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Due credit must be paid to the genius of the designers of ALGOL 60 
who included recursion in their language and enabled me to describe 
my invention [Quicksort] so elegantly to the world.

Ask a professional computer scientist or programmer to list their top 
10 algorithms, and you’ll find Quicksort on many lists, including mine. 
… On the aesthetic side, Quicksort is just a remarkably beautiful 
algorithm, with an equally beautiful running time analysis.
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This function produces a sorted version of any list of numbers. 

The first equation for qsort states that the empty list is already sorted, while the second states that any non-empty list can be 
sorted by inserting the first number between the two lists that result from sorting the remaining numbers that are smaller and 
larger than this number. 

This method of sorting is called quicksort, and is one of the best such methods known. The above implementation of quicksort is 
an excellent example of the power of Haskell, being both clear and concise. 

Moreover, the function qsort is also more general than might be expected, being applicable not just with numbers, but with any 
type of ordered values. More precisely, the type qsort :: Ord a => [a] -> [a] states that, for any type a of ordered values, qsort is a 
function that maps between lists of such values. 

Haskell supports many different types of ordered values, including numbers, single characters such as ’a’, and strings of characters 
such as "abcde". 

Hence, for example, the function qsort could also be used to sort a list of characters, or a list of strings.

qsort :: Ord a => [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort smaller ++ [x] ++ qsort larger
               where
                 smaller = [a | a <- xs, a <= x]
                 larger  = [b | b <- xs, b > x ]

Sorting values 

Now let us consider a more sophisticated function concerning lists, which illustrates a number of other aspects of Haskell. Suppose that 
we define a function called qsort by the following two equations:

The empty list is already sorted, and any non-empty list can be sorted by 
placing its head between the two lists that result from sorting those 
elements of its tail that are smaller and larger than the head
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What I wanted to show you today, is what Haskell looks like, because it looks quite unlike any 
other language that you probably have seen.

The program here is very concise, it is only five lines long, there is essentially no junk syntax 
here, it would be hard to think of eliminating any of the symbols here, and this is in contrast 
to what you find in most other programming languages.

If you have seen sorting algorithms like Quicksort before, maybe in C, maybe in Java, maybe in 
an other language, it is probably going to be much longer than this version. 

So for me, writing a program like this in Haskell catches the essence of the Quicksort algorithm. 

Functional Programming in Haskell - FP 3 - Introduction 

The point here at the bottom, it is quite a bold statement, but I actually do 
believe it is true, this is probably the simplest implementation of 
Quicksort in any programming language. 

If you can show me a simpler one than this, I’ll be very interested to see it, 
but I don’t really see what you can take out of this program and actually 
still have the Quicksort algorithm. 

qsort :: Ord a =>  [a] -> [a]
qsort [] = []
qsort (x:xs) = 
   qsort smaller ++ [x] ++ qsort larger
   where
      smaller = [a | a <- xs, a <= x]
      larger  = [b | b <- xs, b > x ]

This is probably the simplest implementation of 
Quicksort in any programming language!

Functional Programming in Haskell - FP 8 – Recursive Functions



def qsort[A:Ordering](as: List[A]): List[A] = as match
  case Nil => Nil
  case x::xs =>
    val smaller = for a <- xs if a <= x yield a
    val larger  = for b <- xs if b > x  yield b
    qsort(smaller) ++ List(x) ++ qsort(larger)

qsort :: Ord a => [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort smaller ++ [x] ++ qsort larger
               where
                 smaller = [a | a <- xs, a <= x]
                 larger  = [b | b <- xs, b > x ]

(defn qsort [elements]
  (if (empty? elements) 
     elements
     (let [[x & xs] elements
           smaller (for [a xs :when (<= a x)] a)
           larger  (for [b xs :when (>  b x)] b)]
       (concat (qsort smaller) (list x) (qsort larger)))))

Here is the Haskell qsort function again, together 
with the equivalent Scala and Clojure functions.



