From Monoids chapter of Functional Programming in Scala

“If you have your law-discovering cap on while reading this chapter, you may notice that there’s a law that
holds for some functions between monoids”

Monoid: (false, ||) Monoid: (true, &&)
Zero: false Zero: true
Associative operation: || Associative operation: &&

Identity: (false || p) == (p || false) ==p | | Identity: (true && p) == (p && true) ==p
Associativity: (p || @) || r==p || (q || r) Associativity: ((p && q) &&r) == (p && (q && 1))

A monoid homomorphism f between monoids M and N obeys the following general law for all values x and y:

M.op(f(x),f(y))==f(N.op(xy))

De Morgan's laws
If we choose M = (false, ||); N = (true, &&); f = In formal language, the rules are written as
“(PAQ) < (=P)V(=Q),

then we have theselmonoid homomorphisms|: and

Augustus De Morgan

(PVQ) < (-P) A (=Q),

where

M.op(f(x),f(y))==f(N.op(xy))
'plllgq==!(p&&q)

e Pand Q are propositions,
e — is the negation logic operator (NOT),

N.op(f(x),f == f(M.op(x
p((')' 8(1(%71?) L '((”p() ’ Y)) ¢ A is the conjunction logic operator (AND),
‘P -4==-(pllq « V is the disjunction logic operator (OR),
e <= is a metalogical symbol meaning "can be replaced in a logical proof with".

Augustus De Morgan (1806-1871)

