and Put Principle.

In Java, array subtyping is covariant, meaning that type S[] is considered to be a subtype of T[] whenever S is a subtype
of T. Consider the following code fragment, which allocates an array of integers, assigns it to an array of numbers, and
then attempts to assign a double into the array:

Integer[] ints = new Integer[] {1,2,3};
Number[] nums = ints;
nums[2] = 3.14; // array store exception
assert Arrays.toString(ints).equals("[1, 2, 3.14]"); // uh oh!

Something is wrong with this program, since it puts a double into an array of integers! Where is the problem?
Since Integer[] is considered a subtype of Number[], according to the Substitution Principle the assignment on the
second line must be legal. Instead, the problem is caught on the third line, and it is caught at run time. When an array is
allocated (as on the first line), it is tagged with its reified type (a run-time representation of its component type, in this
case, Integer), and every time an array is assigned into (as on the third line), an array store exception is raised if the
reified type is not compatible with the assigned value (in this case, a double cannot be stored into an array of Integer).

In contrast, the subtyping relation for generics is invariant, meaning that type List<S> is not considered to be a subtype
of List<T>, except in the trivial case where S and T are identical. Here is a code fragment analogous to the preceding one,
with lists replacing arrays:

List<Integer> ints = Arrays.asList(1,2,3); 
List<Number> nums = ints; // compile-time error
nums.set(2, 3.14); 
assert ints.toString().equals("[1, 2, 3.14]"); // uh oh!

Since List<Integer> is not considered to be a subtype of List<Number>, the problem is detected on the second line, not
the third, and it is detected at compile time, not run time.

Maurice Naftalin
@mauricenaftalin



Wildcards reintroduce covariant subtyping for generics, in that type List<S> is considered to be a subtype of List<? 
extends T> when S is a subtype of T. Here is a third variant of the fragment:

List<Integer> ints = Arrays.asList(1,2,3); 
List<? extends Number> nums = ints; 
nums.set(2, 3.14); // compile-time error
assert ints.toString().equals("[1, 2, 3.14]"); // uh oh!

As with arrays, the third line is in error, but, in contrast to arrays, the problem is detected at compile time, not run time.
The assignment violates the Get and Put Principle, because you cannot put a value into a type declared with
an extends wildcard.

Wildcards also introduce contravariant subtyping for generics, in that type List<S> is considered to be
a subtype of List<? super T> when S is a supertype of T (as opposed to a subtype). Arrays do not support contravariant
subtyping. …

Detecting problems at compile time rather than at run time brings two advantages, one minor and one major. The
minor advantage is that it is more efficient. The system does not need to carry around a description of the element type
at run time, and the system does not need to check against this description every time an assignment into an array is
performed. The major advantage is that a common family of errors is detected by the compiler. This improves every
aspect of the program’s life cycle: coding, debugging, testing, and maintenance are all made easier, quicker, and less
expensive.

Apart from the fact that errors are caught earlier, there are many other reasons to prefer collection classes
to arrays. Collections are far more flexible than arrays. The only operations supported on arrays are to get or set a
component, and the representation is fixed. Collections support many additional operations, including testing for
containment, adding and removing elements, comparing or combining two collections, and extracting a sublist of a list.
Collections may be either lists (where order is significant and elements may be repeated) or sets (where order is not
significant and elements may not be repeated), and a number of representations are available, including arrays, linked
lists, trees, and hash tables.

Integer[] ints = new Integer[] {1,2,3};
Number[] nums = ints;
nums[2] = 3.14; // array store exception
assert Arrays.toString(ints).equals("[1, 2, 3.14]");

Maurice Naftalin
@mauricenaftalin



Finally, a comparison of the convenience classes Collections and Arrays shows that collections offer many operations
not provided by arrays, including operations to rotate or shuffle a list, to find the maximum of a collection, and to make a
collection unmodifiable or synchronized.

Nonetheless, there are a few cases where arrays are preferred over collections. Arrays of primitive type are much more
efficient since they don’t involve boxing; and assignments into such an array need not check for an array store
exception, because arrays of primitive type do not have subtypes. And despite the check for array store exceptions,
even arrays of reference type may be more efficient than collection classes with the current generation of compilers, so
you may want to use arrays in crucial inner loops. As always, you should measure performance to justify such a design,
especially since future compilers may optimize collection classes specially. Finally, in some cases arrays may be
preferable for reasons of compatibility.

To summarize, it is better to detect errors at compile time rather than run time, but Java arrays are forced to detect
certain errors at run time by the decision to make array subtyping covariant. Was this a good decision? Before the
advent of generics, it was absolutely necessary. For instance, look at the following methods, which are used to sort any
array or to fill an array with a given value:

public static void sort(Object[] a);
public static void fill(Object[] a, Object val);

Thanks to covariance, these methods can be used to sort or fill arrays of any reference type. Without covariance and
without generics, there would be no way to declare methods that apply for all types. However, now that we have
generics, covariant arrays are no longer necessary. Now we can give the methods the following signatures, directly
stating that they work for all types:

public static <T> void sort(T[] a);
public static <T> void fill(T[] a, T val);

In some sense, covariant arrays are an artifact of the lack of generics in earlier versions of Java. Once you have generics,
covariant arrays are probably the wrong design choice, and the only reason for retaining them is backward
compatibility…. For many purposes, it may be sensible to consider arrays a deprecated type. …

Maurice Naftalin
@mauricenaftalin



6.5 Array Creation
…
Inability to create generic arrays is one of the most serious restrictions in Java. Because it is so annoying, it is worth
reiterating the reason it occurs: generic arrays are problematic because generics are implemented via erasure, but
erasure is beneficial because it eases evolution.

The best workaround is to use ArrayList or some other class from the Collections Framework in preference to an array.
We discussed the tradeoffs between collection classes and arrays in Arrays, and we noted that in many cases collections
are preferable to arrays: because they catch more errors at compile time, because they provide more operations, and
because they offer more flexibility in representation. By far, the best solution to the problems offered by arrays is to
“just say no”: use collections in preference to arrays.

Sometimes this won’t work, because you need an array for reasons of compatibility or efficiency. Examples of this occur
in the Collections Framework: for compatibility, the method toArray converts a collection to an array; and, for
efficiency, the class ArrayList is implemented by storing the list elements in an array.
…
6.7 How to Define ArrayList
We have argued elsewhere that it is usually preferable to use a list than to use an array. There are a few places where
this is not appropriate. In rare circumstances, you will need to use an array for reasons of efficiency or compatibility.
Also, of course, you need to use arrays to implement ArrayList itself. …
…
6.9 Arrays as a Deprecated Type?
We have seen that collections are superior to arrays in a number of ways: …
In retrospect, there are several places in Java 5 where avoiding the use of arrays might have improved the design: …
…
Just as the Java 5 design might have been improved if it had put less emphasis on arrays, your own code designs may be
improved if you use collections and lists in preference to arrays. Perhaps the time has come to regard arrays as a
deprecated type?

Maurice Naftalin
@mauricenaftalin

https://learning.oreilly.com/library/view/java-generics-and/0596527756/ch02.html


Chapter 10. The Main Interfaces of the Java Collections Framework
Figure 10-1 shows the main interfaces of the Java Collections Framework, together with one other—Iterable—which is 
outside the Framework but is an essential adjunct to it. Its purpose is as follows:

Iterable defines the contract that a class has to fulfill for its instances to be usable with the foreach statement.

And the Framework interfaces have the following purposes:

• Collection contains the core functionality required of any collection other than a map. It has no direct concrete 
implementations; the concrete collection classes all implement one of its subinterfaces as well.