given Ordering[RGB] with
  def compare(x: RGB, y: RGB): Int = 
    x.ordinal compare y.ordinal

data RGB = Red | Green | Blue deriving(Eq,Ord,Show)

enum RGB :
  case Red, Green, Blue

TestCase (assertEqual "sort integers" [1,2,3,3,4,5]             (qsort [5,1,3,2,4,3]))
TestCase (assertEqual "sort doubles"  [1.1,2.3,3.4,3.4,4.5,5.2] (qsort [5.2,1.1,3.4,2.3,4.5,3.4]))
TestCase (assertEqual "sort chars"    "abccde"                  (qsort "acbecd"))
TestCase (assertEqual "sort strings"  ["abc","efg","uvz"]       (qsort ["abc","uvz","efg"]) )
TestCase (assertEqual "sort colours"  [Red,Green,Blue]          (qsort [Blue,Green,Red]))

assert(qsort(List(5,1,2,4,3))   == List(1,2,3,4,5))
assert(qsort(List(5.2,1.1,3.4,2.3,4.5,3.4)) == List(1.1,2.3,3.4,3.4,4.5,5.2))
assert(qsort(List(Blue,Green,Red))  == List(Red,Green,Blue))
assert(qsort("acbecd".toList)   == "abccde".toList)
assert(qsort(List ("abc","uvz","efg"))  == List("abc","efg","uvz"))

And here are some Haskell 
and Scala tests for qsort.



qsort :: Ord a =>  [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort smaller ++ [x] ++ qsort larger
               where
                 smaller = filter (x >) xs 
                 larger  = filter (x <=) xs

qsort :: Ord a =>  [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort smaller ++ [x] ++ qsort larger
               where
                 smaller = [a | a <- xs, a <= x]
                 larger  = [b | b <- xs, b > x ]

def qsort[A:Ordering](as: List[A]): List[A] = as match
  case Nil => Nil
  case x::xs =>
    val smaller = for a <- xs if a <= x yield a
    val larger  = for b <- xs if b > x  yield b
    qsort(smaller) ++ List(x) ++ qsort(larger)

(defn qsort [elements]
  (if (empty? elements) 
     elements
     (let [[x & xs] elements
           smaller (for [a xs :when (<= a x)] a)
           larger  (for [b xs :when (>  b x)] b)]
       (concat (qsort smaller) (list x) (qsort larger)))))

(defn qsort [elements]
  (if (empty? elements) 
     elements
     (let [[x & xs] elements
           smaller (filter #(<= % x) xs)
           larger  (filter #(>  % x) xs)]
       (concat (qsort smaller) (list x) (qsort larger)))))

def qsort[A:Ordering](as: List[A]): List[A] = as match
  case Nil => Nil
  case x::xs =>
    val smaller = xs filter (_ <= x)
    val larger  = xs filter (_ > x)
    qsort(smaller) ++ List(x) ++ qsort(larger)

Let’s use the predefined filter function to make 
the qsort functions a little bit more succinct.



qsort :: Ord a =>  [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort smaller ++ [x] ++ qsort larger
               where
                 smaller = filter (x >) xs 
                 larger  = filter (x <=) xs

(defn qsort [elements]
  (if (empty? elements) 
     elements
     (let [[x & xs] elements
           smaller (filter #(<= % x) xs)
           larger  (filter #(>  % x) xs)]
       (concat (qsort smaller) (list x) (qsort larger)))))

def qsort[A:Ordering](as: List[A]): List[A] = as match
  case Nil => Nil
  case x::xs =>
    val smaller = xs filter (_ <= x)
    val larger  = xs filter (_ > x)
    qsort(smaller) ++ List(x) ++ qsort(larger)

Now let’s improve the qsort functions a bit further 
by using the predefined partition function.

def qsort[A:Ordering](as: List[A]): List[A] = as match
  case Nil => Nil
  case x::xs =>
    val (smaller,larger) = xs partition (_ <= x)
    qsort(smaller) ++ List(x) ++ qsort(larger)

(defn qsort [elements]
  (if (empty? elements) 
     elements
     (let [[x & xs] elements
           [smaller larger] (split-with #(<= % x) xs)]
       (concat (qsort smaller) (list x) (qsort larger)))))

qsort :: Ord a =>  [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort smaller ++ [x] ++ qsort larger
               where (smaller,larger) = partition (x >) xs

@philip_schwarz



qsort( [], [] ).
qsort( [X|XS], Sorted ) :- 
  partition(X, XS, Smaller, Larger), 
  qsort(Smaller, SortedSmaller), 
  qsort(Larger, SortedLarger), 
  append(SortedSmaller, [X|SortedLarger], Sorted).

partition( _, [], [], [] ).
partition( X, [Y|YS], [Y|Smaller], Larger ) :- Y =< X, partition(X, YS, Smaller, Larger).
partition( X, [Y|YS], Smaller, [Y|Larger] ) :- Y  > X, partition(X, YS, Smaller, Larger).

qsort :: Ord a => [a] -> [a]
qsort [] = []
qsort (x:xs) = qsort smaller ++ [x] ++ qsort larger
               where
                 smaller = [a | a <- xs, a <= x]
                 larger  = [b | b <- xs, b > x ]

Like Haskell, Prolog (the Logic Programming language) is also clear and succinct. 

