Functional Effects

Part 2

learn about functional effects through the work of

John A De Goes
Il @jdegoes

slides by u @philip_schwarz

~§5,S|ideshare https://www.slideshare.net/pjschwarz

In this slide deck we go through the following two sections of
One Monad to Rule Them All, a great talk by John A De Goes:
* Intro to Functional Effects

* Tour of the Effect Zoo

u @philip_schwarz

ONE MoONAD TO RULE

THEM/ALL |

FuNncTioNaL JVM MEETUP John A De Goes
PRAGUE, AuG 8 2019 El @jdegoes

JouN A. DE GOES — @IDEGOES

g slideshare https://www.slideshare.net/jdegoes/one-monad-to-rule-them-all
Yo https://youtu.be/POUEZ8XHMhE

Every effect can be thought of as doing something.

If we want to turn that into a value, then instead of doing something, we turn that into a
description of doing something.

John A De Goes
Fl @jdegoes

[1 Go Running

So instead of going running, we’ll turn that into a piece of paper that says go running on it.

Only, in Scala we don’t actually write on a piece of paper, we end up building a data structure that
describes the act of going running.

I’ll give you a very simple example here of a little program that has effects in it.

def monitor: Boolean = {
if (sensor.tripped) {
securityCompany.call()
true
John A De Goes } else false

Fl @jdegoes }

It is actually doing stuff and this is not a value right now. This is a side effecting procedure. It’s a
method called monitor and what it does is it checks to see if a sensor is tripped and if it is tripped it
calls the security company returning true, otherwise if the sensor is not tripped it returns false.

Now this is a piece of side effecting code. The simplest possible way for us to transform this into a
value is to build a mini language.

We will build a data structure, that’s that sheet of paper, that will allow us to describe these
operations.

You can do that more or less by rote. In this case | am going to call this data structure an alarm,
and this alarm is going to be a sealed trait, so it’s going to be an enumeration, a sum type, and it
is going to have three different instructions in it

sealed trait Alarm[+A]

case class Return [A] (v 1 A) extends Alarm[A]
John A De Goes case class CheckTripped[A](f : Boolean => Alarm[A]) extends Alarm[A]
El @jdegoes case class Call [A](next: Alarm[A]) extends Alarm[A]

It is going to have a Return instruction, which returns a value, it is going to have a
CheckTripped instruction which allows us to look and see if the sensor has been tripped and
to choose to return different Alarms in the case that it is tripped or not tripped, and finally it is
going to have a Call instruction that allows us to describe the act of calling the security
company, as well as whatever we want to do after calling the security company.

Now, using this extraordinarily simple, immutable data structure, we can create a model of the side
effecting program that you saw before. And it is quite simple, the type of our value will be Alarm of
Boolean, this is an ordinary, immutable value. And what we do is we use the CheckTripped operation
as the first operation in our program. And we pass it a function that will be passed a Boolean value,
whether or not the sensor was tripped, and if it was tripped we are going to Return another Alarm,
value, which is going to call the security company and then Return true, and if the sensor is not tripped
we are just going to immediately Return false.

John A De Goes

val check: Alarm[Boolean] =

jd . .
El @jdegoes CheckTripped(tripped =>
if (tr‘ipped) sealed trait Alarm[+A]
case class Return [AJ(v : A) extends Alarm[A]
Call(Retur'n(tr'ue)) case class CheckTripped[A](f : Boolean => Alarm[A]) extends Alarm[A]
else case class Call [A](next: Alarm[A]) extends Alarm[A]
Return(false)

We have created a declarative description of the preceding side effecting program. There are no side
effects here, everything is a data structure and in fact it is an immutable data structure.

Now, this value is useful as an intermediate form in our program, because now we can store it in data
structures, we can accept it in our functions, we can return it from our functions, we can build
combinators that act on values of this type, however, it is not actually going to interact with the real
world.

To interact with the real world, we need to interpret this data structure into the side effects that it
represents. And this is called execution, or interpretation.

L1 Go Running

Execution

4>

John A De Goes
Fl @jdegoes

(interpretation)

To do this in the case of the Alarm data structure, we simply match against the three different cases,
and if it is Return, we return that value, if it is CheckTripped, we do what we did before, we check if
the sensor is tripped, we feed that result into f, and then we interpret the result of calling that. And
then finally, for Call(next) we call the security company and then we interpret the remainder of
the program.

def interpret[A](alarm: Alarm[A]): A = alarm match {
case Return(v) => v
case CheckTripped(f) => interpret(f(sensor.tripped))
case Call(next) => securityCompany.call(); interpret(next)

}

def interpret[A](alarm: Alarm[A]): A = alarm match {
case Return(v) => v
case CheckTripped(f) => interpret(f(sensor.tripped))
case Call(next) => securityCompany.call(); interpret(next)

}

This interpret function is not a pure function, it takes this immutable data structure and it interprets it
into the side effects that it describes, allowing us to regain the sort of real world practicality of the
preceding program, without sacrificing the fact that now we can use this data structure in most places
in our program.