• Set is a collection, without duplicates, in which order is not significant.... 
• Queue …
• List is a collection in which order is significant, accommodating duplicate elements.
• Map …

Maurice Naftalin
@mauricenaftalin

https://learning.oreilly.com/library/view/java-generics-and/0596527756/ch10.html


11.2 Implementations
We have looked briefly at the interfaces of the Collections Framework, which define the behavior that we can expect 
of each collection. But as we mentioned in the introduction to this chapter, there are several ways of implementing 
each of these interfaces. Why doesn’t the Framework just use the best implementation for each interface? That would 
certainly make life simpler—too simple, in fact, to be anything like life really is. If an implementation is a greyhound for 
some operations, Murphy’s Law tells us that it will be a tortoise for others. Because there is no “best” implementation 
of any of the interfaces, you have to make a tradeoff, judging which operations are used most frequently in your 
application and choosing the implementation that optimizes those operations.

The three main kinds of operations that most collection interfaces require are insertion and removal of elements by 
position, retrieval of elements by content, and iteration over the collection elements. The implementations provide 
many variations on these operations, but the main differences among them can be discussed in terms of how they 
carry out these three. In this section, we’ll briefly survey the four main structures used as the basis of the 
implementations and later, as we need them, we will look at each in more detail. The four structures are:

Arrays These are the structures familiar from the Java language—and just about every other programming language 
since Fortran. Because arrays are implemented directly in hardware, they have the properties of random-access 
memory: very fast for accessing elements by position and for iterating over them, but slower for inserting and 
removing elements at arbitrary positions (because that may require adjusting the position of other elements). Arrays 
are used in the Collections Framework as the backing structure for ArrayList, CopyOnWriteArrayList, EnumSet and 
EnumMap, and for many of the Queue and Deque implementations. They also form an important part of the 
mechanism for implementing hash tables (discussed shortly).

Linked lists As the name implies, these consist of chains of linked cells. Each cell contains a reference to data and a 
reference to the next cell in the list (and, in some implementations, the previous cell). Linked lists perform quite 
differently from arrays: accessing elements by position is slow, because you have to follow the reference chain from 
the start of the list, but insertion and removal operations can be performed in constant time by rearranging the cell 
references. Linked lists are the primary backing structure used for the classes ConcurrentLinkedQueue, 
LinkedBlockingQueue, and LinkedList, and the new skip list collections ConcurrentSkipListSet and 
ConcurrentSkipListMap. They are also used in implementing HashSet and LinkedHashSet.

Maurice Naftalin
@mauricenaftalin



6.5 Efficiency and the O-Notation

In the last section, we talked about different implementations being “good” for different operations.

A good algorithm is economical in its use of two resources: time and space. Implementations of collections usually use
space proportional to the size of the collection, but they can vary greatly in the time required for access and update, so
that will be our primary concern.

It’s very hard to say precisely how quickly a program will execute, as that depends on many factors, including some that
are outside the province of the programmer, such as the quality of the compiled code and the speed of the hardware.

Even if we ignore these and limit ourselves to thinking only about how the execution time for an algorithm depends on its
data, detailed analysis can be complex.

A relatively simple example is provided in Donald Knuth’s classic book Sorting and Searching (Addison-Wesley), where
the worst-case execution time for a multiple list insertion sort program on Knuth’s notional MIX machine is derived as

3.5N2 + 24.5N + 4M + 2

where N is the number of elements being sorted and M is the number of lists.

As a shorthand way of describing algorithm efficiency, this isn’t very convenient. Clearly we need a broader brush for
general use. The one most commonly used is the O-notation (pronounced "big-oh notation”).

The O-notation is a way of describing the performance of an algorithm in an abstract way, without the detail required
to predict the precise performance of a particular program running on a particular machine.

Our main reason for using it is that it gives us a way of describing how the execution time for an algorithm depends on
the size of its data set, provided the data set is large enough.

Maurice Naftalin
@mauricenaftalin



For example, in the previous expression the first two terms are comparable for low values of N; in fact, for N < 8, the
second term is larger.

But as N grows, the first term increasingly dominates the expression and, by the time it reaches 100, the first term is 15
times as large as the second one.

Using a very broad brush, we say that the worst case for this algorithm takes time O(N2).

We don’t care too much about the coefficient because that doesn’t make any difference to the single most important
question we want to ask about any algorithm: what happens to the running time when the data size increases—say,
when it doubles? For the worst-case insertion sort, the answer is that the running time goes up fourfold.

That makes O(N2) pretty bad—worse than any we will meet in practical use in this book.

Table 11-1 shows some commonly found running times, together with examples of algorithms to which they apply.

3.5N2 + 24.5N + 4M + 2

Time Common name Effect on the running time if N is doubled Example algorithms

O(1) Constant Unchanged Insertion into a hash table 
(Implementing Set)

O(log N) Logarithmic Increased by a constant amount Insertion into a tree 
(TreeSet)

O(N) Linear Doubled Linear search

O(N log N) Doubled plus an amount proportional to N Merge sort (Changing the 
Order of List Elements)

O(N2) Quadratic Increased fourfold
Maurice Naftalin
@mauricenaftalin

https://learning.oreilly.com/library/view/java-generics-and/0596527756/ch11.html
https://learning.oreilly.com/library/view/java-generics-and/0596527756/ch13.html
https://learning.oreilly.com/library/view/java-generics-and/0596527756/ch13.html
https://learning.oreilly.com/library/view/java-generics-and/0596527756/ch17.html
https://learning.oreilly.com/library/view/java-generics-and/0596527756/ch17.html


For example, many other running times are possible, including some that are much worse than those in the Figure.

Many important problems can be solved only by algorithms that take O(2N)—for these, when N doubles, the running
time is squared! For all but the smallest data sets, such algorithms are infeasibly slow.

Sometimes we have to think about situations in which the cost of an operation varies with the state of the data structure.

For example, adding an element to the end of an ArrayList can normally be done in constant time, unless
the ArrayList has reached its capacity.

In that case, a new and larger array must be allocated, and the contents of the old array transferred into it. The cost of
this operation is linear in the number of elements in the array, but it happens relatively rarely.

In situations like this, we calculate the amortized cost of the operation—that is, the total cost of performing it n times
divided by n, taken to the limit as n becomes arbitrarily large.

In the case of adding an element to an ArrayList, the total cost for N elements is O(N), so the amortized cost is O(1).

Maurice Naftalin
@mauricenaftalin



Chapter 15. Lists
Lists are probably the most widely used Java collections in practice. A list is a collection which—unlike a set—can contain
duplicates, and which—unlike a queue—gives the user full visibility and control over the ordering of its elements. The
corresponding Collections Framework interface is List (see Figure 15-1).

…
15.2 Implementing List
There are three concrete implementations of List in the Collections Framework (see Figure 15-3), differing in how fast
they perform the various operations defined by the interface and how they behave in the face of concurrent
modification; unlike Set and Queue, however, List has no subinterfaces to specify differences in functional behavior. In
this and the following section we look at each implementation in turn and provide a performance comparison.

Maurice Naftalin
@mauricenaftalin

https://learning.oreilly.com/library/view/java-generics-and/0596527756/ch15.html
https://learning.oreilly.com/library/view/java-generics-and/0596527756/ch15.html


15.2.1 ArrayList
Arrays are provided as part of the Java language and have a very convenient syntax, but their key disadvantage—that,
once created, they cannot be resized—makes them increasingly less popular than List implementations, which (if
resizable at all) are indefinitely extensible.

The most commonly used implementation of List is, in fact, ArrayList—that is, a List backed by an array.

The standard implementation of ArrayList stores the List elements in contiguous array locations, with the first element
always stored at index 0 in the array.

It requires an array at least large enough (with sufficient capacity) to contain the elements, together with a way of keeping
track of the number of “occupied” locations (the size of the List).

If an ArrayList has grown to the point where its size is equal to its capacity, attempting to add another element will
require it to replace the backing array with a larger one capable of holding the old contents and the new element, and
with a margin for further expansion (the standard implementation actually uses a new array that is double the length of
the old one).

As we explained in Efficiency and the O-Notation, this leads to an amortized cost of O(1).

The performance of ArrayList reflects array performance for "random-access” operations: set and get take constant
time. The downside of an array implementation is in inserting or removing elements at arbitrary positions, because that
may require adjusting the position of other elements. (We have already met this problem with the remove method of the
iterators of array-based queues—for example, ArrayBlockingQueue (see Implementing BlockingQueue).