Let’s see how a Prolog version of Quicksort compares with the Haskell one.



def qsort[A:Ordering](xs: List[A]): List[A] =
  xs.headOption.fold(Nil){ x =>
    val smaller = xs.tail filter (_ <= x)
    val larger  = xs.tail filter (_ > x)
    qsort(smaller) ++ List(x) ++ qsort(larger) 
  }

private static <T extends Comparable> List<T> qsort(final List<T> xs) {
  return xs.stream().findFirst().map((final T x) -> {
    final List<T> smaller = xs.stream().filter(n -> n.compareTo(x) < 0).collect(toList());
    final List<T> larger  = xs.stream().skip(1).filter(n -> n.compareTo(x) >= 0).collect(toList());
    return Stream.of(qsort(smaller), List.of(x), qsort(larger))
                 .flatMap(Collection::stream)
                 .collect(Collectors.toList());
  }).orElseGet(Collections::emptyList);
}

Here, we first create a variant of the Scala qsort function that uses headOption and 
fold, and then we have a go at writing a somewhat similar Java function using Streams.

def qsort[A:Ordering](as: List[A]): List[A] = as match
  case Nil => Nil
  case x::xs =>
    val smaller = xs filter (_ <= x)
    val larger  = xs filter (_ > x)
    qsort(smaller) ++ List(x) ++ qsort(larger)



def qsort[A:Ordering](xs: List[A]): List[A] =
  xs.headOption.fold(Nil){ x =>
    val (smaller,larger) = xs partition (_ <= x)
    qsort(smaller) ++ List(x) ++ qsort(larger) 
  }

private static <T extends Comparable> List<T> qsort(final List<T> xs) {
  return xs.stream().findFirst().map((final T x) -> {
    Map<Boolean, List<T>> partitions = xs.stream().skip(1).collect(Collectors.partitioningBy(n -> n.compareTo(x) < 0));
    final List<T> smaller = partitions.get(true);
    final List<T> larger  = partitions.get(false);
    return Stream.of(qsort(smaller), List.of(x), qsort(larger))
                 .flatMap(Collection::stream)
                 .collect(Collectors.toList());
  }).orElseGet(Collections::emptyList);
}

Same as the previous slide, but here 
we use partition rather than filter.

def qsort[A:Ordering](as: List[A]): List[A] = as match
  case Nil => Nil
  case x::xs =>
    val (smaller,larger) = xs partition (_ <= x)
    qsort(smaller) ++ List(x) ++ qsort(larger)



On the next slide, a brief reminder  of the 
definition of the Quicksort algorithm. 
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Description of quicksort

Quicksort, like merge sort, applies the divide-and-conquer paradigm. Here is the 
three-step divide-and-conquer process for sorting a typical subarray A	[	p	. .	r		]	:

Divide: Partition (rearrange) the array A	[p	. .r	]	into two (possibly empty) subarrays 
A	[	p	. .	q	−	1	]	and A	[	q	+	1	. .	r	]	such that each element of A	[	p	. .	q	-	1	]	is less 
than or equal to A	[	q	], which is, in turn, less than or equal to each element of A	[	q	
+	1	. .	r	]. Compute the index q  as part of this partitioning procedure.

Conquer: Sort the two subarrays A	[	p	. .	q	−	1	]	and A	[	q	+	1	. .	r	] by recursive calls 
to quicksort.

Combine: Because the subarrays are already sorted, no work is needed to combine 
them: the entire array A	[	p	. .	r	]	is now sorted.



The next slide is a reminder of some of the 
salient aspects of the Quicksort algorithm. 



