
non-strict functions,	
bottom and															by-name parameters

‘a	close	l							k’
through	the	work	of

Runar	Bjarnason								
@runarorama

Paul	Chiusano									
@pchiusano

Lex	Spoon	
https://www.linkedin.com/
in/lex-spoon-65352816/

Martin	Odersky	@odersky
Bill	Venners	@bvenners

Alvin	Alexander
@alvinalexander

Mark	Lewis
@DrMarkCLewis

Aleksandar	Prokopec
@alexprokopec

@philip_schwarzslides	by

Strict and non-strict functions
Before we get to our example of lazy lists, we need to cover some basics. What are strictness and
non-strictness, and how are these concepts expressed in Scala?

Non-strictness is a property of a function. To say a function is non-strict just means that the
function may choose not to evaluate one or more of its arguments. In contrast, a strict function
always evaluates its arguments. Strict functions are the norm in most programming languages, and
indeed most languages only support functions that expect their arguments fully evaluated. Unless we
tell it otherwise, any function definition in Scala will be strict (and all the functions we’ve defined
so far have been strict). As an example, consider the following function:

def square(x: Double): Double = x * x

When you invoke square(41.0 + 1.0), the function square will receive the evaluated value of
42.0 because it’s strict. If you invoke square(sys.error("failure")), you’ll get an
exception before square has a chance to do anything, since the sys.error("failure")
expression will be evaluated before entering the body of square.

Although we haven’t yet learned the syntax for indicating non-strictness in Scala, you’re almost
certainly familiar with the concept. For example, the short-circuiting Boolean functions && and ||,
found in many programming languages including Scala, are non-strict. You may be used to thinking
of && and || as built-in syntax, part of the language, but you can also think of them as functions
that may choose not to evaluate their arguments.

Functional Programming in Scala

Paul	Chiusano									@pchiusano

Runar	Bjarnason								@runarorama

The function && takes two Boolean arguments, but only evaluates the second argument if the first
is true :

And || only evaluates its second argument if the first is false :

Another example of non-strictness is the if control construct in Scala:

Even though if is a built-in language construct in Scala, it can be thought of as a function accepting
three parameters: a condition of type Boolean, an expression of some type A to return in the case that
the condition is true, and another expression of the same type A to return if the condition is false.
This if function would be non-strict, since it won’t evaluate all of its arguments. To be more
precise, we’d say that the if function is strict in its condition parameter, since it’ll always
evaluate the condition to determine which branch to take, and non-strict in the two branches for the
true and false cases, since it’ll only evaluate one or the other based on the condition.

scala> false && { println("!!"); true } // does not print anything
res0: Boolean = false

scala> true || { println("!!"); false } // doesn't print anything either
res2: Boolean = true

val result = if (input.isEmpty) sys.error("empty input") else input

Functional Programming in Scala

Paul	Chiusano									@pchiusano

Runar	Bjarnason								@runarorama

In Scala, we can write non-strict functions by accepting some of our arguments unevaluated.
We’ll show how this is done explicitly just to illustrate what’s happening, and then show some nicer
syntax for it that’s built into Scala. Here’s a nonstrict if function:

def if2[A](cond: Boolean, onTrue: () => A, onFalse: () => A): A =
if (cond) onTrue() else onFalse()

if2(a < 22,
() => println("a"),

 () => println("b")
)

The arguments we’d like to pass unevaluated have a () => immediately before their type. A
value of type () => A is a function that accepts zero arguments and returns an A3. In
general, the unevaluated form of an expression is called a thunk, and we can force the thunk to
evaluate the expression and get a result. We do so by invoking the function, passing an empty
argument list, as in onTrue() or onFalse(). Likewise, callers of if2 have to explicitly
create thunks, and the syntax follows the same conventions as the function literal syntax we’ve
already seen.

Overall, this syntax makes it very clear what’s happening—we’re passing a function of no
arguments in place of each non-strict parameter, and then explicitly calling this function to
obtain a result in the body.