But the performance of positional add and remove methods are much more important for lists than iterator.remove is for
queues.)

Maurice Naftalin
@mauricenaftalin

https://learning.oreilly.com/library/view/java-generics-and/0596527756/ch11.html
https://learning.oreilly.com/library/view/java-generics-and/0596527756/ch14.html


15.2.2 LinkedList

We discussed LinkedList as a Deque implementation in Implementing Deque.

You will avoid it as a List implementation if your application makes much use of random access; since the list must
iterate internally to reach the required position, positional add and remove have linear time complexity, on average.

Where LinkedList does have a performance advantage over ArrayList is in adding and removing elements anywhere
other than at the end of the list; for LinkedList this takes constant time, against the linear time required for noncircular
array implementations.

15.2.3 CopyOnWriteArrayList

In Implementing Set we met CopyOnWriteArraySet, a set implementation designed to provide thread safety together
with very fast read access.

CopyOnWriteArrayList is a List implementation with the same design aims. This combination of thread safety with fast
read access is useful in some concurrent programs, especially when a collection of observer objects needs to receive
frequent event notifications.

The cost is that the array which backs the collection has to be treated as immutable, so a new copy is created whenever
any changes are made to the collection. This cost may not be too high to pay if changes in the set of observers occur only
rarely.
…

Maurice Naftalin
@mauricenaftalin

https://learning.oreilly.com/library/view/java-generics-and/0596527756/ch14.html
https://learning.oreilly.com/library/view/java-generics-and/0596527756/ch13.html


15.3 Comparing List Implementations

Table 15-1 gives the comparative performance for some sample operations on List classes. Even though the choice here
is much narrower than with queues or even sets, the same process of elimination can be used. As with queues, the first
question to ask is whether your application requires thread safety. If so, you should use CopyOnWriteArrayList, if you
can—that is, if writes to the list will be relatively infrequent. If not, you will have to use a synchronized wrapper
(see Synchronized Collections) around ArrayList or LinkedList.

For most list applications the choice is between ArrayList and LinkedList, synchronized or not. Once again, your decision
will depend on how the list is used in practice. If set and get predominate, or element insertion and removal is mainly
at the end of the list, then ArrayList will be the best choice. If, instead, your application needs to frequently insert and
remove elements near the start of the list as part of a process that uses iteration, LinkedList may be better. If you are in
doubt, test the performance with each implementation. A Java 6 alternative for single-threaded code that may be worth
considering in the last case—if the insertions and removals are actually at the start of the list—is to write to
the Deque interface, taking advantage of its very efficient ArrayDeque implementation. For relatively infrequent random
access, use an iterator, or copy the ArrayDeque elements into an array using toArray.

It is possible that, in a future release, ArrayDeque will be retrofitted to implement the List interface; if that happens, it will
become the implementation of choice for both Queue and List in single-threaded environments.

get add contains next remove(0) iterator
.remove

ArrayList O(1) O(1) O(n) O(1) O(n) O(n)

LinkedList O(n) O(1) O(n) O(1) O(1) O(1)

CopyOnWrite-
ArrayList O(1) O(n) O(n) O(1) O(n) O(n)

Maurice Naftalin
@mauricenaftalin

https://learning.oreilly.com/library/view/java-generics-and/0596527756/ch15.html
https://learning.oreilly.com/library/view/java-generics-and/0596527756/ch17.html


Step 8. Use lists 

One of the big ideas of the functional style of programming is that methods should not have side effects.

A method’s only act should be to compute and return a value.

Some benefits gained when you take this approach are that methods become less entangled, and therefore more reliable
and reusable.

Another benefit (in a statically typed language) is that everything that goes into and out of a method is checked by a type
checker, so logic errors are more likely to manifest themselves as type errors.

Applying this functional philosophy to the world of objects means making objects immutable.

As you’ve seen, a Scala array is a mutable sequence of objects that all share the same type.

An Array[String] contains only strings, for example.

Although you can’t change the length of an array after it is instantiated, you can change its element values. Thus, arrays are
mutable objects.

For an immutable sequence of objects that share the same type you can use Scala’s List class.

As with arrays, a List[String] contains only strings.

Scala’s List differs from Java’s java.util.List type in that Scala Lists are always immutable (whereas Java Lists can be
mutable).

More generally, Scala’s List is designed to enable a functional style of programming.

Martin Odersky
@odersky



Step 12. Transform with map and for-yield

When programming in an imperative style, you mutate data structures in place until you achieve the goal of the algorithm. 
In a functional style, you transform immutable data structures into new ones to achieve the goal. 

An important method that facilitates functional transformations on immutable collections is map. 

Like foreach, map takes a function as a parameter. 

But unlike foreach, which uses the passed function to perform a side effect for each element, map uses the passed function 
to transform each element into a new value. 

The result of map is a new collection containing those new values. 

…

The map method appears on many types, not just List. This enables for expressions to be used with many types. One
example is Vector, which is an immutable sequence that provides “effectively constant time” performance for all its
operations. Because Vector offers a map method with an appropriate signature, you can perform the same kinds of
functional transformations on Vectors as you can on Lists, either by calling map directly or using for-yield.

Bill Venners
@bvenners



24.1 Mutable and immutable collections 

As is now familiar to you, Scala collections systematically distinguish between mutable and immutable collections. A
mutable collection can be updated or extended in place. This means you can change, add, or remove elements of a
collection as a side effect. Immutable collections, by contrast, never change. You still have operations that simulate
additions, removals, or updates, but those operations will in each case return a new collection and leave the old collection
unchanged.

All collection classes are found in the package scala.collection or one of its subpackages: mutable, immutable, and generic.

Most collection classes needed by client code exist in three variants, each of which has different characteristics with
respect to mutability. The three variants are located in packages scala.collection, scala.collection.immutable, and
scala.collection.mutable.

A collection in package scala.collection.immutable is guaranteed to be immutable for everyone. Such a collection will never
change after it is created. Therefore, you can rely on the fact that accessing the same collection value repeatedly at different
points in time will always yield a collection with the same elements.

A collection in package scala.collection.mutable is known to have some operations that change the collection in place. 
These operations let you write code to mutate the collection yourself. However, you must be careful to understand and 
defend against any updates performed by other parts of the code base. 

A collection in package scala.collection can be either mutable or immutable. 

For instance, scala.collection.IndexedSeq[T] is a supertrait of both scala.collection.immutable.IndexedSeq[T] and its 
mutable sibling scala.collection.mutable.IndexedSeq[T]. 

Lex Spoon



Generally, the root collections in package scala.collection support transformation operations affecting the whole
collection, such as map and filter. The immutable collections in package scala.collection.immutable typically add
operations for adding and removing single values, and the mutable collections in package scala.collection.mutable add
some side-effecting modification operations to the root interface.

Another difference between root collections and immutable collections is that clients of an immutable collection have a
guarantee that nobody can mutate the collection, whereas clients of a root collection only know that they can’t change the
collection themselves. Even though the static type of such a collection provides no operations for modifying the collection,
it might still be possible that the run-time type is a mutable collection that can be changed by other clients.

By default, Scala always picks immutable collections.

For instance, if you just write Set without any prefix or without having imported anything, you get an immutable set, and if
you write Iterable you get an immutable iterable, because these are the default bindings imported from the scala package.

To get the mutable default versions, you need to write explicitly collection.mutable.Set, or collection.mutable.Iterable.

The last package in the collection hierarchy is collection.generic. This package contains building blocks for abstracting over
concrete collections. Everyday users of the collection framework should need to refer to classes in generic only in exceptional
circumstances.

Frank Sommers



24.2 Collections consistency 

The most important collection classes are shown in Figure 24.1. 

