'()[BJECT-ORIENTED

SECOND EDITION

a

@ The Most

Comprehensive, 'f
Definitive 0-0
Reference Ever
Published

(moo

Tour de Force
by a Pioneer
in the Field

® co-rRoM includes

d Complete Hypertex {
Version of Book
AnD Object-Oriented
Development
Environment

BeErTRAND MEYER

THE

OPEN-CLOSED

PRINCIPLE

OPEN FOR
EXTENSION
1

v

—>

1

—
CLOSED FOR
MODIFICATION

The Original Version

Bertrand Meyer

CHAPAMAN & HMLACRC
TIXTEOOKS IN COMTUTING

FLEXIBLE,
RELIABLE
SOFTWARE

Using Patterns and
Agile Development

Henrik Barbak Christensen

s -
() SRC Press.

Henrik Christensen

3 o &
deck by HX @philip_schwarz (Fp INMwuminated) https://fpilluminated.org/
Y

http://fpilluminated.com/

Sandi Metz

known
needs
of today

The Fundamental Target of

Design

PRACTICAL

OBJECT-ORIENTED
DESIGN IN RUBY

Tension Between

AR ~

changes that
will arrive in
the future

public
class TepClientSampl
e

{

lic i
static void Main O

pub
{
pytell data
= new byt 5
Tepclient serveri yre(10281; string Lowst: etrangoatas
tryl '
server = new '\:chXxent& @ port) ¥
)catch (SocketExcep\:xom
console- wWritebin® (“Unable to connect ©© server™
returni e
3 _ getver: .GetS t:ea\\\ e
Networksr_r cam DS NS e m\\
int v = ™ pead(8® a, Or
= Enc codind:
[\ rec) i W C
y .

datar
et “qgat.a\ i

consO¥® Tyt .
N e s i
Whlle (tru ”» “sol ad‘ﬂ eaki
ir\p\lt = exl’c“\ T -esx"ou"l'”d
: . == opes S pent")
i G 5.2 n s O I I C e

stringoata
c11-6° 5“‘1 A
10

and it need
s to be easy to change fore
ver

TR B 70///
75/5/7/5/‘72

future
changes

where design matters

.-,._‘ﬁ [5/

Its purpose, its entire reason
for being, is to reduce the
cost of change.

~

raison d'étre

(n.) a reason for existing

extreme .
rogramming
explained
Hm EMBRACE CHANGE
ey
Kent Beck
Kent Beck
1999

L

3d Apr 2014
@KentBeck design is irrelevant for today. it only matters when we want to change the

software...
@KentBeck change is the only reason to organize software at all...

Change is

the only

constant.
Heraclitus

APAAAN & HALLT

FLEXIBLE,

RELIABLE

SOFTWARE
Us:ing Patterns and

adopted by agile A
community as a truth
about software
. development

Henrik
Christensen 2010

“software must be designed and developed to
make it easy to change”

Let’s examine software qualities that enable

oo,

\nternat,

ease of change

Look for definitions in ISO 9126

,a\\\zation ’o

Q°°\

Yopenp’®

9126

Projects sometimes fail due to not having any clear
definitions of "success”

This standard tries to develop a common understanding of
project objectives and goals, e.g. software qualities

Internal and external quality

l

[

Reliability

l

l

]

Functionality Usability Efficiency Maintainability Portability
Suitability Maturity Learnability Thme Stability Installability
behaviour
- Understand- Resource -

Accuracy Recoverability ability behaviour Analyzability Conformance
" Fault . i ” -
Interoperabilit h lit Repl bilit
nteroperability tolerance Operability Compliance Changeability eplaceability
Security Compliance Atractiveness Testability Adaptability
Compliance Compliance Compliance Compliance

Software is Reliabile if it can maintain a

specific level of performance under specific
usage conditions

In our

setting...
Software is Reliabile if it can perform the
required functions without failing

Reliability

/re-ly-a-bi-li-ti

1, To be able o produce 9004 results
time after time. 2. How much a
person can be depanded on

In particular, we are interested in
preserving reliability in the face of change

Internal and external quality

“maintainability is composed of
several, finer grained, qualities”

-

[

I

|

Functionality Reliability Usability Efficiency Maintainability Portability
Suitability Maturity Learnability Tane Stability Installability
behaviour
- Understand- Resource -

