
@philip_schwarzdeck by https://fpilluminated.org/

Bertrand Meyer Henrik Christensen

http://fpilluminated.com/

Tension Between
known
needs
of today

changes that
will arrive in
the future

Sandi Metz

The Fundamental Target of
Design

Code needs to
work today just
once,

and it needs to be easy to change forever

It is at this point of tension

where design matters

today’s
needs

future
changes

its purpose, its entire reason
for being, is to reduce the

cost of change.

1999

3rd Apr 2014
@KentBeck design is irrelevant for today. it only matters when we want to change the
software...

@KentBeck change is the only reason to organize software at all…

Kent Beck

adopted by agile
community as a truth

about software
development

Henrik
Christensen 2010

“software must be designed and developed to
make it easy to change”

Let’s examine software qualities that enable
ease of change

Look for definitions in ISO 9126

Projects sometimes fail due to not having any clear
definitions of "success”

This standard tries to develop a common understanding of
project objectives and goals, e.g. software qualities

Software is Reliabile if it can maintain a
specific level of performance under specific
usage conditions

in our
setting…

In particular, we are interested in
preserving reliability in the face of change

Software is Reliabile if it can perform the
required functions without failing

“maintainability is composed of
several, finer grained, qualities”

Analysability

Maintainability

Changeability Stability Testability

Software is Analysable if you can
• diagnose it for

§ deficiencies
§ causes of failure

• identify the parts to be modified

“Analysability is basically the ability to understand
software”

Analysability

Maintainability

Changeability Stability Testability

Software is changeable if it allows you to
• implement a specific modification
• add, modify, or enhance a feature
 at a reasonable cost

“almost all Design Patterns are
geared towards increasing
design’s changeability”

Analysability

Maintainability

Changeability Stability Testability

“Software is flexible if you can add/enhance
functionality purely by adding software units
and specifically not by modifying existing
software units”

Flexibility a special case of
changeability

Changeability

Behavioural changes that are introduced
by modifying existing production code

Changeability is a desirable quality,
but it relies on
Change by Modification

Change by
Modification

“The less I ever modify a class, the higher the probability that
it will remain free of defects”

Modifications carry the risk of introducing defects, and the
necessary cost of avoiding them: testing, code reviewing, etc.

Behavioural changes that are introduced
by modifying existing production code

Change by
Modification

Change by
Addition

Behavioural changes that are introduced by
adding new production code instead of
modifying existing code

Contrast

Change by Addition avoids (risky) modifications altogether

with

Changeability
Change by
Addition

Change by
Modification

Changeability does not take a stand point with regards
to the way a specified modification is implemented

Flexibility

In contrast, Flexibility does take this stand point
and requires that no modifications are made

Analysability

Maintainability

Changeability Stability Testability

Software is Stable if it avoids unexpected effects when
modified

“I advocate the practice to avoid modifying existing code but
preferably add features or modify existing ones by other
means”

Flexibility

“any change to existing software carries a risk of introducing
defects”

Changeability

Stability

Flexibility

Reliability

Change by
Modification

Change by
Addition

-

+ -

+

Summary

+ supports

- risks undermining

relies on

Question: how do we promote flexibility,
reliability and stability in our software?

Analysability

Maintainability

Changeability Stability Testability

Flexibility

Reliability

Answer: we favour ‘Change by Addition’ over
‘Change by Modification’

Changeability

Stability

Flexibility

Reliability

Change by
Modification

Change by
Addition

-

+ -

+

I cover techniques that
focus on flexibility

Christensen

if you require
that s/w can

adapt to
changing

requirements

without
modifying

the
production

code

then you need to
employ a SPECIAL
set of design and

programming
techniques as well

as adopt a
SPECIAL mindset

“Another way of characterising
Change by Addition that you may
come across is the Open Closed
Principle”

How do we achieve ?Change by
Addition

The Open-Closed Principle

Modules should be both open and closed

Bertrand Meyer Object Oriented
Software Construction

The most comprehensive, definitive
OO reference ever published1988

Isn’t there a contradiction
between the two terms?

