
Drawing Heighway’s Dragon
Simplification Through Separation of Concerns

Rotation Without Matrix Multiplication

@philip_schwarzslides by https://fpilluminated.org/

Part 3

http://fpilluminated.com/

The way that we rotate a point, is by putting
its 𝑥 and 𝑦 coordinates in a row vector with a
𝑧 value of 1, and computing the dot product
of the vector with rotation matrix 𝐑.

object DragonPath:
 def apply(startPoint : Point, direction: Direction, length: Int): DragonPath =
 val nextPoint = startPoint.translate(direction, amount = length)
 List(nextPoint, startPoint)

extension (path: DragonPath)
 @tailrec def grow(age: Int): DragonPath =
 if age == 0 || path.size < 2 then path
 else path.plusRotatedCopy.grow(age - 1)

 private def plusRotatedCopy =
 path.reverse.rotate(rotationCentre=path.head, angle=ninetyDegreesClockwise)
 ++ path

case class Dragon(start: Point, age: Int, length: Int, direction: Direction):
 val path: DragonPath =
 DragonPath(start, direction, length)
 .grow(age)

In part 2, we computed the path of a dragon by exploiting the self-similarity of dragons.

A dragon path is a sequence of points.

The initial dragon path, for a dragon aged zero, consists of two points, namely the
dragon’s starting point, and the point reached from that starting point by travelling in the
given direction by the given line length.

Given a path for a dragon aged N, the way we grew it into that of a dragon aged N+1, is by
adding to the path the result of first reversing the tail of the path, and then rotating each
of its points 90 degrees clockwise about the path’s last point.

Here for example, we take the path of a dragon aged 2, whose points are 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5,
drop its last point, reverse the other points into path 𝑝4, 𝑝3, 𝑝2, 𝑝1, and then rotate
each of the latter’s points about 𝑝5, resulting in new path section 𝑝6, 𝑝7, 𝑝8, 𝑝9.

type DragonPath = List[Point]

𝑝1 𝑝2

𝑝3𝑝4

𝑝5𝑝6

𝑝7𝑝8

𝑝9

𝑥! 𝑦′ 1 = 𝑥 𝑦 1 	𝐑

𝐑 =
cosφ
−sinφ

sinφ
cosφ

0
0

−𝑥C cosφ + 𝑦C sinφ + 𝑥C −𝑥C sinφ − 𝑦C cosφ + 𝑦C 1

𝑝1 𝑝2

𝑝3𝑝4

𝑝5𝑝6

𝑝7𝑝8

𝑝9

>
𝑑1
𝐸𝑎𝑠𝑡

𝑑8

𝑑2 𝑁𝑜𝑟𝑡ℎ

𝑁𝑜𝑟𝑡ℎ

𝑑7
𝑊𝑒𝑠𝑡

𝑑3
𝑊𝑒𝑠𝑡

𝑑6 𝑆𝑜𝑢𝑡ℎ 𝑑4 𝑁𝑜𝑟𝑡ℎ

𝑑5
𝑊𝑒𝑠𝑡 >>

>

I now realise that we can greatly simplify the task of rotating part of a dragon, if instead of rotating the dragon’s path, we rotate its shape.

As mentioned on the previous slide, the path of a dragon consists of a sequence of points.

What about the shape of a dragon? Let’s define it to be a sequence of directions.

The diagram on the left depicts the rotation of a path. Points 𝑝6, 𝑝7, 𝑝8, 𝑝9 are computed by rotating points 𝑝1, 𝑝2, 𝑝3, 𝑝4.

The diagram on the right depicts the rotation of the equivalent shape. On the next slide we look at how we can compute directions 𝑑5, 𝑑6, 𝑑7, 𝑑8 .

Dragon Path Dragon Shape

𝑝1 𝑝2

𝑝3𝑝4

𝑝5

>
𝑑1
𝐸𝑎𝑠𝑡

𝑑2 𝑁𝑜𝑟𝑡ℎ

𝑑3
𝑊𝑒𝑠𝑡

𝑑4 𝑁𝑜𝑟𝑡ℎ

>

>

Dragon Path Dragon Shape

The way we rotate path 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5 about 𝑝5 is by dropping 𝑝5, reversing the rest of the points into path 𝑝4, 𝑝3, 𝑝2, 𝑝1 , and rotating each point in turn.

