
Functional Core and Imperative Shell
Game of Life Example

See a program structure flowchart used to highlight how an FP program breaks down into a functional core and imperative shell

View a program structure flowchart for the Game of Life

See the code for Game of Life’s functional core and imperative shell, both in Haskell and in Scala

Polyglot FP for Fun and Profit – Haskell and Scala

Graham Hutton
@haskellhutt @VBragilevsky

Vitaly Bragilevsky

𝜆
functional	
core	

imperative
shell

@philip_schwarzslides by https://www.slideshare.net/pjschwarz

https://www.slideshare.net/pjschwarz/natural-transformations

In Haskell in Depth, Vitaly Bragilevsky visualises certain aspects of his programs using program structure flowcharts.

One of the things shown by his diagrams is how the programs break down into a pure part and an I/O part, i.e. into a
functional core and an imperative shell.

In this short slide deck we do the following:
• create a program structure flowchart for the Game of Life
• show how Game of Life code consists of a functional core and an imperative shell

@philip_schwarz

@VBragilevsky

• User input is represented by parallelograms.
• All functions are represented by rectangles.
• Some of the functions are executing I/O actions. These are shown in the central part of the flowchart.
• Other functions are pure. They are given on the right-hand side.
• Diamonds traditionally represent choices made within a program.
• Function calls are represented by rectangles below and to the right of a caller.
• Several calls within a function are combined with a dashed line.
• Arrows in this flowchart represent moving data between the user and the program and between functions within the program.

READING A PROGRAM STRUCTURE FLOWCHART
I’ve tried to present all the components of the program in a program
structure flowchart: user input, actions in the I/O part of the program,
and their relations with the pure functions. I use the following notation

Vitaly Bragilevsky

If you would like an introduction to the notion of ’functional core, imperative shell’, see slides 15-20 of the second slide deck below.

If you want an explanation of the Game of Life code that we’ll be looking at next, see the first slide deck for Haskell, and the remaining two for Scala.

OOO OOO

O O O O
O O O O
O O O O
OOO OOO

OOO OOO
O O O O
O O O O
O O O O

OOO OOO

O O
O O
OO OO

OOO OO OO OOO
O O O O O O
OO OO

OO OO
O O O O O O

OOO OO OO OOO

OO OO
O O
O O

OO OO
OO OO

O O O O O O
OOO OO OO OOO
O O O O O O
OOO OOO

OOO OOO
O O O O O O
OOO OO OO OOO
O O O O O O

OO OO
OO OO

If we run the upcoming Game of Life program with a 20 by 20
board configured with the first generation of a Pulsar, the
program cycles forever through the following three patterns

pulsar :: Board
pulsar =
[(4, 2),(5, 2),(6, 2),(10, 2),(11, 2),(12, 2),

(2, 4),(7, 4),(9, 4),(14, 4),
(2, 5),(7, 5),(9, 5),(14, 5),
(2, 6),(7, 6),(9, 6),(14, 6),

(4, 7),(5, 7),(6, 7),(10, 7),(11, 7),(12, 7),
(4, 9),(5, 9),(6, 9),(10, 9),(11, 9),(12, 9),

(2,10),(7,10),(9,10),(14,10),
(2,11),(7,11),(9,11),(14,11),
(2,12),(7,12),(9,12),(14,12),

(4,14),(5,14),(6,14),(10,14),(11,14),(12,14)]

type Pos = (Int,Int) width :: Int
width = 20

type Board = [Pos] height :: Int
height = 20

The next slide shows a simple program structure flowchart for the Game of Life
program.

The rest of the slides show the following:
1. Haskell code for the program’s imperative shell
2. Haskell code for its functional core
3. .structure flowchart for the program (Scala version)
4. .Scala code for the imperative shell
5. .Scala code for the functional core

The Haskell Game of Life code is the one found in Graham Hutton’s book, Programming
in Haskell, with a handful of very minor changes, e.g.
• added an extra invocation of a function in order to move the cursor out of the way

after drawing a generation
• added data for the first pulsar generation

User Input I/O part Pure part

main

cls

showcells

nextgen

life

clears screen

prints cells to screen

wait

main :: IO ()
main = life(pulsar)

nextgen :: Board -> Board

showcells :: Board -> IO ()

cls :: IO ()

wait :: Int -> IO ()

life :: Board -> IO ()
life b = do

cls
showcells b
goto (width+1,height+1)
wait 500000
life (nextgen b)

FUNCTIONAL COREIMPERATIVE SHELL

goto moves cursor to bottom right

goto :: Pos -> IO ()

Graham Hutton
@haskellhutt

cls :: IO ()
cls = putStr "\ESC[2J"

showcells :: Board -> IO ()
showcells b = sequence_ [writeat p "O" | p <- b]

wait :: Int -> IO ()
wait n = sequence_ [return () | _ <- [1..n]]

main :: IO ()
main = life(pulsar)

life :: Board -> IO ()
life b = do cls

showcells b
goto (width + 1, height + 1)
wait 500000
life (nextgen b)

writeat :: Pos -> String -> IO ()
writeat p xs = do goto p

putStr xs

goto :: Pos -> IO ()
goto (x,y) =
putStr ("\ESC[" ++ show y ++ ";"

