Function Applicative for Great Good
of Leap Year Function

Polyglot FP for Fun and Profit — Haskell and Scala W= 3

leap_year :: Integral a => a -> Bool
leap_year = 1liftA2 (>) (gcd 80) (gcd 50)

1liftA2 = & & H Phoenix

liftA2 f g =S (B f g) S | Starling

1iftA2 f gh =5 (s (K f) g) h| | 8 H Bluebird

K 1 Kestrel

COMBINATORY LOGIC

g o
slides by EX @philip_schwarz (FP IMAuminated /) https://fpilluminated.com/
N

http://fpilluminated.com/

-
This deck is about the leap_year function shown in the tweet below. It is being defined in a Haskell REPL.

Given an integer representing a year, the function returns a boolean indicating if that year is a leap year.

<« Post

@ Dadx2_jack @Iceland_jack - Jun 17

> leap_year = liftA2 (>) (gcd 80) (gcd 50)

>

1 o > filter leap_year [2000..2024]
@philip_schwarz [2000,2004,2008,2012,2016,2020,2024]

iz 2312 ¥ 30 ihl 9.5K R &

https://x.com/Iceland_jack/status/1802659835642528217

https://x.com/Iceland_jack/status/1802659835642528217

The leap_year function uses built-in functions (>) and gcd

-- Greater Than function

> :type (>) leap_year = 1iftA2 (>) (gcd 80) (gcd 50)

(>) :: Ord a=>a->a->Bool

>(>)23
False

>(>)32
True

-- Greatest Common Divisor function
> :type ged
ged s Integrala=>a->a->a

>ged 10 15
5

>ged 10 16
2

>gcd 10 17
1

>gecd 10 18
2

>gcd 10 19
1

>gcd 10 20
10

> import Control.Applicative

> :type liftA2
liftA2 :: Applicative f=>(a->b->c)->fa->fb->fc

\ Let’s define leap_year and take it for a quick spin. /

/Ieap_year also uses liftA2, which is a function provided by Applicative. \

leap_year

1iftA2 (>) (gcd 80) (gcd 50)

> leap_year = liftA2 (>) (gcd 80) (gcd 50)

> :type leap_year
leap_year :: Integral a => a -> Bool

> leap_year 2024
True

> leap_year 2025
False

> fmap leap_year [1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400]
[True,False,False,False, True,False,False,False, True]

-
The following slide uses logic operators =, A, V, = and <.

Here is a reminder of their definition.

Operator | Definition

—-P not P

PvQ PorQ

PAQ P and Q

P-0Q if Pthen Q
PsQ Pif andonlyif Q

{

It looks like leap_year is exploiting the algorithm .
- 1 = 1iftA2 d 80 d 50
described in the following twitter/x thread. eap_year * >) (gc) (8¢)

https://x.com/chordbug/status/1497912619784720384

¢« Post

§ Lynn (so is she gone or not??)

@chordbug

| don't know who needs to hear this but year "n" is a leap year iff

gcd(80, n) > ged(50, n)

11:02 PM - Mar 22, 2021

RE

https://x.com/chordbug/status/1497912619784720384/photo/1

The traditional definition of a leap year is something like:

n is a leap year <= 4| n A —(100 | n A =(400 | n))

But we’ll work with a slightly simpler logically equivalent form:

n is a leap year <= 4| n A (100 | n — 400 | n)

The magic formula states that

n is a leap year <=>| gecd(n,80) > ged(n, 50)

and we’d like to prove these are equivalent:

4 | nA (100 | n — 400 | n) <= gcd(n,80) > ged(n, 50)

https://x.com/chordbug/status/1497912619784720384/photo/1
https://x.com/chordbug/status/1497912619784720384/photo/1

By the way, in case you are asking yourself how the previous slide refactored this

nisaleap year & 4|n N-(100| n A —=(400| n))

to this
nisaleap year < 4|n A(100|n - 400| n)
see below for how | explained it to myself.
If we apply De Morgan’s law, i.e. refactor