Iterable
Seq

IndexedSeq
…
Vector
…

LinearSeq
List

…
Buffer

ListBuffer
ArrayBuffer

Set
… 

Map
…

24.3 Trait Iterable 
At the top of the collection hierarchy is trait Iterable[A], where A is the type of the collection’s elements. All methods in this 
trait are defined in terms of an abstract method, iterator, which yields the collection’s elements one by one. 

def iterator: Iterator[A] 

Collection classes implementing Iterable just need to define this single method; all other methods can be inherited from
Iterable.  

Martin Odersky
@odersky



Iterable also defines many concrete methods

• Iteration operations …
• Addition …
• Map operations 
• Conversions …
• Copying operations …
• Size operations …
• Element retrieval operations head, last, headOption, lastOption, and find. These select the first or last element of a 

collection, or else the first element matching a condition. Note, however, that not all collections have a well-defined 
meaning of what “first” and “last” means. …

• Subcollection retrieval operations …
• Subdivision operations …
• Element tests …
• Specific folds …
• String operations …
• View operation …
…

24.4 The sequence traits Seq, IndexedSeq, and LinearSeq 
The Seq trait represents sequences. A sequence is a kind of iterable that has a length and whose elements have fixed index 
positions, starting from 0.

The operations on sequences, summarized in Table 24.2, fall into the following categories: 

Indexing and length operations apply, isDefinedAt, length, indices, lengthCompare, and lengthIs. For a Seq, apply means
indexing; hence a sequence of type Seq[T] is a partial function that takes an Int argument (an index) and yields a sequence
element of type T. In other words Seq[T] extends PartialFunction[Int, T]. The elements of a sequence are indexed from zero
up to the length of the sequence minus one. The length method on sequences is an alias of the size method of general
collections.

Bill Venners
@bvenners



• Addition operations +: (alias, prepended), ++: (alias, prependedAll), :+ (alias, appended), :++ (alias, appendedAll), and 
padTo, which return new sequences obtained by adding elements at the front or the end of a sequence. 

• Update operations updated and patch, which return a new sequence obtained by replacing some elements of the 
original sequence. 

• Sorting operations …
• Reversal operations …
• Comparison operations …
• Multiset operations …

If a sequence is mutable, it offers in addition a side-effecting update method, which lets sequence elements be updated.

Recall from Chapter 3 that syntax like seq(idx) = elem is just a shorthand for seq.update(idx, elem). Note the difference
between update and updated. The update method changes a sequence element in place, and is only available for
mutable sequences. The updated method is available for all sequences and always returns a new sequence instead of
modifying the original.

Each Seq trait has two subtraits, LinearSeq and IndexedSeq, which offer different performance characteristics.

A linear sequence has efficient head and tail operations, whereas an indexed sequence has efficient apply, length, and (if
mutable) update operations.

List is a frequently used linear sequence, as is LazyList.

Two frequently used indexed sequences are Array and ArrayBuffer.

The Vector class provides an interesting compromise between indexed and linear access. It has both effectively constant
time indexing overhead and constant time linear access overhead.

Because of this, vectors are a good foundation for mixed access patterns where both indexed and linear accesses are
used. More on vectors in Section 24.7.

Lex Spoon



Mutable IndexedSeq adds operations for transforming its elements in place. These operations (mapInPlace, sortInPlace, 
sortInPlaceBy, sortInPlaceWith) …, contrast with operations such as map and sort, available on Seq, which return a new
collection instance. 

Buffers
An important sub-category of mutable sequences is buffers.

Buffers allow not only updates of existing elements but also element insertions, element removals, and efficient
additions of new elements at the end of the buffer.

The principal new methods supported by a buffer are += (alias, append) and ++= (alias, appendAll) for element addition
at the end, +=: (alias, prepend) and ++=: (alias, prependAll) for addition at the front, insert and insertAll for element
insertions, and remove, -= (alias, subtractOne) and --= (alias, subtractAll) for element removal. …

Two Buffer implementations that are commonly used are ListBuffer and ArrayBuffer.

As the name implies, a ListBuffer is backed by a List and supports efficient conversion of its elements to a List, whereas
an ArrayBuffer is backed by an array, and can be quickly converted into one.

…

Frank Sommers



24.7 Concrete immutable collection classes 

Scala provides many concrete immutable collection classes for you to choose from. They differ in the traits they
implement (maps, sets, sequences), whether they can be infinite, and the speed of various operations. We’ll start by
reviewing the most common immutable collection types.

Lists
Lists are finite immutable sequences. They provide constant-time access to their first element as well as the rest of the
list, and they have a constant-time cons operation for adding a new element to the front of the list. Many other
operations take linear time. See Chapters 14 and 1 for extensive discussions about lists.

LazyLists
…
Immutable ArraySeqs 
Lists are very efficient if you use algorithms that work exclusively at the front of the list. Accessing, adding, and removing
the head of a list takes constant time. Accessing or modifying elements deeper in the list, however, takes time linear in
the depth into the list. As a result, a list may not be the best choice for algorithms that don’t limit themselves to
processing just the front of the sequence.

ArraySeq is an immutable sequence type, backed by a private Array, that addresses the inefficiency of random access on
lists.

ArraySeqs allow you to access any element of the collection in constant time. As a result, you need not worry about
accessing just the head of an ArraySeq. Because you can access elements at arbitrary locations in contant time, ArraySeqs
can be more efficient than lists for some algorithms.

On the other hand, since ArraySeqs are backed by an Array, prepending to an ArraySeq requires linear time, not constant
time as with list. Moreover, any addition or update of a single element requires linear time on ArraySeq, because the
entire underlying array must be copied.

Martin Odersky
@odersky



Vectors
List and ArraySeq are efficient data structures for some use cases but inefficient for others.

For example, prepending an element is constant time for List, but linear time for ArraySeq.

Conversely, indexed access is constant time for ArraySeq, but linear time for List.

Vector provides good performance for all its operations.

Access and update to any elements of a vector takes only “effectively constant time,” as defined below. It’s a larger
constant than for access to the head of a list or for reading an element of an ArraySeq, but it’s a constant nonetheless.

As a result, algorithms using vectors do not have to be careful about accessing or updating just the head of the sequence.
They can access and update elements at arbitrary locations, and thus they can be much more convenient to write.

Vectors are built and modified just like any other sequence: …
…

Vectors are represented as broad, shallow trees. Every tree node contains up to 32 elements of the vector or contains up to
32 other tree nodes. Vectors with up to 32 elements can be represented in a single node. Vectors with up to 32 * 32 = 1024
elements can be represented with a single indirection. Two hops from the root of the tree to the final element node are
sufficient for vectors with up to 215 elements, three hops for vectors with 220, four hops for vectors with 225 elements and
five hops for vectors with up to 230 elements.

So for all vectors of reasonable size, an element selection involves up to five primitive array selections. This is what we
meant when we wrote that element access is “effectively constant time.”

Bill Venners
@bvenners



Vectors are immutable, so you cannot change an element of a vector in place. 

However, with the updated method you can create a new vector that differs from a given vector only in a single element: 

val vec = Vector(1, 2, 3) 
vec.updated(2, 4) // Vector(1, 2, 4) 
vec // Vector(1, 2, 3) 

As the last line above shows, a call to updated has no effect on the original vector vec.

Like selection, functional vector updates are also “effectively constant time.”

Updating an element in the middle of a vector can be done by copying the node that contains the element, and every node
that points to it, starting from the root of the tree. This means that a functional update creates between one and five nodes
that each contain up to 32 elements or subtrees. This is certainly more expensive than an in-place update in a mutable
array, but still a lot cheaper than copying the whole vector.

Because vectors strike a good balance between fast random selections and fast random functional updates, they are
currently the default implementation of immutable indexed sequences:

collection.immutable.IndexedSeq(1, 2, 3) // Vector(1, 2, 3)
Frank Sommers



While Scala favours immutability, it always gives you a choice. If you have a use case that requires mutable collections, preferably locally inside of a method, you
have all the tools you need. In this chapter we’ll only take a quick look at the mutable collection types and focus on the immutable ones.

Immutable collections 
Figure 7.1 provides a somewhat simplified overview of the immutable collection type hierarchy. All types that are merely implementation details have been
omitted.