3 In fact, the type () => A
is a syntactic alias for the
type Function0[A].

Functional Programming in Scala

But this is such a common case that Scala provides some nicer syntax:

def if2[A](cond: Boolean, onTrue: => A, onFalse: => A): A =
if (cond) onTrue else onFalse

The arguments we’d like to pass unevaluated have an arrow => immediately before their type.
In the body of the function, we don’t need to do anything special to evaluate an argument
annotated with =>. We just reference the identifier as usual. Nor do we have to do anything
special to call this function. We just use the normal function call syntax, and Scala takes care of
wrapping the expression in a thunk for us:

With either syntax, an argument that’s passed unevaluated to a function will be evaluated
once for each place it’s referenced in the body of the function. That is, Scala won’t (by default)
cache the result of evaluating an argument:

scala> if2(false, sys.error("fail"), 3)
res3: Int = 3

scala> def maybeTwice(b: Boolean, i: => Int) = if (b) i+i else 0
maybeTwice: (b: Boolean, i: => Int)Int

scala> val x = maybeTwice(true, { println("hi"); 1+41 })
hi
hi
x: Int = 84

Functional Programming in Scala

Paul	Chiusano									@pchiusano

Runar	Bjarnason								@runarorama

Here, i is referenced twice in the body of maybeTwice, and we’ve made it particularly obvious
that it’s evaluated each time by passing the block {println("hi"); 1+41}, which prints hi as
a side effect before returning a result of 42. The expression 1+41 will be computed twice as well.
We can cache the value explicitly if we wish to only evaluate the result once, by using the
lazy keyword:

Adding the lazy keyword to a val declaration will cause Scala to delay evaluation of the
right-hand side of that lazy val declaration until it’s first referenced. It will also cache the
result so that subsequent references to it don’t trigger repeated evaluation.

As a final bit of terminology, we say that a non-strict function in Scala takes its arguments
by name rather than by value.

scala> def maybeTwice2(b: Boolean, i: => Int) = {
| lazy val j = i
| if (b) j+j else 0
| }

maybeTwice2: (b: Boolean, i: => Int)Int

scala> val x = maybeTwice2(true, { println("hi"); 1+41 })
hi
x: Int = 84

Functional Programming in Scala

Paul	Chiusano									@pchiusano

Runar	Bjarnason								@runarorama

Formal definition of strictness
If the evaluation of an expression runs forever or throws an error instead of returning a
definite value, we say that the expression doesn’t terminate, or that it evaluates to
bottom. A function f is strict if the expression f(x) evaluates to bottom for all x
that evaluate to bottom.

Functional Programming in Scala
(by	Paul	Chiusano	and	Runar	Bjarnason)

@pchiusano @runarorama

package object sys {

/** Throw a new RuntimeException with the supplied message.
*
* @return Nothing.
*/

def error(message: String): Nothing = throw new RuntimeException(message)

scala> scala.sys.error("boom")
java.lang.RuntimeException: boom
at scala.sys.package$.error(package.scala:27)
... 29 elided

scala>

case object Nil extends List[Nothing] {
override def head: Nothing = throw new NoSuchElementException("head of empty list")
override def headOption: None.type = None
override def tail: Nothing = throw new UnsupportedOperationException("tail of empty list")
override def last: Nothing = throw new NoSuchElementException("last of empty list")
override def init: Nothing = throw new UnsupportedOperationException("init of empty list")
override def knownSize: Int = 0
override def iterator: Iterator[Nothing] = Iterator.empty
override def unzip[A1, A2](implicit asPair: Nothing => (A1, A2)): (List[A1], List[A2]) = EmptyUnzip

9.5 By-name parameters

…suppose you want to implement an assertion construct called myAssert.
[3] The myAssert function will take a function value as input and consult a flag to decide
what to do. If the flag is set, myAssert will invoke the passed function and verify that it
returns true. If the flag is turned off, myAssert will quietly do nothing at all.

Without using by-name parameters, you could write myAssert like this:

var assertionsEnabled = true

def myAssert(predicate: () => Boolean) =
if (assertionsEnabled && !predicate())
throw new AssertionError

The definition is fine, but using it is a little bit awkward:

myAssert(() => 5 > 3)

You would really prefer to leave out the empty parameter list and => symbol in the
function literal and write the code like this:

myAssert(5 > 3) // Won't work, because missing () =>

[3] You'll call this myAssert, not assert, because Scala provides an assert of its own, which will be described in Section 14.1.

