Functional Core and Imperative Shell
Game of Life Example

Polyglot FP for Fun and Profit — Haskell and Scala W= ¥

See a program structure flowchart used to highlight how an FP program breaks down into a functional core and imperative shell

View a program structure flowchart for the Game of Life

See the code for Game of Life’s functional core and imperative shell, both in Haskell and in Scala

functional
core

imperative
shell

Graham Hutton
u@haskellhutt

Vitaly Bragilevsky
u@VBragilevsky

slides by . u@philip_schwarz @slideshare https://www.slideshare.net/pjschwarz

https://www.slideshare.net/pjschwarz/natural-transformations

In Haskell in Depth, Vitaly Bragilevsky visualises certain aspects of his programs using program structure flowcharts. \

One of the things shown by his diagrams is how the programs break down into a pure part and an 1/0 part, i.e. into a
functional core and an imperative shell.

E @philip_schwarz In this short slide deck we do the following:
* create a program structure flowchart for the Game of Life
k show how Game of Life code consists of a functional core and an imperative shell /

User input

1/0 part

Pure part

/

Command-line /

B —
main

arguments

Vitaly Bragilevsky

Foreword by Simon Peyton Jones

/ CSV file /

I
\
|
Process

arguments

Y

usage

Y
l work I
|
—

l/ll MANNING

Vitaly Bragilevsky u @VBragilevsky

> Read quotes }<

Parse CSV data]

Compute statistics l

l Print text report }<

READING A PROGRAM STRUCTURE FLOWCHART:
I've tried to present all the components of the|program in a program
structure flowchart: user input, actions in the 1/O part of the program,
and their relations with the pure fu|_1ctions. | use the following notation

T
|
L

Format report as text l

l Plot charts }<

T
|
'

Save

v

Describe charts l

HTML report ’

Format report as HTML |

* Userinput is represented by parallelograms.
* All functions are represented by rectangles.

e Other functions are pure. They are given on the right-hand side.

* Diamonds traditionally represent choices made within a program.

* Function calls are represented by rectangles below and to the right of a caller.
* Several calls within a function are combined with a dashed line.

* Some of the functions are executing I/0 actions. These are shown in the central part of the flowchart.

* Arrows in this flowchart represent moving data between the user and the program and between functions within the program.

l

If you would like an introduction to the notion of ‘functional core, imperative shell’, see slides 15-20 of the second slide deck below.

If you want an explanation of the Game of Life code that we’ll be looking at next, see the first slide deck for Haskell, and the remaining two for Scala.

Game of Life - Polyglot FP
Haskell - Scala - Unison

Follow along as Game of Life is first coded in Haskell and then translated into Scala, learning about the 10 monad in the process
Also see how the program is coded in Unison, which replaces Monadic Effects with Algebraic Effects
(Part 1)
through the work of

GET PROGRAMMING
HASKELL

Alejandro
Serrano Mena

u@trupill

Graham Hutton Will Kurt

[@haskellhutt u@willkurt

slides by ' E @philip_schwarz ‘-;Jﬁhdcshare https://www.slideshare.net/pjschwarz

Game of Life - Polyglot FP Game of Life - Polyglot FP
Haskell - Scala - Unison Haskell - Scala - Unison

Follow along as the impure functions in the Game of Life are translated from Haskell into Scala, Follow along as Trampolining is used to overcome Stack Overflow issues with the simple 10 monad
deepening you understanding of the 10 monad in the process
See Game of Life 10 actions migrated to the Cats Effect I0 monad, which is trampolined in its flatMap evaluation
(Part 3)
through the work of

deepening you understanding of the 10 monad in the process
(Part 2)
through the work of

Cats Effect
The 10 Monad for Cats

TYPELEVEL
SCALA

J

-aham Hutton Runar Bjarnason FP in Scala

[@haskellhutt [PEmam— [@pchiusano Runar Bjarnason FP in Scala Paul Chiusano Graham Hutton

E @runarorama [@pchiusano [@haskellhutt

slides by ' 2 @philip_schwarz @suesham https://www.slideshare.net/pjschwarz slides by ' 2 @philip_schwarz (g siicoshare hittps://wwwslideshare net/pischwarz