Accuracy Recoverability ability tishariour Analyzability Conformance
o0 Fault - . ” -

Interoperabilit h | Repl |
perability tolerance Operability Compliance Changeability eplaceability
Security Compliance Atractiveness Testability Adaptability
Compliance Compliance Compliance Compliance

Maintainability

Analysability Changeability Stability Testability

Software is Analysable if you can
* diagnose it for

= deficiencies

" causes of failure

* identify the parts to be modified

“Analysability is basically the ability to understand
software”

Maintainability

Analysability Changeability Stability Testability

Software is changeable if it allows you to
* implement a specific modification
* add, modify, or enhance a feature .
Design Patterns
at a reasonable cost Flements of Reable

Object-Oriented Software

“almost all Design Patterns are
geared towards increasing
design’s changeability”

o

Maintainability

Analysability Changeability Stability Testability

|

Flexibility a special case of
changeability

“Software is flexible if you can add/enhance
functionality purely by adding software units
and specifically not by modifying existing
software units”

Changeability is a desirable quality,
but it relies on
Change by Modification

Change by Behavioural changes that are introduced
Modification by modifying existing production code

Modifications carry the risk of introducing defects, and the @
necessary cost of avoiding them: testing, code reviewing, etc.

Changeability

“The less | ever modify a class, the higher the probability that
it will remain free of defects”

Contrast

Change by Behavioural changes that are introduced
Modification by modifying existing production code

with
Behavioural changes that are introduced by
Change by . . .
adding new production code instead of
modifying existing code

Change by Addition avoids (risky) modifications altogether

Changeability does not take a stand point with regards
to the way a specified modification is implemented

Change by B
{3 | Changeability

Change by
E> Addition

A

In contrast, Flexibility does take this stand point
and requires that no modifications are made

Maintainability

Analysability Changeability Stability Testability

|

Flexibility

Software is Stable if it avoids unexpected effects when
modified

“any change to existing software carries a risk of introducing
defects”

“| advocate the practice to avoid modifying existing code but
preferably add features or modify existing ones by other
means”

Summary

> relies on

+ supports

Stability

= risks undermining +

Change by Change by
E> Addition < - E> Modification

Reliability

Flexibility

Question: how do we promote flexibility,
reliability and stability in our software?

-) Maintainability

Analysability

Testability

Answer: we favour ‘Change by Addition’ over
‘Change by Modification’

Stability

Change by Change by

Flexibility |:> Addition Modification

Reliability

/" if you require

that s/w can
adapt to
changing

__requirements

FLEXIBLE,
RELIABLE
SOFTWARE

Using Patterns and

programming
techniques as well

as adopt a

303 P
o s M = J T, SEE oy
A —
2 A \ S
£
-
A
{
e ($
?

ﬂhen you need to
employ a SPECIAL
set of designh and L

4z without N

modifying
the
productlon

code

Christensen

| cover techniques that
focus on flexibility

|

\\SPECIAL mmdse/

Change by

How do we achieve 2
Addition

™~
' {Another way of characterising

Change by Addition that you may
come across is the Open Closed
Principle”

- /

1988 fBjECT—ORIENTED The most comprehensn{e, definitive
*J OO reference ever published

SECOND EDITION

eeeeeeeeeeeeee

Published

eeeeeeeeee
llllllllll

eeeeeeee

BeErTRAND MEYER

Object Oriented
Software Construction

Bertrand Meyer

The Open-Closed Principle

Modules should be both open and closed

Isn’t there a contradiction
between the two terms?

_— :

| B
e

Modules should be both
OPEN and CLOSED

~(p A -p)

The contradiction is only apparent

It IS @ [ParaDOX:
a statement or proposition that seems
self-contradictory or absurd but in

reality expresses a possible truth.

The two terms
correspond to
goals of a
different nature

e.g. a Dutch door can be
both OPEN and CLOSED

So let’s look at the goals of the OCP

f@’\

%

©

OCP

A moduleis | if it is still

said to be - 1 available for
OPEN -1 extension
operations
e.g. it should be possible to wN N
expand its set of operations W &
fields
or add fields to its data %
v

structures

Data Structures |

=

A module is
said to be
CLOSED

[N |

D
A““ o
5 A
< O\
&

/\

L1

can be compiled, stored in a library, and made
available for clients to use

Y
%

If it is available

— for use by
L“ other modules
|
public part
interface Has a well-defined, stable description

(its interface — in information hiding sense)

secret part

in the case of a design or specification module:

e approved

* baselined in version control

* itsinterface published for benefit of other module authors

OPEN

CLOSED

Recap — A module is...