The Upshot

The famous Quicksort algorithm has three high-level steps: 
1. It chooses one element p of the input array to act as a pivot element
2. Its Partition subroutine rearranges the array so that elements smaller 

than and greater than p come before it and after it, respectively
3. It recursively sorts the two subarrays on either side of the pivot

The Partition subroutine can be implemented to run in linear time and in 
place, meaning with negligible additional memory. As a consequence, Quicksort 
also runs in place.

The correctness of the Quicksort algorithm does not depend on how pivot 
elements are chosen, but its running time does.

The worst-case scenario is a running time of Θ 𝑛2 , where 𝑛 is the length of the 
input array. This occurs when the input array is already sorted, and the first element 
is always used as the pivot element. The best-case scenario is a running time of 
Θ 𝑛	log 𝑛 . This occurs when the median element is always used as the pivot.

In randomized Quicksort, the pivot element is always chosen uniformly at 
random. Its running time can be anywhere from Θ 𝑛	log 𝑛 	to Θ 𝑛2 , depending on 
its random coin flips.

The average running time of randomized Quicksort is 𝛩 𝑛	𝑙𝑜𝑔 𝑛 , only a small 
constant factor worse than its best-case running time.

A comparison-based sorting algorithm is a general-purpose algorithm that accesses 
the input array only by comparing pairs of elements, and never directly uses the 
value of an element.

No comparison-based sorting algorithm has a worst-case asymptotic running time 
better than 𝛩 𝑛	𝑙𝑜𝑔 𝑛 .  

…

Tim Roughgarden
          @algo_class

ChoosePivot

Input: array A of 𝑛 distinct integers, left and right endpoints 
            ℓ, 𝑟 ∈ 1,2, … , 𝑛 .
Output: an index 𝑖 ∈ ℓ, ℓ + 1,… , 𝑟 .

Implementation:

• Naïve: return ℓ.

• Overkill: return position of the median element of
A	[ℓ], … , A	[𝑟]	 .

• Randomized: return an element of ℓ, ℓ + 1,… , 𝑟 , chosen 
uniformly, at random.



On the next slide we see an imperative 
(Java) implementation of Quicksort, 
i.e. one that does the sorting in place.
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public class Arrays {
    // OVERVIEW: …

    public static void sort (int[ ] a) {
        // MODIFIES: a
        // EFFECTS: Sorts a[0], …, a[a.length - 1] into ascending order.
        if (a == null) return;
        quickSort(a, 0, a.length-1); }

    private static void quickSort(int[ ] a, int low, int high) {
        // REQUIRES: a is not null and 0 <= low & high > a.length
        // MODIFIES: a
        // EFFECTS: Sorts a[low], a[low+1], …, a[high] into ascending order.
        if (low >= high) return;
        int mid = partition(a, low, high);
        quickSort(a, low, mid);
        quickSort(a, mid + 1, high); }

    private static int partition(int[ ] a, int i, int j) {
        // REQUIRES: a is not null and 0 <= i < j < a.length
        // MODIFIES: a
        // EFFECTS: Reorders the elements in a into two contiguous groups,
        //   a[i],…, a[res] and a[res+1],…, a[j], such that each
        //   element in the second group is at least as large as each
        //   element of the first group. Returns res.
        int x = a[i];
        while (true) {
            while (a[j] > x) j--;
            while (a[i] < x) i++;
            if (i < j) { // need to swap
                int temp = a[i]; a[i] = a[j]; a[j] = temp;
                j--; i++; }
            else return j; }
    }
}

quick sort … partitions the elements of the array into two contiguous 
groups such that all the elements in the first group are no larger than 
those in the second group; it continues to partition recursively until 
the entire array is sorted. 

To carry out these steps, we use two subsidiary 
procedures: quickSort, which causes the partitioning of smaller and 
smaller subparts of the array, and partition, which performs the 
partitioning of a designated subpart of the array.

Note that the quickSort and partition routines are not declared to 
be public; instead, their use is limited to the Arrays class. 

This is appropriate because they are just helper routines and have 
little utility in their own right. 

Nevertheless, we have provided specifications for them; these 
specifications are of interest to someone interested in understanding 
how quickSort is implemented but not to a user of quickSort



Yes, that was Barbara Liskov, of Liskov Substitution Principle fame.

Now that we have seen both functional and imperative implementations of Quicksort, we go back to the 
Haskell functional implementation and learn about the following:
• Shortcomings of the functional implementation
• How the functional implementation can be made more efficient in its use of space.
• How the functional implementation can be rewritten in a hybrid imperative functional style.