The most general immutable collection type is Iterable. A data structure of this type allows you to iterate over its elements — but also to do all kinds of other
things that are possible because we can iterate. For example, you can map, flatMap, and filter an Iterable.

There are three subtypes of Iterable: Seq, Set, and Map. While all of them can be iterated over, each of these has certain unique properties:
• A Seq allows access to elements by index. Being ordered like this, it also allows you to prepend or append elements.

Daniel Westheide
@kaffeecoder



Indexed versus linear sequences

Often, all you care about is that the elements of a collection form a sequence with a well-defined ordering. In that case,
it’s fine to program against the interface provided by the Seq trait. But sometimes you know that the way you’re going to
process these sequences requires efficient random access by index, or that you need to know the number of elements in
the sequence. In other cases, you might know that you’re going to need efficient access to the head and the tail of the
sequence — the first element and the remaining elements of the sequence.

In such cases you may want to program against a more specific interface. The Scala collections library provides two
subtypes of Seq: IndexedSeq and LinearSeq, respectively. Each of them makes different promises regarding the time
complexity of these operations. While an IndexedSeq is a good fit for the first use case, a LinearSeq caters to the second
one. Both of these are purely marker traits. They do not provide any additional operators, they are merely about
signaling different time complexity for certain operations at runtime.

Linear sequences 

There are three concrete types of LinearSeq: List, LazyList, and Queue. We’re going to look at LazyList a bit later in
this chapter. Queue provides a first-in-first-out data structure that is optimized both for efficient enqueuing and
dequeuing.

List is a linked list. It’s defined as an algebraic data type. A List[A] is either an empty list or a value plus a reference to
the remaining items.
…
Indexed sequences 

There are two concrete types of IndexedSeq. Vector allows you fast random access to its elements. Range is interesting 
because it’s not a generic collection type. Range is a subtype of IndexedSeq[Int]. If you need to create an inclusive 
range of Int numbers, you can call the to method available on Int as an extension method…
…

Daniel Westheide
@kaffeecoder



Mutable collections 
While the immutable collection types are used most commonly, some people have the occasional need for working with mutable collections. Scala caters to
these needs as well, so you don’t have to resort to the Java collections library in these situations.

Figure 7.2 provides an overview of the mutable collection type hierarchy. Please note that it’s somewhat simplified, leaving out some types that are merely
implementation details.

At a high level, the hierarchy of mutable collection types looks very similar to the immutable ones. Again, the most general collection type is Iterable. It
doesn’t actually provide any mutable operations, so its capabilities are identical to those of an immutable Iterable. Again, there are three subtypes of
Iterable: Seq, Set, and Map. Unlike an immutable Seq, a mutable one allows you to update an element at a specific index in place, using the update method.
…

Daniel Westheide
@kaffeecoder

…
When it comes to the Seq subtypes, there is a bigger difference. There are two types of Buffer, which is a growable and shrinkable kind of Seq.
An ArrayBuffer provides constant time access by index, whereas a ListBuffer provides constant time prepend and append operations.
…



Alvin Alexander
    @alvinalexander

11.1 Choosing a Collection Class

Problem
You want to choose a Scala collection class to solve a particular problem.

Solution
…
Choosing a sequence
When choosing a sequence— a sequential collection of elements — you have two main decisions:

• Should the sequence be indexed, allowing rapid access to any elements, or should it be implemented as a linked list?
• Do you want a mutable or immutable collection?

Beginning with Scala 2.10 and continuing with Scala 3, the recommended general-purpose go-to sequential collections for the 
combinations of mutable/immutable and indexed/linear are shown in Table 11-2.

Table 11-2. Scala’s recommended general-purpose sequential collections

As an example of reading that table, if you want an immutable, indexed collection, in general you should use a Vector; if you 
want a mutable, indexed collection, use an ArrayBuffer (and so on).

While those are the general-purpose recommendations, there are many more sequence alternatives. 

Immutable Mutable

Indexed Vector ArrayBuffer

Linear (Linked lists) List ListBuffer



Alvin Alexander
    @alvinalexander

While those are the general-purpose recommendations, there are many more sequence alternatives. The most
common immutable sequence choices are shown in

Class IndexedSeq LinearSeq Description

LazyList … …

List ✅ The go-to immutable linear sequence, it is a singly linked list.
Suited for prepending elements, and for recursive algorithms
that work by operating on the list’s head and tail.

Queue … …

Range … …

Vector ✅ The go-to immutable indexed sequence. The Scaladoc states,
“It provides random access and updates in effectively constant
time, as well as very fast append and prepend.”



Alvin Alexander
    @alvinalexander

The most common mutable sequence choices are shown in Table 11-4. Queue and Stack are also in this table because there are 
immutable and mutable versions of these classes. All quotes in the descriptions come from the Scaladoc for each class.

Note that I list ArrayBuffer and ListBuffer under two columns. That’s because while they are both descendants of Buffer—which 
is a Seq that can grow and shrink—ArrayBuffer behaves like an IndexedSeq and ListBuffer behaves like a LinearSeq.
In addition to the information shown in these tables, performance can be a consideration. See Recipe 11.2 if performance is
important to your selection process.

Class IndexedSeq LinearSeq Buffer Description

Array ✅ Backed by a Java array, its elements are mutable, but it 
can’t change in size.

ArrayBuffer ✅ ✅ The go-to class for a mutable indexed sequence. “Uses
an array internally. Append, update and random access
take constant time (amortized time). Prepends and
removes are linear in the buffer size.”

ArrayDeque … …

ListBuffer ✅ ✅ Like an ArrayBuffer, but backed by a list. The 
documentation states, “If you plan to convert the buffer
to a list, use ListBuffer instead of ArrayBuffer.” Offers 
constant-time prepend and append; most other 
operations are linear.

Queue … …

Stack … …

StringBuilder … …

https://learning.oreilly.com/library/view/scala-cookbook-2nd/9781492051534/ch11.html
https://learning.oreilly.com/library/view/scala-cookbook-2nd/9781492051534/ch11.html


Alvin Alexander
    @alvinalexander

When creating an API for a library, you may want to refer to your sequences in terms of their superclasses. Table 11-5 shows the 
traits that are often used when referring generically to a collection in an API. Note that all quotes in the descriptions come from 
the Scaladoc for each class.

Table 11-5. Traits commonly used in library APIs

Trait Description

IndexedSeq A sequence that implies that random access of elements is efficient. “Have
efficient apply and length.”

LinearSeq A sequence that implies that linear access to elements is efficient. “Have
efficient head and tail operations.”

Seq The base trait for sequential collections. Use when it isn’t important to indicate that the
sequence is indexed or linear in nature.

Iterable The highest collection level. Use it when you want to be very generic about the type being
returned. (It’s the rough equivalent of declaring that a Java method returns Collection.)

https://learning.oreilly.com/library/view/scala-cookbook-2nd/9781492051534/ch11.html


Alvin Alexander
    @alvinalexander

11.2 Understanding the Performance of Collections

Problem
When choosing a collection for an application where performance is important, you want to choose the right collection for 
the algorithm.

Solution
In many cases, you can reason about the performance of a collection by understanding its basic structure.

For instance, a List is a singly linked list, and because it’s not indexed, if you need to access an element like list(1_000_000), that
requires traversing one million elements. Therefore it’s going to be much slower than accessing the one-millionth element of
a Vector, because Vector is indexed.

In other cases, it can help to look at the tables. For instance, Table 11-10 shows that the append operation on a Vector is eC,
or effectively constant time. As a result, I can create a large Vector in the REPL on my computer in under a second like this:

var a = Vector[Int]() 
for i <- 1 to 50_000 do a = a :+ i

However, as the table shows, the append operation on a List requires linear time, so attempting to create a List of the same size 
takes a much longer time—over 15 seconds.