-
o

e |

if itis still
available for

extension

If it is available
for use by
other modules

N

The need forness

It is impossible to foresee all the elements
that a module will need in its lifetime

so developers wish to keep the module open for as long as possible

rl__

o
e E;?é N

O

so that they can address changes, by changing elements or
and extensions adding new elements

N

The need for &= ness

but it is also necessary to close modules

if a module is never closed until it is certain
that it contains all the needed features

then multi-module s/w can
never reach completion

in a system consisting of many modules, most %
modules will depend on some others /

every developer would always be waiting for
completion of another developer's job

L

Modules should be both open and closed

i AN
We want modules to be both i"EN" for extension and [EEEa] for modification

= i
AR b 4!‘ N5
[\ 7 ¥ Py

AANY" V jﬁ?‘nf‘ /

with traditional TR
techniques | oS ‘

m — the two goals of

openness and closedness

are incompatible

either you keep a module open
e (®
a and others cannot use it yet

or you close it @

and any change or
extension can trigger a
painful chain reaction of
changes

/P

in many other modules
which relied on the
original module directly
or indirectly

Typical situation where the needs for Open and Closed
modules are hard to reconcile

«——— = client of
A module and its clients

New clients which need A’, an adapted or extended version of A

With non-O0 methods,
there seem to be only 2 solutions,
equally unsatisfactory

Solution 1

Solution 1
(3 a3 2
.

ga?
o

@@ Solution

We have taken a copy of A and modified it, turning it into the desired A’

-|=) Solution =

Meyer’s Assessment

if you extrapolate its effects to
* many modules

* many modification requests 0
* along period of time ?

an explosion of variants
of the original module,

many of them very similar,

but never quite identical

————
FLEXIBLE,

E@ Solution (Source tree copy) St
Christensen’s Assessment

Probably the main reason it is encountered so often in practice

Simple.| Easy to explain to colleagues & new developers

) No implementation interference

@@ Solution (Source tree copy)
Christensen’s Assessment

m Quick but very dangerous 1 1 1
s The solution has severe

limitations.
THE LONG RUN In the long run it is @
often a real disaster... SSe22

because it leads to the
multiple maintenance problem

C@ Solution (Source tree copy)
Christensen’s Assessment

PROBLEM

when you want to add/modify logic @ \Gwmwm&wﬁ LOG1C

aopedt
you have to: \\i\\
* Do it for each source tree Reoea‘ MISY RK
* Write the same test cases for each Repea‘

source tree

when you need to
remove a defect

you have todo itin
each source tree e

)

4

Practice shows that over time the
@B,‘% @B; source trees evolve into completely
> 7 different directions: they drift apart.
\&BI

4

After a while it is more or

P

2%

less like maintaining a set Sl M
of completely different QNN Y & “ \

applications
42;) &B’
(+)) At that point, before you do any of =<2
 Modify__ @ the operations, you have to first ;’z\ @@'
analyse each source tree!! “ D

Pf\\/

Example
SAWOS - Semi Automatic Weather Observation System

Used in airports to generate reports of local weather

~ 010110 AN,
) ¢ N4 [110011 Yo M 7 =V
3) 101000 = — L
‘* &7 ¢ 000 ' e t——=3 B

init and config code 8 copies!!!

one variant for each airport in Denmark

However, SAWOS evolved and many programmers participated in its develop-
ment. When [left the company the setup and configuration code had grown into
about 20 source code files containing 425 KB code (roughly 13,000 lines of code) and
these were now maintained in eight different copies. Any defect or new require-
ment that was realized by code in these parts had to be analyzed and potentially
coded in each of the eight copies. It required extreme care to do this properly. |