Because the last of the above topics involves fairly advanced functional programming techniques, we are 
simply going to have a quick, high-level look at it, to whet our appetite and motivate us to find out more.



Richard Bird

Our second sorting algorithm is a famous one called Quicksort. It can be expressed in just two lines of Haskell:

  sort :: (Ord a) => [a] -> [a]
  sort []     = []
  sort (x:xs) = sort [y | y <- xs, y < x] ++ [x] ++ sort [y | y <- xs, x <= y]

That’s very pretty and a testament to the expressive power of Haskell. But the prettiness comes at a cost: the program can be 
very inefficient in its use of space.

Before plunging into ways the code can be optimized, let’s compute T 𝑠𝑜𝑟𝑡 . Suppose we want to sort a list of length 𝑛 + 1. The 
first list comprehension can return a list of any length 𝑘 from 0 to 𝑛. The length of the result of the second list comprehension is 
therefore 𝑛 − 𝑘. Since our timing function is an estimate of the worst-case running time, we have to take the maximum of these 
possibilities:

  T 𝑠𝑜𝑟𝑡 𝑛 + 1 = 𝑚𝑎 𝑥 T 𝑠𝑜𝑟𝑡 𝑘 + T 𝑠𝑜𝑟𝑡 𝑛 − 𝑘 	 𝑘 ← 	 [0. . 𝑛]] + 𝜃(𝑛).

The 𝜃(𝑛)	term accounts for both the time to evaluate the two list comprehensions and the time to perform the concatenation. 
Note, by the way, the use of a list comprehension in a mathematical expression rather than a Haskell one. If list comprehensions are 
useful notions in programming, they are useful in mathematics too.

Although not immediately obvious, the worst case occurs when 𝑘 = 0	or 𝑘 = 𝑛. Hence

  T 𝑠𝑜𝑟𝑡 0 = 𝜃(1)
  T 𝑠𝑜𝑟𝑡 𝑛 + 1 = T 𝑠𝑜𝑟𝑡 𝑛 + 𝜃(𝑛)

With solution T 𝑠𝑜𝑟𝑡 𝑛 = 𝜃(𝑛2). Thus Quicksort is a quadratic algorithm in the worst case. This fact is intrinsic to the 
algorithm and has nothing to do with the Haskell expression of it. 
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Quicksort achieved its fame for two other reasons, neither of which hold in a purely functional setting.

Firstly, when Quicksort is implemented in terms of arrays rather than lists, the partitioning phase can be performed in place 
without using any additional space. 

Secondly, the average case performance of Quicksort, under reasonable assumptions about the input, is 𝜃(𝑛 log 𝑛) with a 
smallish constant of proportionality. In a functional setting this constant is not so small and there are better ways to sort than 
Quicksort.

With this warning, let us now see what we can do to optimize the algorithm without changing it in any essential way (i.e. to a 
completely different sorting algorithm). 

To avoid the two traversals of the list in the partitioning process, define

  partition p xs = (filter p xs, filter (not . p) xs)

This is another example of tupling two definitions to save on a traversal. Since filter p can be expressed as an instance of 
foldr we can appeal to the tupling law of foldr to arrive at

  partition p = foldr op ([],[])
                where op x (ys,zs) | p x       = (x:ys,zs)
                                   | otherwise = (ys,x:zs))
Now we can write

  sort []     = []
  sort (x:xs) = sort ys ++ [x] ++ sort zs
                where (ys,zs) = partition (< x) xs

But this program still contains a space leak. 



partition p = foldr f ([],[])
               where f y (ys,zs) = if p y then (y:ys,zs) else (ys,y:zs))

Having rewritten the definition of partition, it may be thought that the program for quicksort is now as space 
efficient as possible, but unfortunately it is not. 

For some inputs of length 𝑛 the space required by the program is Ω(𝑛2). 

This situation is referred to as a space leak. A space leak is a hidden loss of space efficiency. The space leak in the 
above program for quicksort occurs with an input which is already sorted, but in decreasing order.

Richard Bird

In his earlier book, Richard Bird elaborates a bit on partition’s space leak.