Modules should be both
OPEN and CLOSED

¬(p ∧ ¬p)

The contradiction is only apparent

The two terms
correspond to
goals of a
different nature

e.g. a Dutch door can be
both OPEN and CLOSED

It is a

So let’s look at the goals of the OCP

OCP

A module is
said to be
OPEN

if it is still
available for
extension

or add fields to its data
structures

Data Structures

fields

+

operations

e.g. it should be possible to
expand its set of operations

A module is
said to be
CLOSED

If it is available
for use by
other modules

Has a well-defined, stable description
(its interface – in information hiding sense)

public part

secret part

interface1

can be compiled, stored in a library, and made
available for clients to use2

in the case of a design or specification module:
• approved
• baselined in version control
• its interface published for benefit of other module authors

3

OPEN
if it is still
available for
extension

CLOSED
If it is available
for use by
other modules

Recap – A module is…

It is impossible to foresee all the elements
that a module will need in its lifetime X
The need for ness

so developers wish to keep the module open for as long as possible

so that they can address changes,
and extensions

by changing elements or
adding new elements

The need for ness

if a module is never closed until it is certain
that it contains all the needed features

x

every developer would always be waiting for
completion of another developer's job

then multi-module s/w can
never reach completionx

in a system consisting of many modules, most
modules will depend on some others

but it is also necessary to close modules

Modules should be both open and closed

We want modules to be both for extension and for modification

the two goals of
openness and closedness

with traditional
techniques

are incompatible

either you keep a module open

and others cannot use it yet

and any change or
extension can trigger a
painful chain reaction of
changes

or you close it

in many other modules
which relied on the
original module directly
or indirectly

AB C

D

E

A module and its clients

A’F

G H I

New clients which need A’, an adapted or extended version of A

Typical situation where the needs for Open and Closed
modules are hard to reconcile

= client of

With non-OO methods,
there seem to be only 2 solutions,
equally unsatisfactory

AB C

D

E

AF

G H I

Solution 1

AB C

D

E

AF

G H I

Solution 1

AB C

D

E

A’F

G H I

Solution

We have taken a copy of A and modified it, turning it into the desired A’

Solution
Meyer’s Assessment

the consequences are appalling

an explosion of variants
of the original module,

many of them very similar,

but never quite identical

if you extrapolate its effects to
• many modules
• many modification requests
• a long period of time

Solution (Source tree copy)
Christensen’s Assessment

Probably the main reason it is encountered so often in practice

Easy to explain to colleagues & new developers

No implementation interferenceX

Solution (Source tree copy)
Christensen’s Assessment

Quick but very dangerous

In the long run it is
often a real disaster…

The solution has severe
limitations.

because it leads to the
multiple maintenance problem

Solution (Source tree copy)
Christensen’s Assessment

when you want to add/modify logic

you have to:
• Do it for each source tree
• Write the same test cases for each

source tree

you have to do it in
each source tree

when you need to
remove a defect

DRIFT

Practice shows that over time the
source trees evolve into completely
different directions: they drift apart.

After a while it is more or
less like maintaining a set
of completely different
applications

At that point, before you do any of
the operations, you have to first
analyse each source tree!!

Used in airports to generate reports of local weather

one variant for each airport in Denmark

init and config code

Example
SAWOS - Semi Automatic Weather Observation System

8 copies!!!

Analysability Stability Reliability

solution

- - -

Summary

multiple maintenance problem

That was Meyer’s first unsatisfactory
solution

to the problem of making modules
both OPEN and CLOSED

Let’s turn to the second one

AB C

D

E

A’F

G H I

A module and its clients

New clients which need A’, an adapted or extended version of A

= client of

Problem

Solution 2

AB C

D

E

A’F

G H I

Change by
Modification

A+B C

D

E

A’F

G H I

We have modified A into A+, which can switch between two modes of execution

In one mode it behaves like A, and in the other it behaves as expected of A’

Solution

A+B C

D

E

A’F

G H I

We have modified A into A+, which can switch between two modes of execution

In one mode it behaves like A, and in the other it behaves as expected of A’

Solution

A+B C

D

E

A’F

G H I

if (variant == VARIANT_1)
then {
 ….
} else {
 ….
}

At points of variation, A+ looks like this:

We have modified A into A+, which can switch between two modes of execution

In one mode it behaves like A, and in the other it behaves as expected of A’

Alternatively, this can
be a switch

Solution

A+B C

D

E

A’F

G H I

Solution – Meyer’s Assessment

A+B C

D

E

A’F

G H I

The potential for disaster is obvious: changes to A may invalidate the assumptions on the
basis of which the old clients used A.
So the changes may start a dramatic series of changes in clients, client of clients....etc

Solution – Meyer’s Assessment

A+

A’F

G H I

Solution – Meyer’s Assessment
The potential for disaster is obvious: changes to A may invalidate the assumptions on the
basis of which the old clients used A.
So the changes may start a dramatic series of changes in clients, client of clients....etc

B C E

D

this is a nightmare for the proj. mgr.
the system regresses

and several modules have to be re-
opened for
dev/test/debug/documentation

Even though the Change solution has this problematic ripple effect, it is still better than
the Copy solution.