John A De Goes
Fl @jdegoes

So this is a typical example of what a functional effect is, but in general:

"A functional effect is an immutable data type equipped with a set
of core operations that together provide a complete, type-safe

model of a domain concern.”
— John A. De Goes

Every single functional effect out there satisfies that definition. They look quite different. Not all of them
look like Alarm. | specifically chose Alarm because you have never seen anything like it before and
probably never will again. It is not very realistic but it is an example of a functional effect, because we had
our data type, it was immutable, it had three different operations in it and together we were able to
create a complete model of the preceding side-effecting code.

.ﬁ quick recap]

@ [a piece of side effecting code]

7

immutable data structure that can be used to create a model of the side effecting code] @

sealed trait Alarm[+A]

case class Return [A](Vv 1 A) extends Alarm[A]
case class CheckTripped[A](f : Boolean => Alarm[A]) extends Alarm[A]
case class Call [A](next: Alarm[A]) extends Alarm[A]

7

\

immutable data structure (no side effects here) that is a declarative description of the side effecting code]

def monitor: Boolean = {
if (sensor.tripped) {
securityCompany.call()
true
} else false

}

val check: Alarm[Boolean] =
CheckTripped(tripped =>
if (tripped)

Call(Return(true)) (::)
else
Return(false)

impure function that takes the immutable data structure and interprets it into the side effects that it describes

def interpret[A](alarm: Alarm[A]): A = alarm match {
case Return(v) => v
case CheckTripped(f) => interpret(f(sensor.tripped))
case Call(next) => securityCompany.call(); interpret(next)

}

sealed trait Alarm[+A]
case class Return [A](v
case class CheckTripped[A](f

1 A) extends Alarm[A]
: Boolean => Alarm[A]) extends Alarm[A]

case class Call [A](next: Alarm[A])

extends Alarm[A]

}

def interpret[A](alarm: Alarm[A]): A = alarm match {
case Return(v) => v
case CheckTripped(f) => interpret(f(sensor.tripped))
case Call(next) => securityCompany.call(); interpret(next)

L sensor.tripped;= true <

L | V4

interpret(
CheckTripped(tripped =>
if (tripped)
Call(Return(tru
else
Return(fals

/

interpret
if (true)
Call(Return(true))
else
Return(false)

)

interpret(
Call(Feturn(true))
) Y

—

\

securityCompany.call(); inteF;FE?Thext)

securityCompany.call(); interpret(Return(true))

interpret(Return(true))

true

Let’s have a go at using the
interpret function:

once when the sensor is
tripped

once when the sensor is
not tripped

L——"_ > | sensor.tripped;= false

L /

(v | @philip_schwarz

interpret(\

CheckTripped(tripped =>
if (tripped)

Call(Return(tru

else
Return(false

/
interpret(g/,
if (false)
Call(Return(true))

else
Return(false)

)

interpret(
Return(false)

)

false

For every concern out there, there already exists, or you can create, a functional effect to describe that
domain, and I'll give you some common examples:

Concern Effect Execution
Optionality Option[A] null or A
Disjunction Either[A,B] AorB
Nondeterminism List[A] Option[A]
John A De Goes
1 @jdegoes Input/Output I0[A] throwor A

If your concern is optionality, that is you want to compute and sometimes you are going to try and compute
something but it is not going to be there, then you can use the effect called Option, which is built into Scala.
It’s a functional effect. It’s an immutable data type and it has a set of instructions, operations, that allow us
to build up programs that use the feature of that functional effect, which is optionality. And like all
functional effects, we execute it, and at the end of the day, when we execute it, we get back either nothing, if
it wasn’t there, or we get back the A that was in the Option.

Disjunction, is another concern. So in some class of computation, we’ll either produce one type of result or a
different type of result entirely. An example would be errorful computation, so computation that can fail with
some specific error. That’s an example of the effect of disjunction, right? We are either going to fail with
something on the left or we are going to succeed with something on the right. And this functional effect is
also built into Scala using the Either data type. And when we execute it we either get back a Left of an A
or we get back a Right of a B.

John A De Goes
Fl @jdegoes

Concern Effect Execution
Optionality Option[A] null or A
Disjunction Either[A,B] AorB

Nondeterminism List[A] Option[A]
Input/Output IO[A] throwor A

Nondeterminism, less frequently used, is to do, for example, search, to solve problems in search, where we
are looking for a solution satisfying a particular requirements, there is the List data type, of course we use
the List data type just for ordinary storing of data, but we can also use it as a functional effect, a functional
effect that allows us to explore possible solutions to a given problem and to filter those by one satisfying a
given set of conditions. And when we execute or interpret that effect, we’ll either get back a solution, or
maybe our top ranked solution, or no solution at all, if no solutions were found, which corresponds to calling
headOption ona List.

And then also another example of a functional effect not baked into Scala but also extremely important is the
effect of Input/Output. So, when our programs interact with the external world, that functional effect is
described by 10-like data types. So Cats 10, Monix Task, ZIO’s ZIO data type and so on, Scalaz 7’s Task type, all
these allow us to describe input/output effects, effects between our program and the external sorrounding
environment. And when we execute them, which is not a functional operation, we either get back some
exception, some code failed, or we get back the A value that they succeeded with.

O pt | Oona I |ty A functional effect for optionality
(the Painful Way)

So | am going to give you an example of, a single fully worked example of a functional effect, and thih
the effect of optionality, but it’s in a way you have never seen before.

You know what the Option data type looks like in Scala. It has either Some or None, right? It is a
simplification of the real deal that we are going to look at now.