Lex	Spoon	
https://www.linkedin.com/
in/lex-spoon-65352816/

Martin	Odersky								@odersky

Bill	Venners								@bvenners

By-name parameters exist precisely so that you can do this. To make a by-name
parameter, you give the parameter a type starting with => instead of () =>. For example,
you could change myAssert's predicate parameter into a by-name parameter by
changing its type, "() => Boolean", into "=> Boolean". Listing 9.5 shows how that would
look:

def byNameAssert(predicate: => Boolean) =
if (assertionsEnabled && !predicate)
throw new AssertionError

Listing 9.5 - Using a by-name parameter.

Now you can leave out the empty parameter in the property you want to assert.
The result is that using byNameAssert looks exactly like using a built-in control
structure:

byNameAssert(5 > 3)

A by-name type, in which the empty parameter list, (), is left out, is only allowed
for parameters. There is no such thing as a by-name variable or a by-name field.

Lex	Spoon	
https://www.linkedin.com/
in/lex-spoon-65352816/

Martin	Odersky								@odersky

Bill	Venners								@bvenners

Now, you may be wondering why you couldn't simply write myAssert using a plain
old Boolean for the type of its parameter, like this:

def boolAssert(predicate: Boolean) =
if (assertionsEnabled && !predicate)
throw new AssertionError

This formulation is also legal, of course, and the code using this version
of boolAssert would still look exactly as before:

boolAssert(5 > 3)

Nevertheless, one difference exists between these two approaches that is
important to note. Because the type of boolAssert's parameter is Boolean, the
expression inside the parentheses in boolAssert(5 > 3) is evaluated before the
call to boolAssert. The expression 5 > 3 yields true, which is passed to boolAssert. By
contrast, because the type of boolAssert's predicate parameter is => Boolean, the
expression inside the parentheses in byNameAssert(5 > 3) is not evaluated before
the call to byNameAssert. Instead a function value will be created
whose apply method will evaluate 5 > 3, and this function value will be passed
to byNameAssert.

The difference between the two approaches, therefore, is that if assertions are
disabled, you'll see any side effects that the expression inside the parentheses
may have in boolAssert, but not in byNameAssert.

Lex	Spoon	
https://www.linkedin.com/
in/lex-spoon-65352816/

Martin	Odersky								@odersky

Bill	Venners								@bvenners

For example, if assertions are disabled, attempting to assert on "x / 0 == 0" will yield an
exception in boolAssert's case:

But attempting to assert on the same code in byNameAssert's case will not yield an
exception:

scala> val x = 5
x: Int = 5

scala> var assertionsEnabled = false
assertionsEnabled: Boolean = false

scala> boolAssert(x / 0 == 0)
java.lang.ArithmeticException: / by zero
... 29 elided

scala>

scala> byNameAssert(x / 0 == 0)

scala>
Lex	Spoon	

https://www.linkedin.com/
in/lex-spoon-65352816/

Martin	Odersky								@odersky

Bill	Venners								@bvenners

Background: By-name parameters

“By-name” parameters are quite different than by-value parameters. Rob Norris, (aka, “tpolecat”) makes the
observation that you can think about the two types of parameters like this:

• A by-value parameter is like receiving a val field; its body is evaluated once, when the parameter is bound
to the function.

• A by-name parameter is like receiving a def method; its body is evaluated whenever it is used inside the
function.

Those statements aren’t 100% accurate, but they are decent analogies to start with.

A little more accurately, the book Scala Puzzlers says that by-name parameters are “evaluated only when they
are referenced inside the function.” The Scala Language Specification adds this:

This (by-name) indicates that the argument is not evaluated at the point of function application, but
instead is evaluated at each use within the function.