The way we will rotate shape 𝑑1, 𝑑2, 𝑑3, 𝑑4 is by reversing the shape into 𝑑4, 𝑑3, 𝑑2, 𝑑1and then rotating each direction in turn.

See next slide for how we will rotate a direction.

>
𝑑1
𝐸𝑎𝑠𝑡

𝑑2 𝑁𝑜𝑟𝑡ℎ

𝑑3
𝑊𝑒𝑠𝑡

𝑑4 𝑁𝑜𝑟𝑡ℎ

>

>

>
𝑑1
𝐸𝑎𝑠𝑡

𝑑8

𝑑2 𝑁𝑜𝑟𝑡ℎ

𝑁𝑜𝑟𝑡ℎ

𝑑7
𝑊𝑒𝑠𝑡

𝑑3
𝑊𝑒𝑠𝑡

𝑑6 𝑆𝑜𝑢𝑡ℎ 𝑑4 𝑁𝑜𝑟𝑡ℎ

𝑑5
𝑊𝑒𝑠𝑡 >>

>

𝑁𝑜𝑟𝑡ℎ → 𝑊𝑒𝑠𝑡 𝐸𝑎𝑠𝑡 → 𝑁𝑜𝑟𝑡ℎ 𝑆𝑜𝑢𝑡ℎ → 𝐸𝑎𝑠𝑡 𝑊𝑒𝑠𝑡 → 𝑆𝑜𝑢𝑡ℎ

As shown on the right, we need to rotate each direction
anticlockwise by 90o.

See below for the result of copying the shape 𝑑1, 𝑑2, 𝑑3, 𝑑4
of a dragon aged 2, reversing it into 𝑑4, 𝑑3, 𝑑2, 𝑑1, rotating
the latter’s directions, which results in 𝑑5, 𝑑6, 𝑑7, 𝑑8, and
appending the latter to the end of the shape.

growing a Dragon Shape

Let’s see how we need to change our functional core
logic in order to adopt the new approach to rotation.

case class Dragon(start: Point, age: Int, length: Int, direction: Direction):
 val path: DragonPath =

DragonPath(start, direction, length)
 .grow(age)

case class Dragon(start: Point, age: Int, length: Int, direction: Direction):
 val path: DragonPath =

DragonShape.initial(direction)
 .grow(age)

.path(startPoint, length)

The first thing we need to do is change how
we compute the path of a dragon.

Here is how we have been doing it so far:
1. create an initial dragon path
2. 'grow the path

And here is how we want to do it now:
1. create an initial dragon shape
2. 'grow the shape
3. turn the shape into a path

In the new approach, there is no need to grow a path,
and and so there is no need to rotate a path either.

Also, rather than creating an intial path, we will be
transforming a shape into a path, so the responsibility
for creating a path will belong to a shape.

type DragonPath = List[Point]

val ninetyDegreesClockwise: Radians = -Math.PI / 2

object DragonPath:

 def apply(startPoint : Point, direction: Direction, length: Int): DragonPath =
 val nextPoint = startPoint.translate(direction, amount = length)
 List(nextPoint, startPoint)

extension (path: DragonPath)

 def lines: List[Line] =
 if path.length < 2 then Nil
 else path.zip(path.tail)

 @tailrec
 def grow(age: Int): DragonPath =
 if age == 0 || path.size < 2 then path
 else path.plusRotatedCopy.grow(age - 1)

 private def plusRotatedCopy =
 path.reverse.rotate(rotationCentre=path.head, angle=ninetyDegreesClockwise)
 ++ path

type DragonPath = List[Point]

extension (path: DragonPath)

 def lines: List[Line] =
 if path.length < 2 then Nil
 else path.zip(path.tail)

In the original approach, we first create an initial path, and
then grow it, which requires us to be able to rotate a path.