The real deal is a full model of the functional effect of optionality. I'll talk about the relationship with
Option at the end.

John A De Goes So I'll call this data type Maybe. This is going to be a functional effect for optionality, so if we are
Ed @jdegoes concerned with things that may or may not be there, this is the functional effect that we want to use.

waybe[A] can succeed with values of type A. However it can also fail to produce any value of type A. /

Maybe[A]

succeeds with values of type A

We are going to need four different operations to completely describe this functional effect:

A functional effect - .
for optionality Operation Signature

Present A => Maybe[A]

////' Absenf\j\\\\ Maybe[Nothing]
K////////V Map ’// \\\ (Maybe[A], A => B) => Maybe[B], <«

Chain) (Maybe[A], A => Maybe[B]) => Maybe[B],
/

One operation, which I'll call Present, allows us to take an A and stick it inside a Maybe of A. This is
when we have something and we want to stick it inside the functional effect to represent the fact that

John A De Goes it’s there.
Fl @jdegoes

Absent on the other hand is when we don’t have anything but we need to create a Maybe that has
some type. We are going to use that operation when we don’t have it and we want to indicate that. We
want to indicate that we don’t have a value of that type, so we use the Absent operation.

The Map operation is when we have a Maybe of A and we also want to map that A into a B by supplying a
function, so the pair of a Maybe of A and a function from A to B, you provide the Map operation those
two things, and you get back a Maybe of B.

And then finally the Chain operation will be used when we have a Maybe of A and then based on that A
we want to produce a Maybe of B, for some type B, and we want to combine both the Maybe of A
together with that callback, into a single Maybe of B.

A functional effect

for optionality

John A De Goes
Fl @jdegoes

In order to implement this functional effect, all we have to do is define a sealed trait with the four
operations we know we need:

sealed trait Maybe[+A]

case class Present[A](value: A) extends Maybe[A]
case object Absent extends Maybe[Nothing]
case class Map[A, B](maybe: Maybe[A], mapper: A => B) - extends Maybe[B]

case class Chain[A, B](first: Maybe[A], callback: A => Maybe[B]) extends Maybe[B]

* The Present operation simply stores the A.

* The Absent operation doesn’t store anything.

* The Map operation stores the Maybe and the mapper function.

* And then the Chain operation stores the Maybe and then the callback.

Once we have defined these four operations, we can then define map and flatMap on the Maybe data
type:
sealed trait Maybe[+A] { self =>

def map[B](f: A => B): Maybe[B] = Map(self, f)

def flatMap[B](f: A => Maybe[B]): Maybe[B] = Chain(self, f)

}

Furthermore, we can define Present and Absent on the maybe companion object:

object Maybe {
def present[A](value: A): Maybe[A] = Present(value)
val absent: Maybe[Nothing] = Absent

}

We now have everything necessary to define an interpreter for the effect of optionality. This interpreter matches the Maybe Q

type, and it has to handle each of the four cases.
A functional effect

for optionality def interpret[Z, A](ifAbsent: Z, f: A => Z)(maybe: Maybe[A]): Z =
maybe match {
case Present(a) => f(a)
case Absent => ifAbsent
case Map(old, f@) => interpret(ifAbsent, f.compose(f9))(old)
case Chain(old, f) => interpret(ifAbsent, a => interpret(ifAbsent, f)(f(a)))(old)

This function doesn’t
compile as it stands,
but the problem is
easily resolved (see
next two slides).

}

This function is going to interpret it (the Maybe[A]) to some type Z and the user who is interpreting this data type, has to supply
some function or some value called ifAbsent, which will be returned in the event that the computation fails to produce a value

\oftype A. And also they have to supply another function, which | am calling f here, it could be called 1fPresent, which will be
cal 4/////

led if the computation succeeds to produce an A. And in the end the interpreter is going to return a Z...

John A De Goes
[l @jdegoes

’ In the interpret function above, the names of the fields of Map and Chain differ from their corresponding names in
the Maybe trait (defined in the previous slide), and this may be confusing, so here is the trait again, just for reference.

sealed trait Maybe[+A]

case class Present[A](value: A) extends Maybe[A]
case object Absent extends Maybe[Nothing]
case class Map[A, B](maybe: Maybe[A], mapper: A => B) extends Maybe[B]

case class Chain[A, B](first: Maybe[A], callback: A => Maybe[B]) extends Maybe[B]

Here are the errors | got when | tried to compile the interpret function.
See next slide for how | addressed them.

def interpret[z, A](ifAbsent: 7, f: A = Z)(maybe: Maybe[A]): Z =
maybe match {
case Present(a) = f(a)
case Absent = ifAbsent
case Map(old, fo) =
interpret(ifAbsent, f.compose(f0))(old)
case Chain(old, f) =
interpret(ifAbsent, a = interpret(ifAbsent, f)(f(a)))(old)

Type mismatch, expected: Maybe[Nothing], actual: Maybe[A]

Here on the left is John’s original interpret function, and on the right you can see the
changes that | made to get it to compile and to make it slightly easier for me to understand.