On the surface, the copy solution seems better because it avoids the ripple effect of change
but in fact it may even be more catastrophic…it only postpones the day of reckoning

We saw earlier the risks of an explosion of variants, many of them very similar,
but never quite identical:

Solution – Meyer’s Assessment

solutionsolution

Solution (Parametric solution)
Christensen’s Assessment

Conditionals are easy to understand. So approach is easy to
describe to other developers.

Avoids Multiple Maintenance Problem
Only one code base to maintain

solutionsolution

Liabilities, most of which deal with long term maintainability

Change by
ModificationReliability Concerns – solution relies on

with risk of
introducing
new defects

Analysability concerns – as more and more
requirements are handled by parameter
switching, the code becomes less easy to
analyse

…

Responsibility erosion – the software has,
without much notice, been given an extra
responsibility

drives
towards

Procedural
Design

Blob aka
God Class

Solution (Parametric solution)
Christensen’s Assessment

A reasonable approach at first, but one with serious problems
for applications that need to grow over time

Solution (Switches)
Shalloway’s Assessment

Not too bad as long as you just keep adding cases… 2004

but soon you need to introduce fall-throughs…

…and then the switches are not as nice as they used to be

Eventually you need to start adding variations within a case.

I like to call this switch

The flow of the switches themselves becomes confusing, hard to read, hard to
decipher.

When a new case comes in the programmer must find every place it can
be involved (often finding all but one of them).

Suddenly things get bad in a hurry.

Analysability Stability Reliability

solution

- - -

Summary

Analysability Stability Reliability

solution

- - -

With non-OO methods, there are only only 2 solutions available to us,
BOTH UNSATISFACTORY

multiple maintenance problem

Change by
Modification

CHANGE

COPY

If non-OO methods are all we have, then
Meyer says we face a change or copy
dilemma

CHANGE COPY

AB C

D

E

A’F

G H I

So how can we have modules that are both and ?

How can we keep A and everything in the top part of the figure unchanged, …

…while providing A’ to the bottom clients, and avoiding duplication of software?

AB C

D

E

A’F

G H I

With the OO concept of inheritance

Inheritance allows us to get out of the CHANGE OR COPY dilemma…

…because inheritance allows us to define a new module A' in terms of an existing
module A, …by stating only the differences between the two

A’ defines new features, and redefines (i.e. modifies)
one or more of A’s features

inherits from

Change by
Addition

Thanks to inheritance, OO developers can adopt a much more
incremental approach to software development than used to be
possible with earlier methods

OO inheritance

Hacking = Slipshod approach to building and
 modifying code

Slipshod = Done poorly or too quickly; careless.

The Hacker
may seem
bad

but often his
heart is pure.

He sees a useful piece of software, which is almost able to address the needs of the
moment, more general than the software’s original purpose.

Hacker

Spurred by a laudable desire not to redo what can be reused, our hacker starts
modifying the original to add provisions for new cases

solution

The impulse is good but the effect
is often to pollute the software
with many clauses of the form
if that_special_case then…

if (<special case D>)
then …

if (<special case C>)
then …

if (<special case B>)
then …

if (<special case A>)
then …

switch

so that after a few rounds of hacking, perhaps by different hackers,

the software starts resembling a chunk of Swiss cheese that
has been left outside for too long in August – it has both holes
and growth

Hacking

Open-Closed Principle =

One way to describe the OCP and the consequent OO techniques is to think of them
as organised hacking

Hacking

The organised form of hacking will enable us to cater to the variants
without affecting the consistency of the original version.

Inheritance

Change by
Modification

Change by
Addition

if you have control over
original s/w and
can rewrite it

so that it will address the needs
 of several kinds of clients

…you should do so

Caveats

at no extra complication

The OCP principle and associated techniques are intended for the
adaptation of healthy modules

If there is something wrong
with a module you should fix
it…

…not leave the original alone and
try to correct the problem in the
derived module

Derived

Base

neither OCP nor redefinition in
inheritance is a way to address
design flaws, let alone bugs Design

Flaw

its purpose, its entire reason
for being, is to reduce the

cost of change.

Question: how do we promote flexibility,
reliability and stability in our software?

Analysability

Maintainability

Changeability Stability Testability

Flexibility

Reliability

Answer: we favour ‘Change by Addition’ over
‘Change by Modification’

Changeability

Stability

Flexibility

Reliability

Change by
Modification

Change by
Addition

-

+ -

+

How do we achieve ?Change by
Addition

which uses OO inheritance

Inheritance

We apply the Open-Closed Principle

multiple maintenance problem

Change by
Modification

CHANGE
solution

COPY
solution

Hacker

Change by
Addition

OCP
solution

Chooses

Chooses
switch

I hope you enjoyed that.

See you in part two.