Note that neither of those approaches is recommended for real-world code. I only use them to demonstrate the performance 
difference between Vector and List for append operations.

https://learning.oreilly.com/library/view/scala-cookbook-2nd/9781492051534/ch11.html


Performance characteristics keys
Before looking at the performance tables, Table 11-9 shows the performance characteristic keys that are used in the tables that 
follow it.

Table 11-9. Performance characteristic keys for the subsequent tables

Alvin Alexander
    @alvinalexander

Key Description

Con The operation takes (fast) constant time.

eC The operation takes effectively constant time, but this might depend on some assumptions, such as
maximum length of a vector, or distribution of hash keys.

aC The operation takes amortized constant time. Some invocations of the operation might take longer,
but if many operations are performed, on average only constant time per operation is taken.

Log The operation takes time proportional to the logarithm of the collection size.

Lin The operation is linear, so the time is proportional to the collection size.

- The operation is not supported.

https://learning.oreilly.com/library/view/scala-cookbook-2nd/9781492051534/ch11.html


Performance characteristics for sequential collections
Table 11-10 shows the performance characteristics for operations on immutable and mutable sequential collections.

Table 11-10. Performance characteristics for sequential collections

Alvin Alexander
    @alvinalexander

head tail apply update prepend append insert

Immutable

List Con Con Lin Lin Con Lin -

LazyList

ArraySeq

Vector eC eC eC eC eC eC -

Queue

Range

String

Mutable

ArrayBuffer Con Lin Con Con Lin aC Lin

ListBuffer Con Lin Lin Lin Con Con Lin

StringBuilder

Queue

ArraySeq

Stack

Array Con Lin Con Con - - -

ArrayDeque

https://learning.oreilly.com/library/view/scala-cookbook-2nd/9781492051534/ch11.html


Performance characteristics for sequential collections
Table 11-10 shows the performance characteristics for operations on immutable and mutable sequential collections.
Table 11-10. Performance characteristics for sequential collections

…
Discussion
As you can tell from the descriptions of the keys in Table 11-9, when choosing a collection you’ll generally want to look for the
Con, eC, and aC keys to find your best performance.
For instance, because List is a singly linked list, accessing the head and tail elements are fast operations, as is the process of
prepending elements, so those operations are shown with the Con key in Table 11-10. But appending elements to a List is a
very slow operation—linear in proportion to the size of the List—so the append operation is shown with the Lin key.
See Also
With permission from EPFL, the tables in this recipe have been reproduced from the performance characteristics Scala
documentation page.

Alvin Alexander
    @alvinalexander

Operation Description

head Selecting the first element of the sequence.

tail Producing a new sequence that consists of all elements of the sequence except the first one.

apply Indexing.

update Functional update for immutable sequences, side-effecting update for mutable sequences.

prepend Adding an element to the front of the sequence. For immutable sequences, this produces a
new sequence. For mutable sequences, it modifies the existing sequence.

append Adding an element at the end of the sequence. For immutable sequences, this produces a new
sequence. For mutable sequences, it modifies the existing sequence.

insert Inserting an element at an arbitrary position in the sequence. This is supported directly only
for mutable sequences.

https://learning.oreilly.com/library/view/scala-cookbook-2nd/9781492051534/ch11.html
https://learning.oreilly.com/library/view/scala-cookbook-2nd/9781492051534/ch11.html
https://learning.oreilly.com/library/view/scala-cookbook-2nd/9781492051534/ch11.html
https://www.epfl.ch/labs/lamp
https://oreil.ly/2pDnn
https://oreil.ly/2pDnn


Chapter 12. Collections: Common Sequence Classes
In this chapter on the Scala collections, we’ll examine the most common sequence classes. 

As mentioned in Recipe 11.1, “Choosing a Collections Class”, the general sequence class recommendations are to use:

Vector as your go-to immutable indexed sequence
List as your go-to immutable linear sequence

ArrayBuffer as your go-to mutable indexed sequence
ListBuffer as your go-to mutable linear sequence

Vector
As discussed in Recipe 11.1, “Choosing a Collections Class”, Vector is the preferred immutable indexed sequence class because 
of its general performance characteristics. You’ll use it all the time when you need an immutable sequence.
Because Vector is immutable, you apply filtering and transformation methods on one Vector to create another one. …
…
List
If you’re coming to Scala from Java, you’ll quickly see that despite their names, the Scala List class is nothing like the
Java List classes, such as the Java ArrayList. The Scala List class is immutable, so its size as well as the elements it contains
can’t change. It’s implemented as a linked list, where the preferred approach is to prepend elements. Because it’s a linked list,
you typically traverse the list from head to tail, and indeed, it’s often thought of in terms of its head and tail methods (along
with isEmpty).

Like Vector, because a List is immutable, you apply filtering and transformation methods on one list to create another list. …
…
LIST VERSUS VECTOR
You may wonder when you should use a List instead of a Vector. The performance characteristics detailed in Recipe 11.2, 
“Understanding the Performance of Collections”, provide the general rules about when to select one or the other.
…
So List definitely has its uses, especially when you think of it as what it is, a simple singly linked list. …

Alvin Alexander
    @alvinalexander

Immutable Mutable

Indexed Vector ArrayBuffer

Linear (Linked lists) List ListBuffer

https://learning.oreilly.com/library/view/scala-cookbook-2nd/9781492051534/ch11.html
https://learning.oreilly.com/library/view/scala-cookbook-2nd/9781492051534/ch11.html
https://learning.oreilly.com/library/view/scala-cookbook-2nd/9781492051534/ch11.html
https://learning.oreilly.com/library/view/scala-cookbook-2nd/9781492051534/ch11.html


ArrayBuffer
ArrayBuffer is the preferred mutable indexed sequence class. Because it’s mutable, you apply transformation methods
directly on it to update its contents.
…
Array
The Scala Array is unique: it’s mutable in that its elements can be changed, but immutable in size—it can’t grow or shrink. By
comparison, other collections like List and Vector are completely immutable, and ArrayBuffer is completely mutable.

Array has the unique distinction of being backed by the Java array, so a Scala Array[Int] is backed by a Java int[].

Although the Array may often be demonstrated in Scala examples, the recommendation is to use the Vector class as your go-
to immutable indexed sequence class, and ArrayBuffer as your mutable indexed sequence of choice. In keeping with this
suggestion, in my real-world code, I use Vector and ArrayBuffer for those use cases, and then convert them to an Array when
needed.

For some operations the Array can have better performance than other collections, so it’s important to know how it works.
See Recipe 11.2, “Understanding the Performance of Collections”, for those details.

Alvin Alexander
    @alvinalexander

https://learning.oreilly.com/library/view/scala-cookbook-2nd/9781492051534/ch11.html


12.1 Making Vector Yout Go-To Immutable Sequence

Problem
You want a fast general-purpose immutable sequential collection type for your Scala applications.

Solution
The Vector class is considered the go-to general-purpose indexed immutable sequential collection. Use a List if you prefer
working with a linear immutable sequential collection.
…
Discussion
The Scala documentation on concrete immutable collection classes states the following:

Vector is a collection type that addresses the inefficiency for random access on lists. Vectors allow accessing any
element of the list in “effectively” constant time….Because vectors strike a good balance between fast random
selections and fast random functional updates, they are currently the default implementation of immutable indexed
sequences.

As noted in “Understanding the Collections Hierarchy”, when you create an instance of an IndexedSeq, Scala returns a Vector:

scala> val x = IndexedSeq(1,2,3)
x: IndexedSeq[Int] = Vector(1, 2, 3)

As a result, I’ve seen some developers use an IndexedSeq in their code rather than a Vector to express their desire to create an
indexed immutable sequence and leave the implementation details to the compiler. Alvin Alexander

    @alvinalexander

https://oreil.ly/idUJt
https://learning.oreilly.com/library/view/scala-cookbook-2nd/9781492051534/ch11.html


12.7 Making ArrayBuffer Yout Go-To Mutable Sequence

Problem
You want to create an array whose size can change, i.e., a completely mutable array.