Summary

=3

solution
Analysability Stability Reliability
. @a
: r J \ PROBLEN

multiple maintenance problem

That was Meyer’s first unsatisfactory st .
solution 1 g] B

to the problem of making modules
both OPEN and CLOSED

Let’s turn to the second one

Problem

«——— = client of
A module and its clients

New clients which need A’, an adapted or extended version of A

Solution 2

Change by
Modification

— Y -

%\\ Solution

We have modified A into A+, which can switch between two modes of execution

In one mode it behaves like A, and in the other it behaves as expected of A’

&\\ Solution

We have modified A into A+, which can switch between two modes of execution

In one mode it behaves like A, and in the other it behaves as expected of A’

%\\ Solution

We have modified A into A+, which can switch between two modes of execution

In one mode it behaves like A, and in the other it behaves as expected of A’

At points of variation, A+ looks like this:

if (variant == VARIANT _1)

seseIRERAL, then {
"I/ A’ \\I‘ (XYY}
° S pelse { Alternatively, this can

be a switch

» .
%\ Solution — Meyer’s Assessment

\)
%\ Solution — Meyer’s Assessment

The potential for disaster is obvious: changes to A may invalidate the assumptions on the
basis of which the old clients used A.

So the changes may start a dramatic series of changes in clients, client of clients....etc

=Y -

\)
%\ Solution — Meyer’s Assessment

The potential for disaster is obvious: changes to A may invalidate the assumptions on the
basis of which the old clients used A.

So the changes may start a dramatic series of changes in clients, client of clients....etc

SR D €D &
D

this is a nightmare for the proj. mgr.
[) the system regresses

and several modules have to be re-
S opened for

dev/test/debug/documentation

\)
%\ Solution — Meyer’s Assessment

Even though the Change solution has this problematic ripple effect, it is still better than
the Copy solution.

eﬁ“z"':&
7 &R
solution solution

On the surface, the copy solution seems better because it avoids the ripple effect of change
but in fact it may even be more catastrophic...it only postpones the day of reckoning

We saw earlier the risks of an explosion of variants, many of them very similar,
but never quite identical:

\ . . .
&\ Solution (Parametric solution)
Christensen’s Assessment

Simple.

Conditionals are easy to understand. So approach is easy to
describe to other developers.

%! . . .
sopisyl Avoids Multiple Maintenance Problem

Only one code base to maintain

solution solution

\ . . .
%\ Solution (Parametric solution)
Christensen’s Assessment

m Liabilities, most of which deal with long term maintainability

with risk of
introducing
new defects

Change by

Reliability Concerns — solution relies on e L.
¥ Modification

Analysability concerns — as more and more
requirements are handled by parameter

switching, the code becomes less easy to
analyse

Responsibility erosion — the software has, dural

ithout much notice, been given an extra drives Procedura
" HRH ’ & towards Design
responsibility

e 2°°7

Blob aka
God Class

Solution (Switches)
Shalloway’s Assessment

//

A reasonable approach at first, but one with serious problems

for applications that need to grow over time

Not too bad as long as you just keep adding cases...

Handle Tax switch (myNation) {
case US:

// US Tax rules here break;
case Canada:

// Canadian Tax rules here break;

DESIGY PATTERNS
EXPLAINED

// Handle Currency switch (myNation) {

case
&
case
/7

UsS:

US Currency rules here break;
Canada:

Canadian Currency rules here break;

/!

Handle Date Format switch (myNation) {
case US:

// use mm/dd/yy format break;
case Canada:

// use dd/mm/yy format break;

but soon you need to introduce fall-throughs...

// Handle Tax switch (myNation) ({ // Handle Currency switch (myNation) {
case US: case US:
// US Tax rules here break; // US Currency rules here break;
case Canada: case Canada:

Canadian Tax rules here break: Canadian Currency rules here break;
case Germany: case Germany:
// Germany Tax rules here break:; // Eurc Currency rules here break;

} }

// Handle Date Feormat switch (myNation) { // Handle Language switch (myNation) ({
case US: case US:
// use mm/dd/yy format break; case Canada:;
case Canada: // use English break;
case Germanyzsg case Germany:
// use dd/mm/yy format break; // use German break;
} }

...and then the switches are not as nice as they used to be

Eventually you need to start adding variations within a case.

Suddenly things get bad in a hurry.

// Handle Language switch (myNation) {
case Canada: r

1f (1nQuebec) {
// use French break;

}
case US:

// use English break;
case Germany:

// use CGerman break;

The flow of the switches themselves becomes confusing, hard to read, hard to
decipher.