If we run the upcoming Game of Life program with a 20 by 20 type Pos = (Int,Int) width :: Int
board configured with the first generation of a Pulsar, the width = 20
program cycles forever through the following three patterns
type Board = [Pos] height :: Int
height = 20
) 00 pulsar :: Board
0 800 008 0 pulsar =
00 00 000 000 00 00 000 [(4, 2),(5, 2),(6, 2),(10, 2),(11, 2),(12, 2),
00000 000000 (2, 4),(7, 4),(9, 4),(14, 4),
o o (2, 5),(7, 5),(9, 5),(14, 5),
00 00 000 (2, 6),(7, 6),(9, 6),(14, 6),
008 800 800 000 00 800080 (4, 7),(5, 7),(6, 7),(10, 7),(11, 7),(12, 7),
0 0000 O (4, 9),(5, 9),(6, 9),(10, 9),(11, 9),(12, 9),
080 080 (2,10),(7,10),(9,10),(14,10),
(2,11),(7,11),(9,11),(14,11),
(2,12),(7,12),(9,12),(14,12),
(4,14),(5,14),(6,14),(10,14),(11,14),(12,14)]

The next slide shows a simple program structure flowchart for the Game of m
program.

The rest of the slides show the following:

Haskell code for the program’s imperative shell
Haskell code for its functional core

structure flowchart for the program (Scala version)
Scala code for the imperative shell

Scala code for the functional core

uhwNE

The Haskell Game of Life code is the one found in Graham Hutton’s book, Programming
in Haskell, with a handful of very minor changes, e.g.
* added an extra invocation of a function in order to move the cursor out of the way

after drawing a generation
* added data for the first pulsar generation

User Input

1/0 part

Pure part

IMPERATIVE SHELL

FUNCTIONAL CORE

»=Haskell

| cls clears screen
| showcells |—— prints cells to screen
goto —— moves cursor to bottom right
wait
| B |
| < * nextgen
main :: I0 () nextgen :: Board -> Board

main = life(pulsar)

life :: Board -> IO ()
life b = do

cls

showcells b

wait 500000
life (nextgen b)

goto (width+1,height+1) goto :: Pos -> IO ()

cls :: I0 ()

showcells :: Board -> IO ()

wait :: Int -> I0 ()

o

Graham Hutton
[@haskellhutt

IMPERATIVE SHELL |)¢ HaSkell

main :: I0 ()
main = life(pulsar)

life :: Board -> IO ()
life b = do cls
showcells b
goto (width + 1, height + 1)
wait 500000
life (nextgen b)

cls :: I0 ()
cls = putStr "\ESC[2]"

showcells :: Board -> IO ()

showcells b = sequence_ [writeat p "0" | p <- b]

wait :: Int -> I0 ()
wait n = sequence_ [return () |

_<-[1..n]]

writeat :: Pos -> String -> I0 ()
writeat p xs = do goto p
putStr xs

goto :: Pos -> I0 ()

goto (x,y) =
pUtS'tr‘ ("\ESC[" ++ ShOW y ++ ll;ll
++ ShOW X ++ "H“)

putStr :: String -> I0 ()

putStr [] = return ()

putStr (x:xs) = do putChar x
putStr xs

|
% [FUNCTIONAL CORE

oot »Haskell

nextgen :: Board -> Board
nextgen b = survivors b ++ births b

survivors :: Board -> [Pos]
survivors b =
[p | p<- b,

elem (liveneighbs b p) [2,3]]

births :: Board -> [Pos]

births b = [p | p <- rmdups (concat (map neighbs b)),
isEmpty b p,
liveneighbs b p == 3]

rmdups :: Eq a => [a] -> [a]
rmdups [] = []
rmdups (x:xs) = x : rmdups (filter (/= x) Xxs)
isEmpty :: Board -> Pos -> Bool

isEmpty b p = not (isAlive b p)

liveneighbs :: Board -> Pos -> Int
liveneighbs b = length.filter(isAlive b).neighbs

isAlive :: Board -> Pos -> Bool
isAlive b p = elem p b

neighbs :: Pos -> [Pos]

neighbs (x,y) = map wrap [(x-1, y-1), (X, y-1),
(X+1J Y-l); (X_l) y))
(X+1J y)) (X_l) y+1))
(x, y+1), (x+1, y+1)]

wrap :: Pos -> Pos
wrap (x,y) = (((x-1) "mod” width) + 1,
((y-1) "mod” height) + 1)

width :: Int height :: Int
width = 20 height = 20

type Pos = (Int,Int)
type Board = [Pos]

pulsar :: Board

pulsar =
[(4, 2),(5, 2),(6, 2),(10, 2),(11, 2),(12, 2),
(2, 4),(7, 4),(9, 4),(14, 4),
(2, 5),(7, 5),(9, 5),(14, 5),
(2, 6),(7, 6),(9, 6),(14, 6),