u @philip_schwarz

def interpret[z, A](ifAbsent: Z, f: A => Z)(maybe: Maybe[A]): Z =
maybe match {
case Present(a) => f(a)
case Absent => ifAbsent
case Map(old, f@) =>
interpret(ifAbsent, f.compose(f0))(old)
case Chain(old, f) =>
interpret(ifAbsent, a => interpret(ifAbsent, f)(f(a)))(old)

def interpret[Z, A, B](ifAbsent: Z, f: B => Z)(maybe: Maybe[B]): Z =
maybe match {

case Present(b) => f(b)

case Absent => ifAbsent

case Map(old: Maybe[A], g: (A => B)) =>
interpret(ifAbsent, f compose g)(old)

case Chain(old: Maybe[A], g: (A => Maybe[B])) =>
interpret(ifAbsent, (a:A) => interpret(ifAbsent, f)(g(a)))(old)

} }
def interpret[z, Al(ifAbsent: Z, f: A = Z)(maybe: Maybe[A]): Z = » O def interpret[z, A, Bl(ifAbsent: 7z, f: B = Z)(maybe: Maybe[B]): Z =
maybe match { maybe match {
case Present(a) = f(a) » K case Present(b) = f(b)
case Absent = ifAbsent case Absent = ifAbsent
case Map(old, fo) = » KL case Map(old: Maybe[A], g: (A = B)) =
interpret(ifAbsent, f.compose(f0))(old) interpret(ifAbsent, f compose g)(old)
case Chain(old, f) = case Chain(old: Maybe[A], g: (A = Maybe[B])) =
interpret(ifAbsent, a = interpret(ifAbsent, f)(f(a)))(old) interpret(ifAbsent, (a:A) = interpret(ifAbsent, f)(g(a)))(old)
} }
()3 def interpret[Z, A] (ifAbsent: Z, f: A => Z)(maybe: Maybe[A]): Z = & def interpret[Z, A, B] (ifAbsent: Z, f: B => Z) (maybe: Maybe[B]): Z =
maybe match { maybe match {
)Y case Present(a) => f(a) & case Present(b) => f(b)
case Absent => ifAbsent case Absent => ifAbsent
(= case Map(old, f0) => & case Map(old: Maybe[A]l, g: (A => B)) =>

interpret(ifAbsent, f.compose(f0)) (old)
case Chain(old, f) =>

interpret(ifAbsent, a => interpret(ifAbsent, f)(f(a))) (old)

interpret(ifAbsent, f compose g) (old)
case Chain(old: Maybe[A]l, g: (A => Maybe[B])) =>

interpret(ifAbsent, (a:A) => interpret(ifAbsent, f)(g(a))) (old)

def interpret[Z, A, B](ifAbsent: Z, f: B => Z)(maybe: Maybe[B]): Z =

maybe match {
case Present(b) => f(b)
case Absent => ifAbsent

This is the slightly modified version of

A functional effect interpret mentioned in the previous slide,

i i so in John’s commentary below | have
for optionality Ca::"e Map(01df Maybe[A], g: (A => B)) => replaced A with B and got him to mention
interpret(ifAbsent, f compose g)(old) g (which in his version is called f0).

case Chain(old: Maybe[A], g: (A => Maybe[B])) =>

interpret(ifAbsent, (a:A) => interpret(ifAbsent, f)(g(a)))(old)
}

...this function is polymorphic in Z, so it ends up getting a Z, either from ifAbsent, if there was no A inside that Maybe, or it
gets it from f if there was an A inside that Maybe. It is going to get it from one of those two places and end up returning that
Z. How it does this is it matches against the Maybe data type:

* Ifthe Bis present it calls f(b) to immediately returna Z

John A De Goes * Ifthe Bis absent, then it just returns the ifAbsent value, to return the default.
[l @jdegoes * If the case is Map, then it interprets the thing that is being mapped and composes the mapper function g together with

the £ function and passes along the ifAbsent default value
* And then finally in the case of Chain it’s another relatively straightforward recursion, it just passes things along, drills
down into the inner data structure and then maps the output by the f function.

So you can follow the types here if you want to do this, the compiler will help you write this function, you don’t have to think
about the implications, just try to get the types right and you’ll end up with something that is correct.

sealed trait Maybe[+A]

Here again is the case class Present[A](value: A) extends Maybe[A]

Maybe trait, just . .

for reference case object Absent extends Maybe[Nothing]
case class Map[A, B](maybe: Maybe[A], mapper: A => B) extends Maybe[B]

case class Chain[A, B](first: Maybe[A], callback: A => Maybe[B]) extends Maybe[B]

A functional effect

def interpret[Zz, A, B](ifAbsent: Z, f: B => Z)(maybe: Maybe[B]): Z =

maybe match {
case Present(b) => f(b)
case Absent => ifAbsent
case Map(old: Maybe[A], g: (A => B)) =>
interpret(ifAbsent, f compose g)(old)

for optionality

John A De Goes
Fd @jdegoes

case Chain(old: Maybe[A], g: (A => Maybe[B])) =>
interpret(ifAbsent, (a:A) => interpret(ifAbsent, f)(g(a)))(old)

Again, this

slightly modified
interpret fuction.

is the

So this interprets the four cases and notice how it is much more complex than the Option type built into Scala. Why?

instructions map and flatMap:

The Option type built into Scala only has two cases. And that’s because the Option type built into Scala does just-in-time interpretation of the

def get: A

sealed abstract class Option[+A] extends

. { self =>

@inline final def map[B](f: A => B): Option[B] =
if (isEmpty) None else Some(f(this.get))

@inline final def flatMap[B](f: A => Option[B]): Option[B] =
if (isEmpty) None else f(this.get)

object Option {

def apply[A](x:
if (x == null

def empty[A]
final def isEmp

}

A): Option[A] =
) None else Some(x)

: Option[A] = None

ty: Boolean = this eq None

Rather than building up a full description of the effect, what happens is that it takes shortcuts. The map and flatMap on Option will look a that
data type and if it is None for example, it will immediately return None. If it is Some, it will immediately deconstruct that Some, apply your mapper

function to it and return a new Some.