Solution
An Array is mutable in that its elements can change, but its size can’t change. To create a mutable indexed sequence whose
size can change, use the ArrayBuffer class.
…
Discussion
…
Notes about ArrayBuffer and ListBuffer
The ArrayBuffer Scaladoc provides these details about ArrayBuffer performance: “Append, update, and random access take
constant time (amortized time). Prepends and removes are linear in the buffer size.”

If you need a mutable sequential collection that works more like a List (i.e., a linear sequence rather than an indexed
sequence), use ListBuffer instead of ArrayBuffer. The Scala documentation on the ListBuffer states, “A Buffer implementation
backed by a list. It provides constant time prepend and append. Most other operations are linear.” See Recipe 12.5 for
more ListBuffer details.

Alvin Alexander
    @alvinalexander

https://oreil.ly/dtWfX
https://learning.oreilly.com/library/view/scala-cookbook-2nd/9781492051534/ch12.html


4.2 Immutable Collections.
While Arrays are the low-level primitive, most Scala applications are built upon its mutable and immutable collections:
Vectors, Lists, Sets and Maps. Of these, immutable collections are by far the most common.

Immutable collections rule out an entire class of bugs due to unexpected modifications, and are especially useful in multi-
threaded scenarios, where you can safely pass immutable collections between threads without worrying about thread-safety
issues. Most immutable collections use Structural Sharing (4.4.2) to make creating and updated copies cheap, allowing you to
use them in all but the most performance critical code.

4.2.1 Immutable Vectors.
Vectors are fixed-size, immutable linear sequences. They are a good general-purpose sequence data structure, and provide
efficient O(log n) performance for most operations.
…
Unlike Arrays, where a(…) = … mutates it in place, a Vector’s .updated method returns a new Vector with the modification,
while leaving the old Vector unchanged. Due to Structural Sharing, this is a reasonably efficient O(log n) operation. Similarly,
using :+ and +: to create a new Vector with additional elements on either side, or using tail to create a new Vector with one
element removed, are all O(log n) as well.

Vectors support the same Operations (4.1) that Arrays and other collections do: builders (4.1.1), factory methods (4.1.2),
transforms (4.1.3), etc.

In general, using Vectors is handy when you have a sequence you know you will not change, but need flexibility in how you
work with it. Their tree structure makes most operations reasonably efficient, although they will never be quite as fast as
Arrays for in-place updates or immutable Lists (4.2.5) for adding and removing elements at the front.

4.2.2 Structural Sharing.
Vectors implement their O(log n) copy-and-update operations by re-using portions of their tree structure. This avoids
copying the whole tree, resulting in a “new” Vector that shares much of the old tree structure with only minor modifications.

Li Haoyi
@lihaoyi



Consider a large Vector, v1:

@ val v1 = Vector(1, 2, 0, 9, 7, 2, 9, 6, …, 3, 2, 5, 5, 4, 8, 4, 6)

This is represented in-memory as a tree structure, whose breadth and depth depend on the size of the Vector:

This example is somewhat simplified – a Vector in Scala has 32 elements per tree node rather than the 4 shown above – but it
will serve us well enough to illustrate how the Vector data structure works.

Let us consider what happens if we want to perform an update, e.g. replacing the fifth value 7 in the above Vector with the
value 8:

@ val v2 = v1.updated(4, 8)

@ v2
res50: Vector[Int] = Vector(1, 2, 0, 9, 8, 2, 9, 6, …, 3, 2, 5, 5, 4, 8, 4, 6)

Li Haoyi
@lihaoyi

1 2 0 9 3 2 5 5 4 8 4 6

7 2 9 6 … … … … … … … … … … … …

v1



This is done by making updated copies of the nodes in the tree that are in the direct path down to the value we wish to
update, but re-using all other nodes unchanged:

In this example Vector with 9 nodes, only 3 of the nodes end up needing to be copied. In a large Vector, the number of nodes
that need to be copied is proportional to the height of the tree, while other nodes can be re-used: this structural sharing is
what allows updated copies of the Vector to be created in only O(log n) time. This is much less than the O(n) time it takes to
make a full copy of a mutable Array or other data structure.

Nevertheless, updating a Vector does always involve a certain amount of copying, and will never be as fast as updating
mutable data structures in-place. In some cases where performance is important and you are updating a collection very
frequently, you might consider using a mutable ArrayDeque (4.3.1), which has faster O(1) update/append/prepend
operations, or raw Arrays, if you know the size of your collection in advance.

3 2 5 5 4 8 4 6

7 2 9 6 … … … … … … … … … … … …

v1v2

1 2 0 9

8 2 9 6

Li Haoyi
@lihaoyi



4.2.5 Immutable Lists.
…
Scala’s immutable Lists are a singly-linked data structure. Each node in the List has a value and a pointer to the next node,
terminating in a Nil node. Lists have a fast O(1) .head method to look up the first item in the list, a fast O(1) .tail method to
create a list without the first element, and a fast O(1) :: operator to create a new list with one more element in front.

scala> val myList = List(1, 2, 3, 4, 5)
val myList: List[Int] = List(1, 2, 3, 4, 5)

scala> myList.head
val res0: Int = 1

scala> val myTail = myList.tail
val myTail: List[Int] = List(2, 3, 4, 5)

scala> val myOtherList = 0 :: myList
val myOtherList: List[Int] = List(0, 1, 2, 3, 4, 5)

scala> val myThirdList = -1 :: myList
val myThirdList: List[Int] = List(-1, 1, 2, 3, 4, 5)

.tail and :: are efficient because they can share much of the existing List: .tail returns a reference to the next node in the singly-
linked structure, while :: adds a new node in front. The fact that multiple lists can share nodes means that in the above example,
myList, myTail, myOtherList and myThirdList are actually mostly the same data structure:

2 3 4 5 Nil

0 1

-1 myTail

myList

myOtherList

myThirdList

Li Haoyi
@lihaoyi



This can result in significant memory savings if you have a large number of collections that have identical elements on one
side, e.g. paths on a file system which all share the same prefix.

Rather than creating an updated copy of an Array in O(n) time, or an updated copy of a Vector in O(log n) time, prepending
an item to a List is a fast O(1) operation.

The downside of Lists is that indexed lookup via myList(i) is a slow O(n) operation, since you need to traverse the list starting
from the left to find the element you want.

Appending/removing elements on the right hand side of the list is also a slow O(n), since it needs to make a copy of the entire
list.

For use cases where you want fast indexed lookup or fast appends/removes on the right, you should consider using Vectors
(4.2.1) or mutable ArrayDeques (4.3.1) instead.

2 3 4 5 Nil

0 1

-1 myTail

myList

myOtherList

myThirdList

Li Haoyi
@lihaoyi



In the rest of this deck we are going to consider all the possible pairs of collections drawn from the following list

• List
• Vector
• ListBuffer
• ArrayBuffer
• Array

and then for each such pair, we are going to see a single slide providing a quick visual reminder of the 
differences between the time complexities of the following operations, as implemented by the pair’s two 
collections:

• head  head xs
• tail  tail xs
• apply  xs(i)
• update xs(i) = x
• prepend x +: xs
• append xs :+ x
• insert xs.insert(i,x)

@philip_schwarz



Scala 
Documentation

Scala Cookbook This Slide 
Deck

Description Notes

C Con O(1) The operation takes (fast) constant time.

eC eC O(log	n) The operation takes effectively constant
time, but this might depend on some
assumptions, such as maximum length of
a vector, or distribution of hash keys.

We use this for Vector’s effectively
constant operations.

aC aC amortized O(1) The operation takes amortized constant
time. Some invocations of the operation
might take longer, but if many operations
are performed, on average only constant
time per operation is taken.

We use this for ArrayBuffer’s append 
operation, whose time complexity is 
amortized constant time.

Log Log N/A The operation takes time proportional to
the logarithm of the collection size.

We don’t need this.

L Lin O(n) The operation is linear, so the time is
proportional to the collection size.

- - - The operation is not supported.