When a new case comes in the programmer must find every place it can Q\
be involved (often finding all but one of them).

llike to call this SW1tch

Summary

With non-O0 methods, there are only only 2 solutions available to us,
BOTH UNSATISFACTORY

»
CHANGE %

solution
Change by
Modification

Stability Reliability

solution

PROBLEM

Analysability Stability Reliability

If non-O0 methods are all we have, then

Meyer says we face a change or copy
dilemma

2 R
CHANGE

-
-

So how can we have modules that are both [Reld=i8 and FEEEY

How can we keep A and everything in the top part of the figure unchanged, ...

...while providing A’ to the bottom clients, and avoiding duplication of software?

— Y -

With the OO concept of inheritance
Inheritance allows us to get out of the CHANGE OR COPY dilemma...

...because inheritance allows us to define a new module A' in terms of an existing
modaule A, ...by stating only the differences between the two

inherits from

Change by

Addition

A’ defines new features, and redefines (i.e. modifies)
one or more of A’s features

®0
‘ ‘ - lteratlve
| (.,..
Is white y
Sheep @(“Es

Canrun QZ/

Can run (faster) /l JAY

Can write

Is yellow

Thanks to inheritance, OO developers can adopt a much more
incremental approach to software development than used to be
possible with earlier methods

OO inheritance

Hacking = Slipshod approach to building and
modifying code

Slipshod = Done poorly or too quickly; careless.

The Hacker
may seem
bad

but often his
heart is pure.

COMPANY

Hacker

; 1) MainTest.java [1) MyFirstClass.java & = 8

1 package de.vogella.eclipse.ide.first;

3 public class MyFirstClass {
private static final String HELLO = "Hello Eclipse!"; S‘ u
public static void main(String[] args) {
8 / TODO Provide user interface
9
[

// TOD u
System ntln(HELLO);
int su

m = 0; =
sum = calculateSum(sum);

He sees a usetul piece of software, which is almost able to address the needs of the
moment, more general than the software’s original purpose.

a [3) MyFirstClass.java R
ackage de.vogella.eclipee 4 i

Software

\J
%\ solution

Spurred by a laudable desire not to redo what can be reused, our hacker starts
modifying the original to add provisions for new cases

The impulse is good but the effect
is often to pollute the software
with many clauses of the form

if that special case then...

_ if (<spécia| case A>) SWi tCh

then ..

public class TcpClientSample

. . void Main()
if (<special case B>) __ o input, stringdeted
then ..

Hacking

so that after a few rounds of hacking, perhaps by different hackers,

the software starts resembling a chunk of Swiss cheese that
has been left outside for too long in August — it has both holes
and growth

One way to describe the OCP and the consequent OO techniques is to think of them

as organised hacking
Hoslei 710

Open-Closed Principle = Qrga

Chonge vy
Mo irication
Base
Derived
Change by Inheritance

Addition

The organised form of hacking will enable us to cater to the variants
without affecting the consistency of the original version.

Caveats

if you have control over
original s/w and
can rewrite it

so that it will address the needs
of several kinds of clients

at no extra complication

...you should do so

The OCP principle and associated techniques are intended for the

adaptation of healthy modules B
S P

If there is something wrong
with a module you should fix bl'Ok@n
it...

N

...not leave the original alone and

T try to correct the problem in the

derived module
Derived

neither OCP nor redefinition in
inheritance is a way to address
design flaws, let alone bugs

30 Let's Recap..

.-,._‘ﬁ [5/

Its purpose, its entire reason
for being, is to reduce the
cost of change.

~

raison d'étre

(n.) a reason for existing

Question: how do we promote flexibility,
reliability and stability in our software?

-) Maintainability

Analysability

Testability

Answer: we favour ‘Change by Addition’ over
‘Change by Modification’

Stability

Change by Change by

Flexibility |:> Addition Modification

Reliability

Change by

How do we achieve 2
Addition

which uses OO inheritance

Inheritance

PROBLEM

COPY ° o ‘multiple maintenance problem

solution

9‘% S : Change by
AN Modification
& 4
ooses g =

solution

switch

S
=

Organised % ‘ Change by
.H.a @ki‘m Chooses S Addition

OCP
solution

| hope you enjoyed that.

See you in part two.