According to Wikipedia these terms date back to a language named ALGOL 60 (yes, the year 1960). But for me,
the term “by-name” isn’t very helpful. When you look at those quotes from the Puzzlers book and the Language
Specification, you see that they both say, “a by-name parameter is only evaluated when it’s accessed inside a
function.” Therefore, I find that the following names are more accurate and meaningful than “by-name”:

• Call on access
• Evaluate on access
• Evaluate on use
• Evaluate when accessed
• Evaluate when referenced

However, because I can’t change the universe, I’ll continue to use the terms “by-name” and “call by-name” in this
lesson, but I wanted to share those alternate names, which I think are more meaningful.

Alvin	Alexander								@alvinalexander

Why have by-name parameters?

Programming in Scala, written by Martin Odersky and Bill Venners, provides a great example of why by-name
parameters were added to Scala. Their example goes like this:

1. Imagine that Scala does not have an assert function, and you want one.
2. You attempt to write one using function input parameters, like this:

def myAssert(predicate: () => Boolean) =
if (assertionsEnabled && !predicate())

throw new AssertionError

That code uses the “function input parameter” techniques I showed in previous lessons, and assuming that the
variable assertionsEnabled is in scope, it will compile just fine.

The problem is that when you go to use it, you have to write code like this:

myAssert(() => 5 > 3)

Because myAssert states that predicate is a function that takes no input parameters and returns a Boolean, that’s
how you have to write this line of code. It works, but it’s not pleasing to the eye.

Alvin	Alexander								@alvinalexander

The solution is to change predicate to be a by-name parameter:

def byNameAssert(predicate: => Boolean) =
if (assertionsEnabled && !predicate)

throw new AssertionError

With that simple change, you can now write assertions like this:

byNameAssert(5 > 3)

That’s much more pleasing to look at than this:

myAssert(() => 5 > 3)

Programming in Scala states that this is the primary use case for by-name parameters:

The result is that using byNameAssert looks exactly like using a built-in control structure.

Alvin	Alexander								@alvinalexander

The timer method uses the by-name syntax to accept a block of code as an input parameter. Inside the timer function there
are three lines of code that deal with determining how long the blockOfCode takes to run, with this line sandwiched in between
those time-related expressions:

That line (a) executes blockOfCode and (b) assigns its return value to result. Because blockOfCode is defined to return a
generic type (A), it may return Unit, an Int, a Double, a Seq[Person], a Map[Person, Seq[Person]], whatever.

Now you can use the timer function for all sorts of things. It can be used for something that isn’t terribly useful, like this:

It can be used for an algorithm that reads a file and returns an iterator:

Or it can be used for just about anything else:

Alvin	Alexander								@alvinalexander

def timer[A](blockOfCode: => A) = {
val startTime = System.nanoTime
val result = blockOfCode
val stopTime = System.nanoTime
val delta = stopTime - startTime
(result, delta/1000000d)

}

val result = blockOfCode

scala> val (result, time) =
timer(println("Hello"))
Hello
result: Unit = ()
time: Double = 0.081619

scala> def readFile(filename: String) = io.Source.fromFile(filename).getLines
readFile: (filename: String)Iterator[String]

scala> val (result, time) = timer(readFile("/etc/passwd"))
result: Iterator[String] = non-empty iterator
time: Double = 3.004355

scala> val (result, time) = timer{ someLongRunningAlgorithmThatReturnsSomething }

“When is my code block run?”

A great question right now is, “When are my by-name parameters executed?” In the case of the timer function, it executes the
blockOfCode when the second line of the function is reached. But if that doesn’t satisfy your curious mind, you can create another
example like this:

If you paste that code into the Scala REPL, you can then test it like this:

That line of code will produce output like this:

As that output shows, the block of code that is passed in is executed each time it’s referenced inside the function.

Alvin	Alexander								@alvinalexander

def test[A](codeBlock: => A) = {
println("before 1st codeBlock")
val a = codeBlock
println(a)
Thread.sleep(10)
println("before 2nd codeBlock")
val b = codeBlock
println(b)
Thread.sleep(10)
println("before 3rd codeBlock")
val c = codeBlock
println(c)

}

before 1st codeBlock
1563698622029
before 2nd codeBlock
1563698622041
before 3rd codeBlock
1563698622053

scala>

scala> test(System.currentTimeMillis)

7.8 Basic Argument Passing
Now that we have looked at the way memory is organized for variable declarations and the aliasing issue, we should take
another look at what happens when you call a function. The two are actually very similar. When you pass values into a
function, the function has local vals with the local argument names, but they reference the same objects that the outside
variables referenced. Consider the following code from a script.