These two responsibilities are moving
to new domain entity DragonShape.

case class Point(x: Float, y: Float)

type Radians = Double

extension (p: Point)

 def deviceCoords(panelHeight: Int): (Int, Int) =
 (Math.round(p.x), panelHeight - Math.round(p.y))

 def translate(direction: Direction, amount: Float): Point =
 direction match
 case North => Point(p.x, p.y + amount)
 case South => Point(p.x, p.y - amount)
 case East => Point(p.x + amount, p.y)
 case West => Point(p.x - amount, p.y)

 def rotate(rotationCentre: Point, angle: Radians): Point =
 val (c, ϕ) = (rotationCentre, angle)
 val (cosϕ, sinϕ) = (math.cos(ϕ).toFloat, math.sin(ϕ).toFloat)
 val rotationMatrix: Matrix[3,3,Float] = MatrixFactory[3, 3, Float].fromTuple(
 (cosϕ, sinϕ, 0f),
 (-sinϕ, cosϕ, 0f),
 (-c.x * cosϕ + c.y * sinϕ + c.x, -c.x * sinϕ - c.y * cosϕ + c.y, 1f)
)
 val rowVector: Matrix[1,3,Float] = MatrixFactory[1,3,Float].rowMajor(p.x,p.y,1f)
 val rotatedRowVector: Matrix[1, 3, Float] = rowVector dot rotationMatrix
 val (x, y) = (rotatedRowVector(0, 0), rotatedRowVector(0, 1))
 Point(x, y)

extension (points: List[Point])

 def rotate(rotationCentre: Point, angle: Radians) : List[Point] =
 points.map(point => point.rotate(rotationCentre, angle))

case class Point(x: Float, y: Float)

extension (p: Point)

 def deviceCoords(panelHeight: Int): (Int, Int) =
 (Math.round(p.x), panelHeight - Math.round(p.y))

 def translate(direction: Direction, amount: Float): Point =
 direction match
 case North => Point(p.x, p.y + amount)
 case South => Point(p.x, p.y - amount)
 case East => Point(p.x + amount, p.y)
 case West => Point(p.x - amount, p.y)

Since there is no longer any need to rotate a path,
which amounts to rotating its points, we can delete
the logic dedicated to rotating paths and points.

enum Direction:
 case North, East, South, West

enum Direction:
 case North, East, South, West

 def rotated: Direction = this match
 case Direction.North => Direction.West
 case Direction.East => Direction.North
 case Direction.South => Direction.East
 case Direction.West => Direction.South

Before we look at the new DragonShape, let’s add to
Direction the logic required to rotate a direction.

𝑁𝑜𝑟𝑡ℎ → 𝑊𝑒𝑠𝑡 𝐸𝑎𝑠𝑡 → 𝑁𝑜𝑟𝑡ℎ 𝑆𝑜𝑢𝑡ℎ → 𝐸𝑎𝑠𝑡 𝑊𝑒𝑠𝑡 → 𝑆𝑜𝑢𝑡ℎ

type DragonShape = List[Direction]

object DragonShape:

 def initial(startDirection: Direction): DragonShape =
 List(startDirection)

extension (shape: DragonShape)

 @tailrec
 def grow(age: Int): DragonShape =
 if age == 0 then shape
 else shape.plusRotatedCopy.grow(age - 1)

 private def plusRotatedCopy: DragonShape =
 shape ++ shape.reverse.map(_.rotated)

 def path(startPoint: Point, length: Int): DragonPath =
 shape.foldLeft(List(startPoint)):
 (path, direction) => path.head.translate(direction, length) :: path

As mentioned earlier, the initial dragon shape consists
simply of the direction of the dragon’s first line.

No surprises here: transforming a sequence of
directions and a starting point into a sequence of
points is just creating a second point by
translating the first point, then creating a third
point by translating the second point, and so on.

This function is now a bit simpler that the
analogous one that was provided by DragonPath.