—(PAQ) =PV -Q

to

—~(100 | n A (400 | n))

we get

y

nis aleap year < 4| n AN(—=(100]| n) v400 | n))

Next, if we apply =PV Q =P - Q

refactor
to

—~(100 | n) Vv (400 | n)

we get

\ 4

nisaleap year & 4|n A|(100|n - 400]| n)

which reads as follows:

nis a leap year if and only if both of the following are true
* itis divisible by 4
if it is divisible by 100, then it is also divisible by 400

Why is it that, given function definition

leap_year = 1iftA2 (>) (gcd 80) (gcd 50)

and given some input year

e.g. 2024

evaluating 1eap _year year, amounts to evaluating

(gcd 80 year) > (gcd 50 year)

e.g.

(gcd 80 2024) > (gcd 50 2024)

{ Here is the definition of Applicative function liftA2]

Source

1iftA2 :: (a > b —>c¢c) > fa->fb->fFfc

Lift a binary function to actions.

Some functors support an implementation of LiftA2 that is more efficient than the default one. In particular, if fTmap is an
expensive operation, it is likely better to use LiftA2 than to fmap over the structure and then use <*>.

This became a typeclass method in 4.10.0.0. Prior to that, it was a function defined in terms of <*> and fmap.

https://hackage.haskell.org/package/base-4.20.0.1/docs/Prelude.html

But given that the signature of 1iftA2is
liftA2 :: (a ->b ->c) ->fa->fb ->Ffc
how does

1iftA2 (>) (gcd 80) (gcd 50) 2024

leap_year = 1iftA2 (>) (gcd 80) (gcd 590)

map to

(gcd 80 2024) > (gcd 50 2024)

The first step that we are going to take to answer this question, is to consider the actual parameters of 1iftA2 in
1iftA2 (>) (gcd 80) (gcd 50) 2024
The first one, i.e. (>), is a function with type Int -> Int -> Bool.

The second one, i.e. (gcd 80) is the result of applying a function of type Int -> Int -> Int to 80, which results in a
function Int -> Int.

The third one, i.e. (gcd 50) is the result of applying a function of type Int -> Int -> Int to 50, which also results in a
function Int -> Int.

Given that the type of leap_yearis Int -> Bool, it follows that in
1liftA2 (>) (gcd 80) (gcd 50) 2024

the signature of 1iftA2 is

1iftA2 :: (Int -> Int -> Bool) -> (Int -> Int) -> (Int -> Int) -> (Int -> Bool)

But what abstraction does f need to be in order for
liftA2 :: (a ->b ->c) ->fa->fb->Ffc
to become

liftA2 :: (Int -> Int -> Boolean) -> (Int -> Int) -> (Int -> Int) -> (Int -> Boolean)

Let us define f to be a function of type r -> ?, where r is some specific type, and ? is some yet to be specified type.
Now let’s update the signature of 1iftA2 to reflect the above definition of f:
liftA2 :: (a -> b ->c) -> (r -> ?21) -> (r -> ?22) -> (r -> ?3)

In the case at hand, i.e.

1iftA2 (>) (gcd 80) (gcd 50) 2024 leap_year = 1iftA2 (>) (gcd 80) (gcd 50)

we already know that

1. (a -> b -> ¢) is(Int -> Int -> Bool),i.e.thetypeof (>),

2. (r -> ?3) is (Int -> Boolean),i.e.the type of leap year

3. (r ->?1) and (r -> ?2) are (Int -> Int),i.e.thetypeof both (gcd 80) and (gcd 50)

so we see that with r = Int, ?1 = Int,?2 = Intand ?3 = Bool, the signature of 1iftA2 is indeed the sought one:

1liftA2 :: (Int -> Int -> Bool) -> (Int -> Int) -> (Int -> Int) -> (Int -> Bool)

e

So, to arrive at the liftA2 signature that is applicable in

1iftA2 (>) (gcd 80) (gcd 50) 2024
i.e.