So in essence, what is happening is the Option data type in Scala, even though it is a functional effect, it is doing a type of just-in-time
interpretation, it is taking shortcuts and returning you a maximally reduced data structure right away, which is why it can afford to be a whole lot

simpler than the version | have shown you.

But keep in mind that is a simplification and in many types of real world functional effects, you can’t make that simplification, you need to store

every single instruction that you want to expose to the end user of your API.

object Maybe { [LefshaveagoatuﬁngMaybe]
def present[A](value: A): Maybe[A] = =
Present(value)
val absent: Maybe[Nothing] =
Absent
} u @philip_schwarz

sealed trait Maybe[+A] { self =>
def map[B](f: A => B): Maybe[B] = Map(self, f)
def flatMap[B](f: A => Maybe[B]): Maybe[B] = Chain(self, f)
}
case class Present[A](value: A)
case object Absent
case class Map[A, B](maybe: Maybe[A], mapper: A => B)
case class Chain[A, B](first: Maybe[A], callback: A => Maybe[B])

def interpret[Z, A, B](ifAbsent: Z, f: B => Z)(maybe: Maybe[B]): Z =
maybe match {

case Present(b) => f(b)

case Absent => ifAbsent

case Map(old: Maybe[A], g: (A => B)) =>
interpret(ifAbsent, f compose g)(old)

case Chain(old: Maybe[A], g: (A => Maybe[B])) =>
interpret(ifAbsent, (a:A) => interpret(ifAbsent, f)(g(a)))(old)

extends Maybe[A]
extends Maybe[Nothing]
extends Maybe[B]
extends Maybe[B]

val increment: Int => Int = n =>n + 1
val double: Int => Int = n => 2 * n

def headMaybe: List[Int] => Maybe[Int] =
as => if (as.isEmpty) Maybe.absent else Maybe.present(as(0))

// Option.empty[Int].fold(@)(double)
assert(interpret(@, double)(Maybe.absent) == 0)

// Option.empty[Int].map(increment).fold(0)(double)
val noInt: Maybe [Int] = Maybe.absent
assert(interpret(® , double)(noInt.map(increment)) == 0)

// Option.empty[List[Int]].flatMap(_.headOption).fold(0)(double)
val noIntList: Maybe [List[Int]] = Maybe.absent
assert(interpret(@ , double)(noIntList.flatMap(headMaybe)) == 0)

// Some(123).fold(0@)(double)
assert(interpret(@, double)(Maybe.present(123)) == 246)

// Some(123).map(increment).fold(0)(double)
assert(interpret(@, double)(Maybe.present(123).map(increment)
) == 248)

// Some(List(1,2,3)).flatMap(_.headOption).fold(0)(double)
assert(interpret(9, double)
(Maybe.present(List(1,2,3)).flatMap(headMaybe)) == 2)

// Some(List(1,2,3)).flatMap(_.headOption).map(increment).fold(0)(double)
assert(interpret(@, double)(Maybe.present(List(1,2,3))
flatMap { xs => headMaybe(xs)
map { y => increment(y) } }

) == 4)

// Some(List(1,2,3)).flatMap(_.headOption).map(increment).fold(0) (double)
assert(interpret(9, double)(
for {
XS <- Maybe.present(List(1, 2, 3))
y <- headMaybe(xs)
} yield increment(y)

) == 4)

def monitor: Boolean = {
if (sensor.tripped) {
securityCompany.call()
true
} else false

}

val check: Alarm[Boolean] =
CheckTripped(tripped =>
if (tripped)
Call(Return(true))
else
Return(false)

Note how earlier, when we wanted to model the side-effecting code that sent an
email if a sensor was tripped, we created the model by manually putting together a

data structure ourselves...

..whereas when it comes to modeling code exhibiting optionality, we
programmatically call Maybe functions that create the data structure (model) for us

J

—/

Maybe.present(Lisp(l,Z,B)) flatMap { X

headMaybe(xs) map { y =>
increment(y)

}
}

/]

\\\52*3- Maybe.present(List(1, 2, 3))
y *<- headMaybe(xs)
} yield increment(y)

John A De Goes
Il @jdegoes

Every common operation in a functional effect system has a corresponding type class in functional programming. You don’t need to
know this, but it is helpful to know this, if you have ever used type classes from Cats or Scalaz, you have run into Applicative and
Functor and Monad and Apply and MonadPlus and lots of other type classes. It turns out that every single type class gives you an
operation that you can use in your functional effect. More powerful functional effects have more operations. And the set of all
operations given to you by your functional effect type determines how powerful it is and what types of things you can do with it.