Apart from the return type, this is the same function
that was provided by DragonPath.

private def plusRotatedCopy =
 path
 .reverse
 .rotate(rotationCentre=path.head, angle=ninetyDegreesClockwise)
 ++ path

Here is new domain entity DragonShape.

To rotate a shape, we reverse it and then rotate
all of its directions. In fact I think we should
extract such logic into a shape rotation function,
and inline this function. See next slide for the
result.

type DragonShape = List[Direction]

object DragonShape:

 def initial(startDirection: Direction): DragonShape =
 List(startDirection)

extension (shape: DragonShape)

 @tailrec
 def grow(age: Int): DragonShape =
 if age == 0 then shape
 else (shape ++ shape.rotated).grow(age - 1)

 private def rotated: DragonShape =
 shape.reverse.map(_.rotated)

 def path(startPoint: Point, length: Int): DragonPath =
 shape.foldLeft(List(startPoint)):
 (path, direction) => path.head.translate(direction, length) :: path

Here is DragonShape again, after refactoring it by extracting the
rotated function from plusRotatedCopy, and then inlining the latter.

What we have done in this deck is move the process of growing a dragon, which requires rotating it, from the stage in which the dragon is
represented as a dragon path, i.e. a sequence of points, to a new, earlier stage, in which the dragon is represented as a dragon shape, i.e. a
sequence of cardinal directions.

The benefit of doing so is that while rotating a dragon path involves rotating points, which in turn requires matrix multiplication, and which
is therefore relatively complex and time-consuming, rotating a dragon shape involves rotating cardinal directions, which is a trivial and
thus inexpensive operation.

While before the two concerns of rotating a dragon’s shape and computing a dragon’s path were intertwined (we did both at the same
time), we have now separated the two concerns from each other.

The way the program that rotates dragon paths (part 2) improves on the original program (part 1), which was just a functional version of
the imperative Pascal program, is that it makes it easier to understand how a dragon is grown, i.e. by duplicating and rotating the dragon.

As mentioned above, the way the program that rotates dragon shapes (part 3) improves on the program that rotates dragon paths (part 2),
is that by simplifying the rotation process, it makes growing a dragon simpler, faster, and easier to understand.

In the first program (part 1), it was hard to understand how a dragon is grown. While in the second program (part 2), it was easy to
understand the growth process, the process relied and some non-trivial rotation-related mathematics. The third program (part 3), which
eliminates the need for such mathematics, makes it even simpler to understand how a dragon is grown.

The next slide, shows the functional core logic of the first program (part 1), and the slide after that shows the functional core logic of the
third program (part 3). On both slides, logic that is the same in both programs is shown with a gray background.

The slide after that compares the core elements of the two programs.

type DragonPath = List[Point]

object DragonPath:
 def apply(start: Point): DragonPath = List(start)

extension (path: DragonPath)

 def grow(age: Int, length: Int, direction: Direction): DragonPath =

 def newDirections(direction: Direction): (Direction, Direction) =
 direction match
 case North => (West, North)
 case South => (East, South)
 case East => (East, North)
 case West => (West, South)

 path.headOption.fold(path): front =>
 if age == 0
 then front.translate(direction, length) :: path
 else
 val (firstDirection, secondDirection) = newDirections(direction)
 path
 .grow(age - 1, length, firstDirection)
 .grow(age - 1, length, secondDirection)

 def lines: List[Line] =
 if path.length < 2 then Nil
 else path.zip(path.tail)

case class Dragon(start: Point, age: Int, length: Int, direction: Direction):
 val path: DragonPath =
 DragonPath(start)
 .grow(age, length, direction)

case class Point(x: Float, y: Float)

extension (p: Point)

 def deviceCoords(panelHeight: Int): (Int, Int) =
 (Math.round(p.x), panelHeight - Math.round(p.y))

 def translate(direction: Direction, amount: Float): Point =
 direction match
 case North => Point(p.x, p.y + amount)
 case South => Point(p.x, p.y - amount)
 case East => Point(p.x + amount, p.y)
 case West => Point(p.x - amount, p.y)

type Line = (Point, Point)

extension (line: Line)
 def start: Point = line(0)
 def end: Point = line(1)

enum Direction:
 case North, East, South, West

The functional core of the program’s first version (from part 1)

case class Dragon(start: Point, age: Int, length: Int, direction: Direction):
 val path: DragonPath =
 DragonShape.initial(direction)
 .grow(age)
 .path(startPoint, length)

type DragonShape = List[Direction]

object DragonShape:

 def initial(startDirection: Direction): DragonShape =
 List(startDirection)

extension (shape: DragonShape)