@philip_schwarz
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To see why, let us write the recursive case in the equivalent form

  sort (x:xs) = sort (fst p) ++ [x] ++ sort (snd p)
                where p = partition (< x) xs

Suppose x:xs has length 𝑛	+	1	and is in strictly decreasing order, so x is the largest element in the list and p is a pair of lists of 
length 𝑛 and 0, respectively. Evaluation of p is triggered by displaying the results of the first recursive call, but the 𝑛 units of space 
occupied by the first component of p cannot be reclaimed because there is another reference to p in the second recursive call. 

Between these two calls further pairs of lists are generated and retained. All in all, the total space required to evaluate sort on a 
strictly decreasing list of length 𝑛	+	1 is 𝜃(𝑛2) units. In practice this means the evaluation of sort on some large inputs can abort 
owing to a lack of sufficient space.

The solution is to force evaluation of partition and, equally importantly, to bind ys and zs to the components of the pair, not 
to p itself. 

One way of bringing about a happy outcome is to introduce two accumulating parameters. Define sortp by

  sortp x xs us vs = sort (us ++ ys) ++ [x] ++ sort (vs ++ zs)
                     where (ys,zs) = partition (< x) xs

Then we have

  sort (x:xs) = sortp x xs [] [] 

We now synthesise a direct recursive definition of sortp. The base case is

  sortp x [] us vs = sort us ++ [x] ++ sort vs



Richard Bird

For the recursive case y:xs let us assume that y < x. Then

  sortp x (y:xs) us vs
=  { definition of sortp with (ys,zs) = partition (<x) xs }
  sort (us ++ y:ys) ++ [x] ++ sort (vs ++ zs)
=  { claim (see below) }
  sort (y:us ++ ys) ++ [x] ++ sort (vs ++ zs)
=  { definition of sortp }
  sortp x xs (y:us) vs

The claim is that if as is any permutation of bs then sort as and sort bs returns the same result. The claim is intuitively 
obvious: sorting a list depends only on the elements in the input not their order. A formal proof is omitted.

Carrying out a similar calculation in the case that x <= y and making sortp local to the definition of sort, we arrive at the 
final program

  sort []     = []
  sort (x:xs) = sortp xs [] []
    where sortp [] us vs     = sort us ++ [x] ++ sort vs
          sortp (y:xs) us vs = if y < x
                               then sortp xs (y:us) vs
                               else sortp xs us (y:vs)

Not quite as pretty as before, but at least the result has 𝜃(𝑛) space complexity.   



We have just seen Richard Bird improve the Haskell Quicksort 
program so that rather than requiring Ω(𝑛2)	 space for some 
inputs, it now has a space complexity of 𝜃(𝑛).

𝑓 = O 𝑔     𝑓 is of order at most 𝑔
 𝑓 = Ω 𝑔    𝑓 is of order at least 𝑔
 𝑓 = Θ(𝑔) if 𝑓 = O(𝑔)	and 𝑓 = Ω 𝑔   𝑓 is of order exactly 𝑔

Next, Richard Bird goes further and rewrites the Quicksort program so that it sorts arrays in place, i.e. without using any additional space. 

To do this, he relies on advanced functional programming concepts like the state monad and the state thread monad.

If you are not so familiar with Haskell or functional programming, you might want to skip the next slide, and skim read the one after that.



Richard Bird

                                       Imperative Functional Programming
10.4 The ST monad

The state-thread monad, which resides in the library Control.Monad.ST, is a different kettle of fish entirely from the state 
monad, although the kettle itself looks rather similar. Like State s a, you can think of this monad as the type

  type ST s a = s -> (a,s)

but with one very important difference: the type variable a cannot be instantiated to specific states, such as Seed or [Int]. 
Instead it is there only to name the state. Think of s as a label that identifies one particular state thread. All mutable types are 
tagged with this thread, so that actions can only affect mutable values in their own state thread.

One kind of mutable value is a program variable. Unlike variables in Haskell, or mathematics for that matter, program variables in 
imperative languages can change their values. They can be thought of as references to other variables, and in Haskell they are 
entities of type STRef s a. The s means that the reference is local to the state thread s (and no other), and the a is the type of 
value being referenced. There are operations, defined in Data.STRef, to create, read from and write to references:

  newSTRef   ::  a -> ST s (STRef s a)
  readSTRef  ::  STRef s a -> ST s a
  writeSTRef ::  STRef s a -> a -> ST s ()

Here is the beginning of Richard Bird’s explanation of how the 
state-thread monad can be used to model program variables.