liftA2 :: (Int -> Int -> Bool) -> (Int -> Int) -> (Int -> Int) -> (Int -> Bool)
we first take the minimal definition of Functor

class Functor f where
fmap :: (a ->b) ->f a ->fb

and a minimal definition of Applicative, but with liftA2 added to it

class Functor f => Applicative f where
pure :: a -> f a
(¢<*>) :: f (a ->b) ->fa->Ffb
liftA2 :: (a ->b ->c) ->fa->Ffb->Ffc

We then take the Function Functor and Function Applicative, i.e. the Functor and Applicative instances for ((->) r),
in which f is defined to be a function from some specific type r to some yet unspecified type. Here are the function
signatures of the resulting instances:

fmap :: (a -> b) -> (r -> a) -> (r -> b)
pure :: a -> (r -> a)
(<*>) 12 (r ->a ->b) -> (r ->a) -> (r -> b)
1iftA2 :: (a -> b ->c) -> (r ->a) -> (r ->b) -> (r ->)

If we definer = Int, a = Int, b = Intand ¢ = Bool, then 1iftA2 takes on the desired signature:

liftA2 :: (Int -> Int -> Bool) -> (Int -> Int) -> (Int -> Int) -> (Int -> Bool)

Now let’s get back to the question that we are looking to answer.
Why is it that given function definition

leap_year = 1iftA2 (>) (gcd 80) (gcd 50)

and given some input year, evaluating 1leap_year year, amounts to evaluating

(gcd 80 year) > (gcd 50 year)

Or in other words, since leap_year is defined in terms of 1iftA2, why is it that

liftA2 (>) (gcd 80) (gcd 50) year

evaluates to

(gcd 80 year) > (gcd 50 year)

It turns out that the 1iftA2 function of the Function Applicative is a combinatory
logic function (a combinator) called the phoenix.

To answer the question restated in the previous slide, instead of looking at the code
for 1iftA2, in the next slide we are going to exploit the fact that 1iftA2 = phoenix.

1liftA2 :: (a ->b ->c) -> (r ->a) -> (r ->b) -> (r ->)
» Phoenix Oxyzw=x(yw)(zw)
@ o rename variables for additional clarity
i v Pfghx=f(gx)(hx)
| o - Jro make ‘point free’
v
- - - ®d = Af.Ag. h. Ax. f(g x)(h x)
|| A el
" phoenix :: (b > ¢c ->d) -> (a->b) > (a—>¢c) >a —>d
E i (Big) Phi combinator - phoenix - Haskell 1iftM2.
This is the same function as starling"’.
starling' :: (b > c -—>d) - (a—>b) > (a—>¢c) >a—>4d

S' combinator - starling prime - Turner's big phi. Haskell: Applicative's 1iftA2 on functions (and similarly Monad's 1iftM2).

This is the same function as phoenix.

https://hackage.haskell.org/package/data-aviary-0.4.0/docs/Data-Aviary-Birds.html

® = Af.Ag.Ah.Ax. f(g x)(h x)

Equation

leap_year = liftA2 (>) (gcd 80) (gcd 50)

leap_year = ® (>) (gcd 80) (gcd 50)

leap_year = (Af. Ag.Ah.Ax. f(g x)(h x))(>) (gcd 80) (gcd 50)
leap_year = (Ag. . 2x.(>)(g x)(h x)) (ged 80) (ged 50)
leap_year = (Ah.Ax.(>)(gcd 80 x)(h x)) (gcd 50)

leap_year = Ax.(>)(gcd 80 x)(gcd 50 x)

leap_year = Ax.(gcd 80 x) > (ged 50 x)

leap_year 2024 = (Ax.(gcd 80 x) > (ged 50 x)) 2024

leap_year 2024 = (gcd 80 2024) > (gcd 50 2024)

Action

liftA2 = &

® =Af.Ag.Ah. Ax. f(g x)(h x)
f=03)

g =gcd 80

h = gcd 50

>)xy=x>y

apply leap_year to2024

x = 2024

Q.E.D.

the implementation look like? It uses <*> and fmap:

liftA2 :: (a ->b ->c) ->fa->fb->fc
1iftA2 f x = (<*>) (fmap f x)