 @tailrec
 def grow(age: Int): DragonShape =
 if age == 0 then shape
 else (shape ++ shape.rotated).grow(age - 1)

 private def rotated: DragonShape =
 shape.reverse.map(_.rotated)

 def path(startPoint: Point, length: Int): DragonPath =
 shape.foldLeft(List(startPoint)):
 (path, direction) => path.head.translate(direction, length) :: path

type DragonPath = List[Point]

extension (path: DragonPath)

 def lines: List[Line] =
 if path.length < 2 then Nil
 else path.zip(path.tail)

type Line = (Point, Point)

extension (line: Line)
 def start: Point = line(0)
 def end: Point = line(1)

case class Point(x: Float, y: Float)

extension (p: Point)

 def deviceCoords(panelHeight: Int): (Int, Int) =
 (Math.round(p.x), panelHeight - Math.round(p.y))

 def translate(direction: Direction, amount: Float): Point =
 direction match
 case North => Point(p.x, p.y + amount)
 case South => Point(p.x, p.y - amount)
 case East => Point(p.x + amount, p.y)
 case West => Point(p.x - amount, p.y)

enum Direction:
 case North, East, South, West

 def rotated: Direction = this match
 case Direction.North => Direction.West
 case Direction.East => Direction.North
 case Direction.South => Direction.East
 case Direction.West => Direction.South

The functional core of the program’s third version (from this deck – part 3)

extension (path: DragonPath)

 def grow(age: Int, length: Int, direction: Direction): DragonPath =

 def newDirections(direction: Direction): (Direction, Direction) =
 direction match
 case North => (West, North)
 case South => (East, South)
 case East => (East, North)
 case West => (West, South)

 path.headOption.fold(path): front =>
 if age == 0
 then front.translate(direction, length) :: path
 else
 val (firstDirection, secondDirection) = newDirections(direction)
 path
 .grow(age - 1, length, firstDirection)
 .grow(age - 1, length, secondDirection)

extension (shape: DragonShape)

 @tailrec def grow(age: Int): DragonShape =
 if age == 0 then shape
 else (shape ++ shape.rotated).grow(age - 1)

 private def rotated: DragonShape =
 shape.reverse.map(_.rotated)

enum Direction:
 case North, East, South, West

 def rotated: Direction = this match
 case Direction.North => Direction.West
 case Direction.East => Direction.North
 case Direction.South => Direction.East
 case Direction.West => Direction.South

enum Direction:
 case North, East, South, West

In the program’s first version (from part 1) In the program’s third version (from this deck)

How a dragon is grown

To conclude this deck, the next 10 slides demo the
program’s output for a starting direction of East, a
line length of 1, and ages 10 through to 20.

Dragon Age: 10; Line Count: 1,024

Dragon Age: 11; Line Count: 2,048

Dragon Age: 12; Line Count: 4,096

Dragon Age: 13; Line Count: 8,192

Dragon Age: 14; Line Count: 16,384

Dragon Age: 15; Line Count: 32,768

Dragon Age: 16; Line Count: 65,536

Dragon Age: 17; Line Count: 131,072

Dragon Age: 18; Line Count: 262,144

Dragon Age: 19; Line Count: 524,288

Dragon Age: 20; Line Count: 1,048,576

That’s all for part 3.

I hope you enjoyed that.

At the end of part 1 I said that in part 2 we were going to make the program much more convenient in that it would allow us to easily
change dragon parameters and redraw the dragon each time without having to rerun the program.

That never happened, so let’s do it in part 4.

See you there.