++ show x ++ "H")

putStr :: String -> IO ()
putStr [] = return ()
putStr (x:xs) = do putChar x

putStr xs

IMPERATIVE SHELL

Graham Hutton
@haskellhutt

nextgen :: Board -> Board
nextgen b = survivors b ++ births b

survivors :: Board -> [Pos]
survivors b =
[p | p <- b,

elem (liveneighbs b p) [2,3]]

births :: Board -> [Pos]
births b = [p | p <- rmdups (concat (map neighbs b)),

isEmpty b p,
liveneighbs b p == 3]

neighbs :: Pos -> [Pos]
neighbs (x,y) = map wrap [(x-1, y-1), (x, y-1),

(x+1, y-1), (x-1, y),
(x+1, y), (x-1, y+1),
(x, y+1), (x+1, y+1)]

wrap :: Pos -> Pos
wrap (x,y) = (((x-1) `mod` width) + 1,

((y-1) `mod` height) + 1)

width :: Int height :: Int
width = 20 height = 20

rmdups :: Eq a => [a] -> [a]
rmdups [] = []
rmdups (x:xs) = x : rmdups (filter (/= x) xs)

isEmpty :: Board -> Pos -> Bool
isEmpty b p = not (isAlive b p)

liveneighbs :: Board -> Pos -> Int
liveneighbs b = length.filter(isAlive b).neighbs

isAlive :: Board -> Pos -> Bool
isAlive b p = elem p b

pulsar :: Board
pulsar =
[(4, 2),(5, 2),(6, 2),(10, 2),(11, 2),(12, 2),

(2, 4),(7, 4),(9, 4),(14, 4),
(2, 5),(7, 5),(9, 5),(14, 5),
(2, 6),(7, 6),(9, 6),(14, 6),

(4, 7),(5, 7),(6, 7),(10, 7),(11, 7),(12, 7),
(4, 9),(5, 9),(6, 9),(10, 9),(11, 9),(12, 9),

(2,10),(7,10),(9,10),(14,10),
(2,11),(7,11),(9,11),(14,11),
(2,12),(7,12),(9,12),(14,12),

(4,14),(5,14),(6,14),(10,14),(11,14),(12,14)]

type Pos = (Int,Int)
type Board = [Pos]

FUNCTIONAL CORE

User Input I/O part Pure part

main

cls

showcells

nextgen

life

clears screen

prints cells to screen

wait

def nextgen(b:Board):Board

FUNCTIONAL COREIMPERATIVE SHELL

goto moves cursor to bottom right

def showCells(b: Board): IO[Unit]

def cls: IO[Unit]

def wait(n:Int): IO[Unit]

def life(b: Board): IO[Unit] =
cls *>
showCells(b) *>
goto(width+1,height+1) *>
wait(1_000_000) >>
life(nextgen(b))

val main: IO[Unit] =
life(pulsar)

def goto(p: Pos): IO[Unit]

val main: IO[Unit] = life(pulsar)

def life(b: Board): IO[Unit] =
cls *>
showCells(b) *>
goto(width+1,height+1) *>
wait(1_000_000) >>
life(nextgen(b))

def cls: IO[Unit] = putStr("\u001B[2J")

def showCells(b: Board): IO[Unit] =
(for { p <- b } yield writeAt(p, "O")).sequence_

def wait(n:Int): IO[Unit] = List.fill(n)(IO.unit).sequence_

def writeAt(p: Pos, s: String): IO[Unit] =
goto(p) *> putStr(s)

def goto(p: Pos): IO[Unit] = p match {
case (x,y) => putStr(s"\u001B[${y};${x}H")

}

def putStr(s: String): IO[Unit] =
IO { scala.Predef.print(s) }

IMPERATIVE SHELL import cats.implicits._, cats.effect.IO

main.unsafeRunSync

def nextgen(b: Board): Board = survivors(b) ++ births(b)

def survivors(b: Board): List[Pos] =
for {
p <- b
if List(2,3) contains liveneighbs(b)(p)

} yield p

def births(b: Board): List[Pos] =
for {
p <- rmdups(b flatMap neighbs)
if isEmpty(b)(p)
if liveneighbs(b)(p) == 3

} yield p

def rmdups[A](l: List[A]): List[A] = l match {
case Nil => Nil
case x::xs => x::rmdups(xs filter(_ != x)) }

def isEmpty(b: Board)(p: Pos): Boolean =
!(isAlive(b)(p))

def liveneighbs(b: Board)(p: Pos): Int =
neighbs(p).filter(isAlive(b)).length

def isAlive(b: Board)(p: Pos): Boolean =
b contains p

def neighbs(p: Pos): List[Pos] = p match {
case (x,y) => List(
(x - 1, y - 1), (x, y - 1), (x + 1, y - 1),
(x - 1, y), /* cell */ (x + 1, y),
(x - 1, y + 1), (x, y + 1), (x + 1, y + 1)

) map wrap }

def wrap(p: Pos): Pos = p match {
case (x, y) => (((x - 1) % width) + 1,

((y - 1) % height) + 1) }

val width = 20 val height = 20

val pulsar: Board = List(
(4, 2),(5, 2),(6, 2),(10, 2),(11, 2),(12, 2),

(2, 4),(7, 4),(9, 4),(14, 4),
(2, 5),(7, 5),(9, 5),(14, 5),
(2, 6),(7, 6),(9, 6),(14, 6),

(4, 7),(5, 7),(6, 7),(10, 7),(11, 7),(12, 7),
(4, 9),(5, 9),(6, 9),(10, 9),(11, 9),(12, 9),

(2,10),(7,10),(9,10),(14,10),
(2,11),(7,11),(9,11),(14,11),
(2,12),(7,12),(9,12),(14,12),

(4,14),(5,14),(6,14),(10,14),(11,14),(12,14)])

FUNCTIONAL CORE

type Pos = (Int, Int)
type Board = List[Pos]

If you want to run the programs, you can find them here:

• https://github.com/philipschwarz/functional-core-imperative-shell-scala
• https://github.com/philipschwarz/functional-core-imperative-shell-haskell

That’s all.

I hope you found it useful.

See you soon.

@philip_schwarz

https://github.com/philipschwarz/functional-core-imperative-shell-scala
https://github.com/philipschwarz/functional-core-imperative-shell-haskell