It turns out that in the Function Functor, fmap is the Bluebird combinator, and
in the Function Applicative, <*> is the Starling combinator. So again, instead of

looking at the code for fmap and <*>, in the next slide we are going to exploit the fact that fmap = bluebird and <*> = starling. j

Thanks to the phoenix, we have not needed to look at the implementation of 1iftA2 in order to understand how it works. Still, what does\

liftA2 £ x = (<*>)(fmap f x)

\ 4

liftA2 £ g = S(B f g)

fmap :: (a -> b) -> (r ->a) -> (r -> b)
I

TO-MOCK- A »| Bluebird HBxyz=x(y2z) » Bfgx=f(gx) » B=Af.Ag.x.f(g x)
'MOCKINGI 1RD
L. DIEER AOMIy SN | bluebird :: (b —>c) —> (a -=> b) —> a —> ¢ The function composition function. Given two functions f
‘ - 1. and g, it returns a function h that is f composed with g,
B combinator - bluebird - Haskell (). i.e. h(x) = f(g(x)). Also known as Compositor.

https://hackage.haskell.org/package/data-aviary-0.4.0/docs/Data-Aviary-Birds .html

starling :: (a > b —>c¢) - (a—>Db) =>a —>c

S combinator - starling.

Also known as Distributor.

= Haskell: Applicative's (<*>) on functions.

Substitution.

y

v

Starling —|Sxyz=(xz)(y z)

Sfgx=({x)(gx)

y

S =Af.Ag. 2x.(f x)(g x)

(¢<*>) 2 (r ->a ->b) -> (r ->a) -> (r ->b)

https://hackage.haskell.org/package/data-aviary-0.4.0/docs/Data-Aviary-Birds.html

B=A.)\g.x.f(g x) S=A.Ag.2x.(f x)(g x)

liftA2 £ g = S(B f g)

Equation

leap_year = liftA2 (>) (ged 80) (ged 50)

leap_year = S(B (>) (gcd 80)) (gcd 50)

leap_year = (Af.Ag-Ax.(f x)(g x))(B (>) (gcd 80)) (ged 50)
leap_year = (\g. \x.(B (>) (gcd 80) x)(g x)) (ged 50)
leap_year = (Ax. (B (>) (gcd 80) x)(gced 50 x))

leap_year = (Ax.((Af.Ag.Ay.f(g ¥)) (>) (gcd 80) x)(ged 50 x))
leap_year = (Ax.((Ag-Ay.(>)(g ¥)) (ged 80) x)(gcd 50 x))
leap_year = (Ax.((Ay.(>)(gcd 80 y)) x)(gcd 50 x))
leap_year = (Ax.(>)(gcd 80 x)(gcd 50 x))

leap_year = (\x.(gcd 80 x) > (ged 50 x))

leap_year 2024 = (Ax.(gcd 80 x) > (ged 50 x)) 2024

leap_year 2024 = (gcd 80 2024) > (gcd 50 2024)

Action

liftA2f g =S(Bfg9)

S =2x.Ag.2x.(f x)(g x)
f=B(>)(gcd 80)

g =gcd 50

B =Af.Ag.\x.f(g x) = Af.Ag.2y.f(g)
f=0)

g = gcd 80

y=x

>)xy=x>y

apply leap_year to2024
x = 2024

Q.E.D.

In previous slides, we saw this definition of liftA2 \

liftA2 :: (a ->b ->c) ->fa->fb->Ffc
1iftA2 f x = (<*>) (fmap f x)

Here is the same definition, but using the infix operator equivalent of function fmap, and the infix operator equivalent of function (<*>).
1iftA2 f g h = f <$> g <*> h

(<$>) :: Functor f => (a -> b) -> f a -> f b
<$>) = fma
The above is a more convenient version of the following: (<> P

\liftAZ f g h=pure f <*> g <*> h /

Applicative functors

ISynop:1

class Functor f => Applicative (f :: Type —> Type) where # Source

A functor with application, providing operations to

* embed pure expressions (pure),and

e sequence computations and combine their results (<*> and 1TiftA2).