Operation Signature Type Class
pure/point A => F[A] Applicative
empty/zero F[Nothing] MonadP1lus

map (F[A], A => B) => F[B] Functor
flatMap (F[A], A => F[B]) => F[B] Monad
zip/ap (FIA], F[B]) => F[(A,B)] Apply

The pure or point operation from Applicative gives you the ability to take an A and lift it up into your functional effect system. It is
the equivalent of returning a value inside your functional effect. It is the Some constructor in Option. It is the List singleton’s
constructor in List. It is the Future.successful in Future. And so forth.

empty or zero, some types have this notion of an empty or failure type.

Other types have the ability to map over them. All functional effects, almost all, have the ability to map over their contents, which
corresponds to taking that return statement and changing it into a value of another type, turning an Option of an Int into an
Option of a String by converting the Int to a String.

John A De Goes
Il @jdegoes

Operation Signature Type Class
pure/point A => F[A] Applicative
empty/zero F[Nothing] MonadPlus

map (F[A], A => B) => F[B] Functor
flatMap (F[AT, A => F[B]) => F[B] Monad
zip/ap (FIA], F[B]) => F[(A,B)] Apply

flatMap is a very powerful capability allowing you to chain two functional effects together in sequence such that the second
functional effect depends on the runtime value produced by the first. When you call flatMap, you supply the first functional
effect and then you also specify a callback and that callback will be called with the value of the first functional effect, assuming
one is ever produced. Of course some functional effects, like Option, can fail, in which case they’ll never call your callback, but also
some functional effects like Future, for example, can succeed at some point in the future, in which case your callback will be called
and you’ll get a chance to return the rest of your computation and the flatMap operation is responsible for fusing those two things
together, the old functional effect and its chained successor, into a single functional effect.

And then finally zip, otherwise known as ap, is capable of taking two functional effects, F[A] and F[B] and zipping them together to
get an F of a tuple of of A and B. It is not as powerful as flatMap but it is still a powerful operation and it is the minimum needed
to have compositional semantics on your functional effect, you need to zip two options together, zip two parsers together, zip
two futures together, you need the ability to take two different effects and combine them together into a single effect to solve
most classes of problems.

Nearly all functional effects in existence support the pure/point operation, the map operation and then zip. If you don’t support
zip, if you just support pure and map, it is not that useful, of a functional effect, almost all of your functional effects out there are
going to support at least zip and some extremely powerful ones support Monad which gives you flatMap, which allows you to do
two operations in sequence such that the second one depends on the runtime value produced by the first one.

John A De Goes
Fl @jdegoes

A lot of functional effects support flatMap, a lot. Parsers, Futures, Options, Lists, all kinds of functional effects support this
capability. Even the Alarm one that | showed you supports this capability. And that’s because a lot of the real world is
sequential. You do something and then you do something later and the thing that you do later depends on what you did
before. Depends on the result of what you did before. That is a sequential flow, it is the most complex kind of sequential
flow, because it is context sensitive. You can change your mind and do different things based on what happened before.
That’s flatMap. That’s Monadic.

As a result, Scala actually has a special syntax for data types that support flatMap and map and this is the for comprehension
syntax, and it reads very procedurally:

for { lookupUser(userId).flatMap(user => case class User(profile: Option[Profile])

user <- lookupUser(userId) user.profile.flatMap(profile => case class Profile(picUrl: Option[Url])

profile <- user.profile profile.picUrl.map(pic => case class Url(value: String)

pic <- profile.picurl pic))) def lookupUser(userId: Int): Option[User] = ???
} yield pic var userId = ???

You are going to look up your user, and then you are going to get their{profile and then you are going to get their picture url,
and you can imagine all these things returning Option. And Scala will desugar this into a bunch of flatMaps, followed by a
final map, allowing you to use functional effects that support sequentiality in a way whose visual appearance resembles that
sequential flow of operations, with the scoping rules that you would expect, that is to say, inside this for comprehension on
the left, in the line that says pic, | have access to both profile and user, | have access to both of those variables in that scope. In
the line that says profile | have access to user, and in the yield statement | have access to all three variables, which is the way
you would expect scoping to work if these were statements.

Tour of the Effect Zoo

So every functional effect is an immutable data type, together with the operations it provides fo}
addressing some business concern, and at the end of the day, every functional effect system, we need to
be able to interpret it _into something else that gives it meaning. This interpretation is fold on Option, it
is unsafeRun on Task, there is always an interpretation function for all of these, it is run on the State
Monad.

It allows us to take this model that describes our business concern and translate it into something that
we can use.

John A De Goes
Fl @jdegoes

Let’s take a brief look at some of the effects out there in the wild, some of which you have already seen
because they are built into Scala, but a couple of which may be new for you.

Tour of the Effect Zoo

John A De Goes
Fl @jdegoes

Option[A] -the functional effect of optionality

First the effect of optionality. Either something is there or it is not:

sealed trait Option[+A]
final case class Some[+A](value: A) extends Option[A]
case object None extends Option[Nothing]

The core operations of Option are the Some and None constructors and map and flatMap.

// Core operations:

def some[A](v: A): Option[A] = Some(v)

val none: Option[Nothing] = None

def map[A, B](o: Option[A], f: A => B): Option[B]

def flatMap[A, B](o: Option[A], f: A => Option[B]): Option[B]

And then its execution/interpretation is the fold function on Option:

// Execution / Interpretation:
def fold[Z](z: Z)(f: A => Z)(o: Option[A]): Z

We specify what to do, what to return if it wasn’t there and what to return if it was there.