Richard Bird

                                       Imperative Functional Programming

10.5 Mutable Arrays

It sometimes surprises imperative programmers who meet functional programming for the first time that the emphasis is on lists 
as the fundamental data structure rather than arrays. The reason is that most uses of arrays (though not all) depend for their 
efficiency on the fact that updates are destructive. Once you update the value of an array at a particular index the old array is lost. 
But in functional programming, data structures are persistent and any named structure continues to exist. For instance, insert 
x t may insert a new element x into a tree t, but t continues to refer to the original tree, so it had better not be overwritten.

In Haskell a mutable array is an entity of type STArray s i e. The s names the state thread, i the index type and e the element 
type. Not every type can be an index; legitimate indices are members of the type Ix. Instances of this class include Int and Char, 
things that can be mapped into a contiguous range of integers.

Like STRefs there are operations to create, read from and write to arrays. Without more ado, we consider an example explaining 
the actions as we go along. Recall the Quicksort algorithm from Section 7.7:

  sort :: (Ord a) => [a] -> [a]
  sort []     = []
  sort (x:xs) = sort [y | y <- xs, y < x] ++ [x] ++ 
                sort [y | y <- xs, x <= y]

There we said that when Quicksort is implemented in terms of arrays rather than lists, the partitioning phase can be performed in 
place without using any additional space. We now have the tools to write just such an algorithm.

Here is How Richard Bird prepares to rewrite the Quicksort 
program using the Haskell equivalent of a mutable array.



Let’s skip the actual rewriting. 

The next slide shows the rewritten Quicksort program next to the earlier Java program.

The Java program looks simpler, not just because it is not polymorphic (it only handles integers).@philip_schwarz



public class Arrays {
    // OVERVIEW: …

    public static void sort (int[ ] a) {
        // MODIFIES: a
        // EFFECTS: Sorts a[0], …, a[a.length - 1] into ascending order.
        if (a == null) return;
        quickSort(a, 0, a.length-1); }

    private static void quickSort(int[ ] a, int low, int high) {
        // REQUIRES: a is not null and 0 <= low & high > a.length
        // MODIFIES: a
        // EFFECTS: Sorts a[low], a[low+1], …, a[high] into ascending order.
        if (low >= high) return;
        int mid = partition(a, low, high);
        quickSort(a, low, mid);
        quickSort(a, mid + 1, high); }

    private static int partition(int[ ] a, int i, int j) {
        // REQUIRES: a is not null and 0 <= i < j < a.length
        // MODIFIES: a
        // EFFECTS: Reorders the elements in a into two contiguous groups,
        //   a[i],…, a[res] and a[res+1],…, a[j], such that each
        //   element in the second group is at least as large as each
        //   element of the first group. Returns res.
        int x = a[i];
        while (true) {
            while (a[j] > x) j--;
            while (a[i] < x) i++;
            if (i < j) { // need to swap
                int temp = a[i]; a[i] = a[j]; a[j] = temp;
                j--; i++; }
            else return j; }
    }
}

qsort :: Ord a => [a] -> [a]
qsort xs = runST $
           do {xa <- newListArray (0,n-1) xs;
               qsortST xa (0,n);
               getElems xa}
           where n = length xs

qsortST :: Ord a => STArray s Int a ->
           (Int,Int) -> ST s ()
qsortST xa (a,b)
  | a == b    = return ()
  | otherwise = do {m <- partition xa (a,b);
                    qsortST xa (a,m);
                    qsortST xa (m+1,b)}

partition :: Ord a => STArray s Int a -> 
             (Int,Int) -> ST s Int
partition xa (a,b)
 = do {x <- readArray xa a;
       let loop (j,k)
            = if j==k
              then do {swap xa a (k-1);
                       return (k-1)}
              else do {y <- readArray xa j;
                       if y < x then loop (j+1,k)
              else do {swap xa j (k-1);
                       loop (j,k-1)}}
       in loop (a+1,b)}

swap :: STArray s Int a -> Int -> Int -> ST s ()
swap xa i j =  do {v <- readArray xa i;
                   w <- readArray xa j;
                   writeArray xa i w;
                   writeArray xa j v}



That’s all.

I hope you found this slide deck useful.