A minimal complete definition must include implementations of pure and of either <> or LiftA2. If it defines both, then they must
behave the same as their default definitions:

(<x>) = 1iftA2 id

LiftA2 f xy = f <$> X <x> y

https://hackage.haskell.org/package/base-4.20.0.1/docs/Control-Applicative.html

On the previous slide we saw the following possible implementation of IiftAZ\

1liftA2 :: (a ->b ->c) ->fa->fb->Ffc
liftA2 f g h = pure £ <*> g <*> h

In the Function Applicative, <*> is the Starling combinator that we saw
earlier, and pure is the Kestrel combinator. So again, instead of looking at
the code for pure and <*>, in the next slide we are going to exploit the fact

that pure = kestrel and <*> = starling.

1iftA2 f x

(<*>) (fmap f x)

A 4

1iftA2 f g h = f <$> g <*> h

A 4

liftA2 £ g h = pure f <*> g <*> h

A 4

pure :: a -> (r -> a)

1iftA2 f g h

S (S (KF)g)h

» Kestrel —HKxy=x »Kfg=f » K =Af.Ag.f
kestrel :: a > b —> a Also known as
K combinator - kestrel - Haskell const. Corresponds to the encoding of true in the lambda calculus. Cancellator.

https://hackage.haskell.org/package/data-aviary-0.4.0/docs/Data-Aviary-Birds.html

starling ::

Substitution.

S combinator - starling.

Haskell: Applicative's (<*>) on functions.

(a—>b-—>c¢c) > (a—=>b) >a—->c

v

Starling

Sxyz=((x2z)(yz)

v

Sfgx=(x)(gx)

v

S =A.Ag. 2x.(f x)(g x)

(¢<*>) 12 (r ->a ->b) -> (r ->a) -> (r ->Db)

https://hackage.haskell.org/package/data-aviary-0.4.0/docs/Data-Aviary-Birds.html

K=A.Ag.f| |S=AAg.2e.(fx)(gx) | |liftA2 fgh =15 (S (K f) g) h

Equation Action

leap_year = liftA2 (>) (gcd 80) (gcd 50) liftA2f gh=S(S(Kf)g)h
leap_year = S (S (K (>))(gcd 80)) (gcd 50) S=A.Ag.2x.(f x)(g x)
leap_year = (\f.Ag.Ax. (f x)(g x)) (S (K (>))(gcd 80)) (gcd 50) f = (S (K (>))(gcd 80))
leap_year = (\g.2x.(S (K (>))(gcd 80) x)(g x)) (gcd 50) g =gcd 50

leap_year = \x.(S (K (>))(gcd 80) x)(gcd 50 x) S =A.Ag. Ax.(f x)(g x) =Af.Ag. Xy.(f ¥)(g ¥)
leap_year = Ax.((Af.2g. 2. (f)(g 1) (K (>))(ged 80) x) (ged 50 x) f=®EE)
leap_year = Ax.((Ag.Ay. (K (>) ¥)(g y)) (gcd 80) x)(gcd 50 x) g =gcd 80

leap_year = Ax.((Ay. (K (>) y)(gcd 80 y)) x)(gcd 50 x) y=x

leap_year = Ax. (K (>) x)(gcd 80 x)(gcd 50 x) K=Af.Ag.f

leap_year = Ax.((Ag.(>)) x)(gcd 80 x)(gcd 50 x) f=0>)

leap_year = Ax.((Ag.(>)) x)(gcd 80 x)(gcd 50 x) g=x

leap_year = Ax. (>)(gcd 80 x)(gcd 50 x) >)xy=x>y

leap_year = Ax.(gcd 80 x) > (ged 50 x) apply leap_year to2024
leap_year 2024 = (Ax (gcd 80 x)(> ged 50 x)) 2024 x = 2024

_leap_year-2024.=(gcd-80.2024) > (gcd-50.2024) QED

We had a go at understanding the following functions of the Function Applicative, without the need to Iom
at their code: fmap, pure, <*> and liftA2.