In the upcoming tables we indicate the 
various time complexities as follows

The Scala documentation is from https://docs.scala-lang.org/overviews/collections-2.13/performance-characteristics.html 

https://docs.scala-lang.org/overviews/collections-2.13/performance-characteristics.html


head tail apply update prepend append insert

List Linear Immutable O(1) O(1) O(n) O(n) O(1) O(n) -

Vector Indexed Immutable O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) -

head tail apply update prepend append insert

O(1) O(1) O(n) O(n) O(1) O(n) -

O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) -

head tail apply update prepend append insert

O(1) O(1) O(n) O(n) O(1) O(n) -

O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) -

head tail apply update prepend append insert

O(1) O(1) O(n) O(n) O(1) O(n) -

O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) -

The apply, update and append operations of 
a Vector have much better time complexity 
profiles than those of a List. 

The head, tail and prepend operations of a 
Vector have time complexity profiles that are 
not much worse than that those of a List. 

The operations of a Vector have complexity 
profiles that are a good compromise over 
those of a List.

head tail apply update prepend append insert

O(1) O(1) O(n) O(n) O(1) O(n) -

O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) -

Neither List nor Vector support insertions.



head tail apply update prepend append insert

List Linear Immutable O(1) O(1) O(n) O(n) O(1) O(n) -

ListBuffer Linear Mutable O(1) O(n) O(n) O(n) O(1) O(1) O(n)

head tail apply update prepend append insert

O(1) O(1) O(n) O(n) O(1) O(n) -

O(1) O(n) O(n) O(n) O(1) O(1) O(n)

head tail apply update prepend append insert

O(1) O(1) O(n) O(n) O(1) O(n) -

O(1) O(n) O(n) O(n) O(1) O(1) O(n)

head tail apply update prepend append insert

O(1) O(1) O(n) O(n) O(1) O(n) -

O(1) O(n) O(n) O(n) O(1) O(1) O(n)

In List, tail is constant and append is linear. 
In ListBuffer it is the other way round.

The size of ListBuffer can change, so it allows 
insertions.

The head, apply, update and prepend 
operations of List have the same time 
complexity profile as those of ListBuffer.



head tail apply update prepend append insert

Vector Indexed Immutable O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) -

ArrayBuffer Indexed Mutable O(1) O(n) O(1) O(1) O(n) amort	O(1) O(n)

head tail apply update prepend append insert

O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) -

O(1) O(n) O(1) O(1) O(n) amort	O(1) O(n)

The size of an ArrayBuffer can change, so it 
allows insertions.

The head, random-access, update and 
append operations of an ArrayBuffer have 
better  time complexity profiles than those of 
a Vector. 

head tail apply update prepend append insert

O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) -

O(1) O(n) O(1) O(1) O(n) amort	O(1) O(n)

head tail apply update prepend append insert

O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) -

O(1) O(n) O(1) O(1) O(n) amort	O(1) O(n)

The tail and prepend operations of an 
ArrayBuffer have much worse time 
complexity profiles than those of a Vector. 



head tail apply update prepend append insert

ListBuffer Linear Mutable O(1) O(n) O(n) O(n) O(1) O(1) O(n)

ArrayBuffer Indexed Mutable O(1) O(n) O(1) O(1) O(n) amort	O(1) O(n)

head tail apply update prepend append insert

O(1) O(n) O(n) O(n) O(1) O(1) O(n)

O(1) O(n) O(1) O(1) O(n) amort	O(1) O(n)

head tail apply update prepend append insert

O(1) O(n) O(n) O(n) O(1) O(1) O(n)

O(1) O(n) O(1) O(1) O(n) amort	O(1) O(n)

head tail apply update prepend append insert

O(1) O(n) O(n) O(n) O(1) O(1) O(n)

O(1) O(n) O(1) O(1) O(n) amort	O(1) O(n)

ListBuffer and ArrayBuffer both allow 
insertions since their size is allowed to 
change.

The prepend operation of ListBuffer has a 
much better time complexity profile than that 
of ArrayBuffer.

The random-access and update operations of 
ArrayBuffer have much better time 
complexity profiles than those of ListBuffer. 

head tail apply update prepend append insert

O(1) O(n) O(n) O(n) O(1) O(1) O(n)

O(1) O(n) O(1) O(1) O(n) amort	O(1) O(n)

The head and tail operations of ArrayBuffer 
have the same time complexity profiles as 
those of ListBuffer. 



head tail apply update prepend append insert

List Linear Immutable O(1) O(1) O(n) O(n) O(1) O(n) -

Array Indexed Mutable O(1) O(n) O(1) O(1) - - -

head tail apply update prepend append insert

O(1) O(1) O(n) O(n) O(1) O(n) -

O(1) O(n) O(1) O(1) - - -

While a List supports prepending and 
appending, the size of an Array is fixed, and 
so it does support them.

head tail apply update prepend append insert

O(1) O(1) O(n) O(n) O(1) O(n) -

O(1) O(n) O(1) O(1) - - -

head tail apply update prepend append insert

O(1) O(1) O(n) O(n) O(1) O(n) -

O(1) O(n) O(1) O(1) - - -

In List, tail is constant whereas apply and 
update are linear. In Array it is the other way 
round.

While the size of an Array is fixed, so it 
cannot support insertion, the size of a List 
can grow, and yet it also does not support 
insertion.

The head operation of Array has the same 
complexity profile as that of List. 

head tail apply update prepend append insert

O(1) O(1) O(n) O(n) O(1) O(n) -

O(1) O(n) O(1) O(1) - - -



head tail apply update prepend append insert

Vector Indexed Immutable O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) -

Array Indexed Mutable O(1) O(n) O(1) O(1) - - -

head tail apply update prepend append insert

O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) -

O(1) O(n) O(1) O(1) - - -

head tail apply update prepend append insert

O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) -

O(1) O(n) O(1) O(1) - - -

head tail apply update prepend append insert

O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) -

O(1) O(n) O(1) O(1) - - -

Neither Vector nor Array allow insertions.

head tail apply update prepend append insert

O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) O(log	n) -

O(1) O(n) O(1) O(1) - - -

While Vector supports prepend and append, 
Array does not, since its size cannot change.

The random-access and update operations of 
Array have better time complexity profiles 
than those of Vector. 

The tail operation of Array has a much worse 
time complexity profiles than that of Vector. 



head tail apply update prepend append insert

ArrayBuffer Indexed Mutable O(1) O(n) O(1) O(1) O(n) amort	O(1) O(n)

Array Indexed Mutable O(1) O(n) O(1) O(1) - - -

head tail apply update prepend append insert

O(1) O(n) O(1) O(1) O(n) amort	O(1) O(n)

O(1) O(n) O(1) O(1) - - -

head tail apply update prepend append insert

O(1) O(n) O(1) O(1) O(n) amort	O(1) O(n)

O(1) O(n) O(1) O(1) - - -

While ArrayBuffer supports prepending, 
appending and inserting, Array has a fixed 
size, and so it does not support those 
operations.

The head, tail, random-access and update 
operations of Array have the same time 
complexity profiles as those of ArrayBuffer. 



head tail apply update prepend append insert

ListBuffer Linear Mutable O(1) O(n) O(n) O(n) O(1) O(1) O(n)

Array Indexed Mutable O(1) O(n) O(1) O(1) - - -

The head and tail operations of Array have 
the same time complexity profiles as those of 
ListBuffer. 

head tail apply update prepend append insert

O(1) O(n) O(n) O(n) O(1) O(1) O(n)

O(1) O(n) O(1) O(1) - - -

head tail apply update prepend append insert

O(1) O(n) O(n) O(n) O(1) O(1) O(n)

O(1) O(n) O(1) O(1) - - -

head tail apply update prepend append insert

O(1) O(n) O(n) O(n) O(1) O(1) O(n)

O(1) O(n) O(1) O(1) - - -

The random-access and update operations of 
Array have much better  time complexity 
profiles than those of ListBuffer. 

While ListBuffer supports prepending, 
appending and inserting, Array has a fixed 
size, and so it does not support those 
operations.



That’s all. I hope you found it useful!

@philip_schwarz