Tour of the Effect Zoo

Option[A] -the functional effect of optionality

~

And we can use it in for comprehensions, like | showed before:

for {
user <- lookupUser(userId)
profile <- user.profile
pic <- profile.picUrl

} yield pic
N /

John A De Goes
Fl @jdegoes

Tour of the Effect Zoo

Either[A,B] —the functional effect of failure

The functional effect of failure is used when we have computations that may fail with a specific type of
value. Either has two types of value, a left and a right. Left is used to indicate failure and Right is used

to indicate success:

sealed trait Either[+E, +A]
final case class Left[+E](value: E) extends Either[E, Nothing]
case class Right[+A](value: A) extends Either[Nothing, A]

Its core operations are constructing a left and a right, mapping and flatMapping:

// Core operations:

John A De Goes def left[E](e: E): Either[E, Nothing] = Left(e)

Fl @jdegoes def right[A](a: A): Either[Nothing, A] = Right(a)

def map[E, A, B](o: Either[E, A], f: A => B): Either[E, B]

def flatMap[E, A, B](o: Either[E, A], f: A => Either[E, B]): Either[E, B]

And then to execute or interpret an Either we fold over it

// Execution / Interpretation:
def fold[Z, E, A](left: E => Z, right: A => Z)(e: Either[E, A]): Z

specifying what to do on the left hand case and what to do on the right hand case.

Tour of the Effect Zoo

Either[A,B] —the functional effect of failure

And because this supports map and flatMap we can use it in for comprehensions, in which case we h
flatMapping over the success case

for {
user <- decodeUser(jsonl)
profile <- decodeProfile(json2)
pic <- decodelImage(profile.encPic)
John A De Goes } yield (user, profile, pic)

Il @jdegoes

So if there is a Left case, if one of these methods, like decodeProfile returns Left, that short-circuits
the entire computation, we achieve the short-circuiting behaviour of exception handling with

out
wually having exceptions in our code. /

Tour of the Effect Zoo

John A De Goes
Fl @jdegoes

Writer[W,A] —the functional effect of logging

The Writer functional effect is less familiar, you may not have seen this before. Writer is actually dual to
Either, only in this case | am using a very specialised variant of Writer that happens to be the most common.
Writer is basically a tuple. On the LHS it accumulates a vector of some type W, that’s your log. So Writer
allows you to log stuff, like log strings, whatever, and those get accumulated on the LHS of the tuple. And
every Writer effect can also produce a value of type A. So the Writer functional effect, it cannot fail, it
can only succeed, and it can accumulate a log as you are succeding with values of different type.

final case class Writer[+W, +A](run: (Vector[W], A))

The core operations of Writer are pure, which allows you to lift a value into the Writer effect, write,
which allows you to add to that log, and then map and flatMap like we have seen before. :

// Core operations:

def pure[A](a: A): Writer[Nothing, A] = Writer((Vector(), a))

def write[W](w: W): Writer[W, Unit] = Writer((Vector(w), ()))

def map[W, A, B](o: Writer[W, A], f: A => B): Writer[W, B]

def flatMap[W, A, B](o: Writer[W, A], f: A => Writer[W, B]): Writer[W, B]

And then how you run that, you just pull out the tuple of the Vector and then your success value:

// Execution / Interpretation:
def run[W, A](writer: Writer[W, A]): (Vector[W], A)

That gives you the log and then the value that the Writer data type succeeded with.

Tour of the Effect Zoo

Writer[W,A] —the functional effect of logging

Because it has map and flatMap like the other ones you can use this inside for comprehensions

for {
user <- pure(findUser())
_ <- log(s"Got user: $user")
_ <- pure(getProfile(user))
_ <- log(s"Got profile: $profile™)
} yield user

John A De Goes
Fl @jdegoes

And you can interleave, for example, success values with log statements, and you end up
\accumulating those log statements, in this case strings, inside the vector that you get when you/

run that functional effect.

fl In the above, either log should be write or log is an alias for write]

Tour of the Effect Zoo

State[S,A] —the functional effect of state

final case class State[S, +A](run: S => (S, A))

John A De Goes
Fl @jdegoes

functional effects:

// Core operations:
def get[S]: State[S, S] = State[S, S](s => (s, s))

def map[S, A, B](o: State[S, A], f: A => B): State[S, B]

new state and the success value:

// Execution / Interpretation:
def run[S, A](s: S, state: State[S, A]): (S, A)

State is another very common functional effect that allows you to model stateful computations. And the
State functional effect is basically a function. At least this is the short-circuited version. We could do the
full on different instruction version that | did for optionality but we were only going to do that once. Here
we are taking a shortcut and we are defining it as a function that takes the old state and returns the new
state and a value of type A. So State cannot fail. State can only change the state, when you call run, it
can change the state, and it is always going to succeed with a value of type A.