We did this by looking at their equivalent combinators: Bluebird, Kestrel, Starling and Phoenix.

While we have now seen the code for liftA2, we have not yet seen that for fmap, pure and <*>.

Now the we are familiar with the combinators, the code for fmap, pure and <*> does not present any
surprises, and can be seen on the following slide, which acts as a recap of the correspondence between the
functions and the combinators.

class Functor f where
fmap ::

(a ->b) ->fa->Ffb

class Functor f => Applicative f where

instance Functor ((->) r) where
fmap = (.)

(<$>) :: Functor f => (a ->b) -> fa ->fb
(<$>) = fmap

pure :: a -> f a
(¢<*>) 1« £ (a ->b) ->fa->Ffb
liftA2 :: (a ->b ->c) ->fa->fb ->Ffc
. fmap
Bluebird B Bfgx=f@x)<::::::
(<$>)
Kestrel K Kxy=x pure
Starling S Sfgx=(fx)(gx) (<*>)
Phoenix P dfghx=f(gx)(hx) 1iftA2

instance Applicative ((->) r) where
pure x = (_ -> Xx)
f <*> g =\x -> f x (g x)
1iftA2 £ x = (<*>) (fmap f x)

p)

The next slide shows the Scala code for the definition of leap_year in \
terms of the following alternative equivalent implementations of liftA2:

1iftA2 £ x = (¢<*>) (fmap f x)

f <$> g <*> h

pure f <*> g <*> h /

1iftA2 f g h

1iftA2 f g h

import scala.math.BigInt.int2bigInt

import cats.* .
import cats.implicits.*

val gcd: Int => Int => Int =
X =>y => x.gcd(y).intValue

val “(>) : Int => Int => Boolean =
X =>y =>X>Yy

extension [A,B](f: A => B)
def "<$> [F[_]: Functor](fa: F[A]): F[B] = fa.map(f)

def 1iftA2_vi[A,B,C,F[_]: Applicative](f: A => B => C)(fa: F[A], fb: F[B]): F[C]

fa.map(f) <*> fb

def 1liftA2_v2[A,B,C,F[_]: Applicative](f: A => B => C)(fa: F[A], fb: F[B]): F[C]

f “<$>° fa <*> fb

def 1liftA2_v3[A,B,C,F[_]: Applicative](f: A => B => C)(fa: F[A], fb: F[B]): F[C]

f.pure <*> fa <*> fb

val leapYearl: Int => Boolean = val leapYear2: Int => Boolean = val leapYear3: Int => Boolean =
liftA2_vi1(" (>))(gcd(80), gcd(50)) liftA2_v2(" (>))(gcd(80), gcd(50)) liftA2_v3((>))(gcd(80), gcd(50))
for

leapYear <- List(leapYearl, leapYear2, leapYear3)

_ = assert(List.range(2000,2025).filter(leapYear) == List(2000, 2004, 2008, 2012, 2016, 2020, 2024))

_ = assert(List(1600, 1700, 1800, 1900, 2000).filter(leapYear)
yield ()

List(1600, 2000))

[That’s all. I hope you found it useful.

kIf you would like a more comprehensive introduction to the Function Applicative, consider checking out the following deck.

Function Applicative for Great Good
of Palindrome Checker Function

Polyglot FP for Fun and Profit — Haskell and Scala W= %

Embark on an informative and fun journey through everything you need to know

to understand how the Applicative instance for functions

makes for a terse palindrome checker function definition in point-free style

B E EE B B
GET PROGRAMMING
Learn You a HASKELL
Haskell for Haskell
— Great Good!
Impure Pics e Amar Shah
@impurepics ARsiamry s @amar47shah

Miran Lipovaéa @

- TP O TIPSR
Daniel Spiewak g Haskell Design Patterns

Exdrn Miran Lipovaca Richard Bird @djspiewak
@TechnoEmpress

slides by . u@philip_schwarz @Shdeshare https://www.slideshare.net/pjschwarz

&
FP IAAuminated

https://fpilluminated.com/

	Slide 1: Function Applicative for Great Good of Leap Year Function
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