The function is passed an Array of Ints and an index for a locaton in that array. It is supposed to return the value at that
location and also “clear” that location. The meaning of “clear” here is to store a zero at that location. To see how this works
look at figure 7.5 which shows the arrangement of memory. The function is defined and the
variables numbers and place are both declared and initialized. We get new objects for them to reference.

Mark	Lewis
@DrMarkCLewis

Figure 7.5 - The memory layout from the getAndClear script. The
arguments passed into the function become aliases for the objects
created at the top level of the script.

def getAndClear(arr:Array[Int],index:Int):Int = {
val ret=arr(index)
arr(index)=0
ret

}
val numbers=Array(7,4,9,8,5,3,2,6,1)
val place=5
val value=getAndClear(numbers,place)
// Other stuff

7.9 Pass-By-Name
Earlier we looked at the way in which arguments are passed in Scala. This is a style called PASS-BY-VALUE. The function gets
a copy of what the variable was in the calling code. The function can not change that variable, it can only change what it
refers to if what it refers to is mutable. Some languages provide an alternate way of passing things called PASS-BY-
REFERENCE. When something is passed by reference, the function has the ability to change the variable in the calling function
itself. The fact that all variables in Scala basically are references blurs the line between the two, but fundamentally Scala only
allows pass-by-value and the function can only modify things seen to the outside if the variable refers to a mutable object.

While Scala does not provide a true pass-by-reference, it does provide a passing style that few other languages
provide, PASS-BY-NAME. The idea of pass-by-name is that the argument is passed not as a value, but as a THUNK that is
basically a set of code that will be executed and give a value when the parameter is used in the function. You can
imagine pass-by-name as automatically creating a function that takes no argument and returns a value that will be
executed each time the argument is used. To help you understand this and see the syntax, we will give a simple example.
We will start making a basic increment function in the way we are used to doing.

The print statement is just to help us keep track of what is happening when. Now we will write the same function again, but
this time pass the argument by name instead.

scala> def incr(n:Int):Int = {
| println("About to increment.")
| n+1
| }

incr: (n: Int)Int

scala> def incrByName(n : =>Int):Int = {
| println("About to increment.")
| n+1
| }

incrByName: (n: => Int)Int Mark	Lewis
@DrMarkCLewis

The syntax for passing an argument by name is to put a rocket before the type of the argument. This is the same arrow
used in function literals. If we were to put empty parentheses in front of it to get ()=> we would have the type of a function
that takes no arguments and returns an Int. The by-name argument is much the same only when you call the function you do
not have to explicitly make a function. To start off, we will call this function in the simplest way we possibly could.

No surprises here. They appear to both do the same thing. Both print the statement and give us back 6. However, the two
are not really doing the same thing. To make that clear, we will call them again and have the argument be a block that
includes a print.

Now it is clear that they are not doing the same thing. When you pass an argument by value, it is evaluated before the
function starts so that you can have the value to pass through. When you pass by name, the evaluation happens when
the parameter is used. That is why the line “Eval” printed out after “About to increment.” in the second case.
The println in the function happens before the value of n is ever accessed.

scala> incr(5)
About to increment.
res0: Int = 6

scala> incrByName(5)
About to increment.
res1: Int = 6

scala> incr({println("Eval"); 5})
Eval
About to increment.
res2: Int = 6

scala> incrByName({println("Eval"); 5})
About to increment.
Eval
res3: Int = 6

Mark	Lewis
@DrMarkCLewis

Using pass-by-name gives you the ability to do some rather interesting things when mutations of values comes into play. To
see that, we can write a slightly different function.

It might seem that this method should be called cubed, but as we will see, this might not always apply for it because it uses
pass-by-name. To start with, let us call it with an expression that gives a simple value, but prints something first.