The core operations of State are to take an A value and to succeed with that value without changing state,
to get the state and to set the state, and then of course map and flatMap, like we have seen with all these

def pure[S, A](a: A): State[S, A] = State[S, A](s => (s, a))
def set[S](s: S): State[S, Unit] = State[S, S](_ => (s, ()))

def flatMap[S, A, B](o: State[S, A], f: A => State[S, B]): State[S, B]

To run a State we have to supply the initial state as well as the state type, and then out of that we get the

Tour of the Effect Zoo

State[S,A] —the functional effect of state

Because this functional effect, like the other ones, supports map and flatMap, it means that weh
use it inside for comprehensions:

for {
_ <- set(09)
v <- get
_ <- set(v + 1)
v <- get
} yield v

John A De Goes
Fl @jdegoes

And we can write code that looks like this, like it is actually incrementing stuff. It is setting a value
to be zero, it is getting it, setting it to zero plus one, and then it is getting it again, and if you actually
run that functional effect, then you are going to end up with 1 out of that, which is what you would

expect, it looks like procedural code but in fact it is not, it is purely functional and it is operating on
wutable data. /

Tour of the Effect Zoo

John A De Goes
Fl @jdegoes

Reader[R,A] —the functional effect of reader

Another less common type is the Reader effect, and the Reader functional effect allows us to thread
access to some environment of type R throughout our program without having to do any of that
plumbing. And we can access that R at any point we want. So it is there, always in the background, it is like
a context, it is the environment in which our program runs, and we can pull it out of thin air any time we
want, but we don’t have to deal with it unless we want to. And it can be defined by a simple function
fromR to A:

final case class Reader[-R, +A](run: R => A)

The core operations are pure, like we have seen before, allowing us to take an A and lift it up into an effect,
the Reader functional effect, environment, which basically allows us to pull that R into the success value
of the Reader, and then map and flatMap:

// Core operations:

def pure[A](a: A): Reader[Any, A] = Reader[Any, A](_ => a)

def environment: Reader[R, R] = Reader[R, R](r => r)

def map[R, A, B](r: Reader[R, A], f: A => B): Reader[R, B]

def flatMap[R, A, B](r: Reader[R, A], f: A => Reader[R, B]): Reader[R, B]

And then to execute or interpret this functional effect we have to give it an R. That’s the R required by the
Reader, and then it can give us back the A:

// Execution / Interpretation:
def provide[R, A](r: R, reader: Reader[R, A]): A

Tour of the Effect Zoo

John A De Goes
Fl @jdegoes

Reader[R,A] —the functional effect of reader

Because it supports map and flatMap, we can use this in for comprehensions:

for {
port <- environment[Config].map(_.port)
server <- environment[Config].map(_.server)
retries <- environment[Config].map(_.retries)
} yield (port, server, retries)

In this case | just pull the config out of the environment and | separately pull out the port and the server

Qd the retries and | yield a tuple of the results.

/

Tour of the Effect Zoo

John A De Goes
Fl @jdegoes

IO[A] - the functional effect of asynchronous input/output

And finally, the last functional effect that we’ll look at is the effect of asynchronous input and output, and
you can define your own very simple type for async 1/O, by creating a case class with that unsafeRun
signature. The unsafeRun, you give it a callback and it will call it at some point in the future. This is the
essence of asynchronous I/0:

final case class IO[+A](unsafeRun: (Try[A] => Unit) => Unit)

And the core operations are sync for synchronous 1/0, async for asynchronous 1/0, fail, if you want to fail
this thing, and then map and flatMap:

// Core operations:

def sync[A](v: => A): IO[A] = IO(_(Success(Vv)))

def async[A](r: (Try[A] => Unit) => Unit): IO[A] = IO(r)
def fail(t: Throwable): IO[Nothing] = IO(_(Failure(t)))
def map[A, B](o: IO[A], f: A => B): IO[B]

def flatMap[A, B](o: IO[A], f: A => IO[B]): IO[B]

And then unsafeRun, you have to give it the I0 which you want to run and then you give it a callback and it
will call your callback at some point later with either a success or a failure:

// Execution / Interpretation:
def unsafeRun[A](io: IO[A], k: Try[A] => Unit): Unit

Tour of the Effect Zoo

John A De Goes
Fl @jdegoes

So what do all these things have in common? They are all immutable data structures. Every single
one of them.

They are all equipped with operations that allow us to compose these things together.

Nearly all of them supported, actually all of them, supported pure and map and flatMap, which allow
us to build up and compose sequential things together, which is very very common when you are
dealing with functional effects.

And then all of them, without exception, had some way to interpret or execute them.

These are the building blocks of functional effects.

Functional effects are always, always, always, immutable data types that declaratively describe a
bunch of different operations in some business domain, that you can end up interpreting to translate
into something that is lower level than that specific concern, like we can translate away from
optionality by providing a default value. You can translate away from error handling by unifying the
left and right of Either, and so on and so forth, they all allow us to escape that concern and move it
into something that’s lower level, which is a key property of building programs compositionally and
modularly.

| liked John'’s talk a lot. | found it very instructive. There is a lot
more great content in it. Go take a look, if you haven’t already.

u @philip_schwarz

ONE MONAD TO RULE

THEMALL

FuNncTioNaL JVM MEETUP John A De Goes
PRAGUE, AuG 8 2019 El @jdegoes

JouN A. DE GOES — @IDEGOES

{slldeshare https://www.slideshare.net/jdegoes/one-monad-to-rule-them-all
Yol https://youtu.be/POUEZ8XHMhE