4, 7),(5, 7),(6, 7),(10, 7),(11, 7),(12, 7),
(4, 9),(5, 9),(6, 9),(10, 9),(11, 9),(12, 9),
(2,10),(7,10),(9,10),(14,10),
(2,11),(7,11),(9,11),(14,11),
(2,12),(7,12),(9,12),(14,12),
(4,14),(5,14),(6,14),(10,14),(11,14),(12,14)]

User Input

1/0 part

Pure part

IMPERATIVE SHELL

FUNCTIONAL CORE

of

———— e —

\ cls) clears screen

\I showcells — prints cells to screen

\I goto — moves cursor to bottom right
i wait |

*| nextgen]

FScala

val main: IO[Unit] =
life(pulsar)

def cls: IO[Unit]

def life(b: Board): IO[Unit]
cls *>
showCells(b) *>
goto(width+1,height+1l) *>
wait(1_000 _000) >>
life(nextgen(b))

def nextgen(b:Board):Board

def showCells(b: Board): IO[Unit]

def goto(p: Pos): IO[Unit]

def wait(n:Int): IO[Unit]

IMPERATIVE SHELL | §Scala

import cats.implicits._, cats.effect.IO

val main: IO[Unit] = life(pulsar)

def life(b: Board): IO[Unit] =
cls *>
showCells(b) *>
goto(width+1,height+1) *>
wait(1l_000 000) >>
life(nextgen(b))

def cls: IO[Unit] = putStr("\ueeiB[2]")

def showCells(b: Board): IO[Unit] =
(for { p <- b } yield writeAt(p, "0")).sequence_

def wait(n:Int): IO[Unit] = List.fill(n)(IO.unit).sequence_

def writeAt(p: Pos, s: String): IO[Unit] =
goto(p) *> putStr(s)

def goto(p: Pos): IO[Unit] = p match {
case (x,y) => putStr(s"\ueol1B[${y};S{x}H")

}

def putStr(s: String): IO[Unit] = Cats Effect
I0 { scala.Predef.print(s) } The 10 Monad for Cats

‘ TYPELEVEL
SCALA

main.unsafeRunSync

%s | runcrioNaLcorE | JScala
000
def nextgen(b: Board): Board = survivors(b) ++ births(b) def rmdups[A](1l: List[A]): List[A] = 1 match {
case Nil => Nil
def survivors(b: Board): List[Pos] = case x::xs => x::rmdups(xs filter(_ != x)) }
for {
p <- b def isEmpty(b: Board)(p: Pos): Boolean =
if List(2,3) contains liveneighbs(b)(p) I(isAlive(b)(p))
} yield p
def liveneighbs(b: Board)(p: Pos): Int =
def births(b: Board): List[Pos] = neighbs(p).filter(isAlive(b)).length
for {
p <- rmdups(b flatMap neighbs) def isAlive(b: Board)(p: Pos): Boolean =
if isEmpty(b)(p) b contains p
if liveneighbs(b)(p) ==
} yield p
type Pos = (Int, Int)
def neighbs(p: Pos): List[Pos] = p match { type Board = List[Pos]
case (x,y) => List(val pulsar: Board = List(
(X -1,y - 1)) (XJ y - 1): (X + 1,y - 1): (4) 2):(5: 2):(6.» 2))(16J 2):(11.» 2))(12J 2):
(X -1,y)) /* cell */ (X + 1,y): (2: 4):(7) 4))(9, 4):(14) 4))
(X B 1) y + 1)) (XJ y + 1)J (X + 1.’ y + 1) (2J 5).’(7.’ 5))(9) 5).’(14.’ 5))
) map wrap } (2, 6),(7, 6),(9, 6),(14, 6),
(4, 7),(5, 7),(6, 7),(10, 7),(11, 7),(12, 7),
def wrap(p: Pos): Pos = p match { (4, 9),(5, 9),(6, 9),(10, 9),(11, 9),(12, 9),
case (X, y) => (((x - 1) % width) + 1, (2,10),(7,10),(9,10),(14,10),
((y - 1) % height) + 1) } (2,11),(7,11),(9,11),(14,11),
(2,12),(7,12),(9,12),(14,12),
val width = 20 val height = 20 (4,14),(5,14),(6,14),(10,14),(11,14),(12,14)])

If you want to run the programs, you can find them here: \

e https://github.com/philipschwarz/functional-core-imperative-shell-scala
e https://github.com/philipschwarz/functional-core-imperative-shell-haskell

1 @pnhilip_schwarz That’s all.

| hope you found it useful.

Qe you soon. /

https://github.com/philipschwarz/functional-core-imperative-shell-scala
https://github.com/philipschwarz/functional-core-imperative-shell-haskell