Note that the println statement happened three times. This is because the value n was used three times in the function.
Had the parameter not been passed by-name, that would not have happened. It would have printed once, when the
function was called. Try this for yourself.

This particular call still gave us a valid cube though. So why was the function not simply called cube? The reason is that if
the code in the argument does the right thing, the result won’t be a cube. Here is an example.

336 is not a perfect cube. So how did we get this value? In this example we introduced a var. The code in the pass-by-name
argument alters this var. As a result, every time that n is used, the value given by n is different. The first time we use n the
value is 6 because the original 5 was incremented and then returned. The next time it is 7 because the 6 that it was set to the
previous time is incremented again. The last time it is 8. So the answer is 6 * 7 * 8 = 336.

scala> def thriceMultiplied(n : => Int):Int = n*n*n
thriceMultiplied: (n: => Int)Int

scala> thriceMultiplied({println("Get value."); 5})
Get value.
Get value.
Get value.
res4: Int = 125

scala> var i=5
i: Int = 5

scala> thriceMultiplied({i+=1; i})
res5: Int = 336

Mark	Lewis
@DrMarkCLewis

These calls with both parentheses and curly braces might seem odd. The creators of Scala thought so. As a result, they made it so that
if a function or method takes an argument list with only one value in it, that value can be in curly braces instead of parentheses.
This allows a shorter syntax for the call that looks like this.

You might be tempted to think that leaving off the parentheses changed what happened because the result is different. It was not the
parentheses though. Remember that after the last call i had been incremented up to 8. So this time the result was 9 * 10 * 11 = 990.

scala> thriceMultiplied {i+=1; i}
res6: Int = 990

Mark	Lewis
@DrMarkCLewis

In the following example, we use byname parameters to declare a runTwice method, which runs the
specified block of code body twice:

A byname parameter is formed by putting the => annotation before the type. Whenever the runTwice method
references the body argument, the expression is re-evaluated, as shown in the following snippet:

def runTwice(body: =>Unit) = {
body
body

}

runTwice { // this will print Hello twice
println("Hello")

}

scala> def runTwice(body: =>Unit) = {
| body
| body
| }

runTwice: (body: => Unit)Unit

scala>

scala> runTwice { // this will print Hello twice
| println("Hello")
| }

Hello
Hello

scala>

Aleksandar	Prokopec
@alexprokopec

In the examples that follow, we will rely on the global ExecutionContext object. To make the code more concise, we will
introduce the execute convenience method in the package object of this chapter, which executes a block of code
on the global ExecutionContext object:

The Executor and ExecutionContext objects are a nifty concurrent programming abstraction, but they are not a silver
bullets. They can improve throughput by reusing the same set of threads for different tasks, but they are unable to
execute tasks if those threads become unavailable, because all the threads are busy with running other tasks. In the
following example, we declare 32 independent executions, each of which lasts two seconds, and
wait 10 seconds for their completion:

You would expect that all the executions terminate after two seconds, but this is not the case. Instead, on our quad-core
CPU with hyper threading, the global ExecutionContext object has eight threads in the thread pool, so it executes work
tasks in batches of eight. After two seconds, a batch of eight tasks print that they are completed, after two more
seconds another batch prints, and so on. This is because the global ExecutionContext object internally maintains a pool
of eight worker threads, and calling sleep puts all of them into a timed waiting state. Only once the sleep method call in
these worker threads is completed can another batch of eight tasks be executed. Things can be much worse. We could
start eight tasks that execute the guarded block idiom seen in Chapter 2, Concurrency on the JVM and the Java
Memory Model, and another task that calls the notify method to wake them up. As the ExecutionContext object can
execute only eight tasks concurrently, the worker threads would, in this case, be blocked forever. We say that executing
blocking operations on ExecutionContext objects can cause starvation.

Aleksandar	Prokopec
@alexprokopec

def execute(body: =>Unit) = ExecutionContext.global.execute(
new Runnable { def run() = body }

)

object ExecutionContextSleep extends App {
for (i<- 0 until 32) execute {

Thread.sleep(2000)
log(s"Task $i completed.")

}
Thread.sleep(10000)

}

by-name	parameter

1st batch	of	8

2nd batch	of	8

3rd batch	of	8

4th batch	of	8

Task 5 completed.
Task 3 completed.
Task 0 completed.
Task 4 completed.
Task 7 completed.
Task 1 completed.
Task 2 completed.
Task 6 completed.

Task 8 completed.
Task 14 completed.
Task 15 completed.
Task 9 completed.
Task 13 completed.
Task 12 completed.
Task 10 completed.
Task 11 completed.

Task 17 completed.
Task 16 completed.
Task 18 completed.
Task 23 completed.
Task 19 completed.
Task 21 completed.
Task 22 completed.
Task 20 completed.

Task 24 completed.
Task 25 completed.
Task 27 completed.
Task 30 completed.
Task 29 completed.
Task 28 completed.
Task 26 completed.
Task 31 completed.

scala>

2	seconds	elapse
scala> ExecutionContextSleep.main(Array())

2	seconds	elapse

2	seconds	elapse

2	seconds	elapse

CPU	usage

“we declare 32 independent executions, each of
which lasts two seconds, and wait 10 seconds
for their completion”

When programming with futures in Scala, we need to distinguish between future values and future
computations. A future value of the type Future[T] denotes some value of type T in the program that might not
be currently available, but could become available later. Usually, when we say a future, we really mean a
future value. In the scala.concurrent package, futures are represented with the Future[T] trait:

By contrast, a future computation is an asynchronous computation that produces a future value. A future
computation can be started by calling the apply method on the Future companion object. This method has the
following signature in the scala.concurrent package:

This method takes a by-name parameter of the type T. This is the body of the asynchronous computation
that results in some value of type T. It also takes an implicit ExecutionContext parameter, which abstracts over
where and when the thread gets executed, as we learned in Chapter 3, Traditional Building Blocks of
Concurrency. Recall that Scala's implicit parameters can either be specified when calling a method, in the same
way as normal parameters, or they can be left out-in this case, the Scala compiler searches for a value of
the ExecutionContext type in the surrounding scope. Most Future methods take an implicit execution context.
Finally, the Future.apply method returns a future of the type T. This future is completed with the value resulting
from the asynchronous computation, b.

Note
The Future[T] type encodes latency in the program; use it to encode values that will become available later during execution.

trait Future[T]

Aleksandar	Prokopec
@alexprokopec

def apply[T](b: =>T)(implicit e: ExecutionContext): Future[T]

object Using {
/** Performs an operation using a resource, and then releases the resource,

* even if the operation throws an exception.
*
* $suppressionBehavior
*
* @return a [[Try]] containing an exception if one or more were thrown,
* or the result of the operation if no exceptions were thrown
*/

def apply[R: Releasable, A](resource: => R)(f: R => A): Try[A] =
Try { Using.resource(resource)(f) }

/** Performs an operation using a resource, and then releases the resource,
* even if the operation throws an exception. This method behaves similarly
* to Java's try-with-resources.
*
* $suppressionBehavior
*
* @param resource the resource
* @param body the operation to perform with the resource
* @tparam R the type of the resource
* @tparam A the return type of the operation
* @return the result of the operation, if neither the operation nor
* releasing the resource throws
*/

def resource[R, A](resource: R)(body: R => A)(implicit releasable: Releasable[R]): A = { …

scala> import scala.util.{Success, Try, Using}
import scala.util.{Success, Try, Using}

scala> import java.io.{File, FileInputStream, FileWriter}
import java.io.{File, FileInputStream, FileWriter}

scala> val file = new File("/Users/philipschwarz/tmp/tmp.txt")
file: java.io.File = /Users/philipschwarz/tmp/tmp.txt

scala> Using(new FileWriter(file)){ _.write("xyz") }
res0: scala.util.Try[Unit] = Success(())

scala> val tryChar: Try[Int] = Using(new FileInputStream(file)){ _.read }
tryChar: scala.util.Try[Int] = Success(120)

scala> assert(tryChar == Success('x'))

scala> val char: Int = Using.resource(new FileInputStream(file)){ _.read }
char: Int = 120

scala> assert(char == 'x')

scala>

