
N-Queens Combinatorial Problem
Learn how to write FP code that displays a graphical representation of all the numerous N-Queens solutions for N=4,5,6,7,8

See how to neatly solve the problem by exploiting its self-similarity and using a divide and conquer approach

Make light work of assembling multiple images into a whole, by exploiting Doodle’s facilities for combining images using a relative layout

See relevant FP functions, like Foldable’s intercalate and intersperse, in action

@philip_schwarzslides by https://www.slideshare.net/pjschwarz

Part 3

Doodle

Polyglot FP for Fun and Profit – Haskell and Scala

https://www.slideshare.net/pjschwarz/natural-transformations

Welcome to Part 3 of this series. In this part, we are going to write a new
program that displays, all together, the results of queens(N) for N = 4, 5, 6, 7, 8.

The next slide shows both the program (from Part 2) that displays the board for
a single solution, and the beginnings of the new program, which will reuse
some logic from both Part 1 and Part 2.

def display(ns: List[Int])(image: Image): Unit =
val frameTitle = "N-Queens Problem - Solutions for N = ${ns.mkString(",")}"
val frameWidth = 1800
val frameHeight = 1000
val frameBackgroundColour = Color.white
val frame =
Frame.size(frameWidth,frameHeight)

.title(frameTitle)

.background(frameBackgroundColour)
image.draw(frame)

@main def main =
val ns = List(4,5,6,7,8)
ns map queens pipe makeResultsImage pipe display(ns)

val makeResultsImage: List[List[List[Int]]] => Image = ??? // to be implemented

def showQueens(solution: List[Int]): Int =
val n = solution.length
val frameTitle = s"{n}-Queens Problem – A solution"
val frameWidth = 1000
val frameHeight = 1000
val frameBackgroundColour = Color.white
val frame =
Frame.size(frameWidth,frameHeight)

.title(frameTitle)

.background(frameBackgroundColour)
show(solution).draw(frame)

def show(queens: List[Int]): Image =
val square = Image.square(100).strokeColor(Color.black)
val emptySquare: Image = square.fillColor(Color.white)
val fullSquare: Image = square.fillColor(Color.orangeRed)
val squareImageGrid: List[List[Image]] =
for col <- queens.reverse
yield List.fill(queens.length)(emptySquare)

.updated(col,fullSquare)
combine(squareImageGrid)

val beside = Monoid.instance[Image](Image.empty, _ beside _)
val above = Monoid.instance[Image](Image.empty, _ above _)

def combine(imageGrid: List[List[Image]]): Image =
imageGrid.foldMap(_ combineAll beside)(above)

@main def main =
val solution = List(3,1,6,2,5,7,4,0)
showQueens(solution)

def onDiagonal(row: Int, column: Int, otherRow: Int, otherColumn: Int) =
math.abs(row - otherRow) == math.abs(column - otherColumn)

def safe(queen: Int, queens: List[Int]): Boolean =
val (row, column) = (queens.length, queen)
val safe: ((Int,Int)) => Boolean = (nextRow, nextColumn) =>
column != nextColumn && !onDiagonal(column, row, nextColumn, nextRow)

zipWithRows(queens) forall safe

def zipWithRows(queens: List[Int]): Iterable[(Int,Int)] =
val rowCount = queens.length
val rowNumbers = rowCount - 1 to 0 by -1
rowNumbers zip queens

def queens(n: Int): List[List[Int]] =
def placeQueens(k: Int): List[List[Int]] =
if k == 0
then List(List())
else
for
queens <- placeQueens(k - 1)
queen <- 1 to n
if safe(queen, queens)

yield queen :: queens
placeQueens(n)

We are switching from the program
on the left, to the one on the right.
New code is on a green background.

In the new program, generating an image is the responsibility of makeResultsImage.

See next slide for an
explanation of pipe.

The program on the left is from Part 2. It displays the board
for a single solution. The program on the right uses the queens
function (and ancillary functions) from Part 1. It displays, all
together, the results of queens(N) for N = 4, 5, 6, 7, 8.

Scala’s pipe function allows us to take an expression consisting of a number of nested function
invocations, e.g. f(g(h(x)), and turn it into an equivalent expression in which the functions appear
in the order in which they are invoked, i.e. h, g and f, rather than in the inverse order, i.e. f, g and h.

assert(square(twice(inc(3))) == 64)

assert ((3 pipe inc pipe twice pipe square) == 64)

def inc(n: Int): Int = n + 1
def twice(n: Int): Int = n * 2
def square(n: Int): Int = n * n

@philip_schwarz

Here is one example

@main def main =
val ns = List(4,5,6,7,8)
display(ns)(makeResultsImage(ns map queens))

@main def main =
val ns = List(4,5,6,7,8)
ns map queens pipe makeResultsImage pipe display(ns)

We are using pipe to make our main function easier to understand

@main def main =
val ns = List(4,5,6,7,8)
ns map queens pipe makeResultsImage pipe display(ns)

val makeResultsImage: List[List[List[Int]]] => Image = ???

type Solution = List[Int]

val makeResultsImage: List[List[Solution]] => Image = ???

val makeResultsImage: List[Solutions] => Image = ???

type Solutions = List[Solution]

Our current objective is to
implement the makeResultsImage
function invoked by main.

Let’s begin by introducing a couple of type aliases to aid comprehension.

If at some point, while reading the next three slides, you feel a strong sense of déjà vu, that is to be expected.

There is a lot of symmetry between the slides, and the code that they contain.

That’s because the problem that we are working on exhibits a good degree of self-similarity.

The problem looks very similar at three different levels:
• When we operate at the single Solution level, we need to create an image of a grid of squares (a solution board).
• When we operate at the multiple Solution level, we need to create an image of a grid of boards (the solution boards for some N).
• When we operate at the multiple Solutions level, we need to create an image of a grid of grids of boards (i.e. all the solution boards for

N=4,5,6,7,8).

If things appear to get a bit confusing at times, keep a cool head by focusing on the function signatures at play, and by reminding yourself
that all we are doing is divide and conquer.

type Solution = List[Int]
type Solutions = List[Solution]

val makeResultsImage: List[Solutions] => Image = makeSolutionsImageGrid andThen combineWithPadding

type Grid[A] = List[List[A]]
type Solution = List[Int]
type Solutions = List[Solution]

makeSolutionsImageGrid : List[Solutions] => Grid[Image] combineWithPadding : Grid[Image] => Image

To turn multiple Solutions elements into an image, we are going to first create an Image for
each Solutions element, then arrange the resulting images in a Grid, and finally combine the
images into a single compound image, adding padding around images as we combine them.

Creating the images, and arranging them into a grid, will be done by makeSolutionsImageGrid,
whereas combining the images into a single compound image, inserting padding around the
images, will be done by combineWithPadding.

In order to create a Grid[Image], makeSolutionsImageGrid must create an image for each
Solutions element.

To help with that, on the next slide we define a function called makeSolutionsImage, which
given a Solutions element, returns an Image.

This is analogous to makeResultsImage, but operates on an individual Solutions element
rather than on a list of such elements, so it operates one level below makeResultsImage.

val makeSolutionsImage: List[Solution] => Image = makeBoardImageGrid andThen combineWithPadding

To turn multiple Solution elements into an image, we are going to first create an Image for
each Solution, then arrange the images in a Grid, and finally combine the images into a single
compound image, adding padding around images as we combine them.

Creating the images, and arranging them into a grid, will be done by makeBoardImageGrid,
whereas combining the images into a single compound image, inserting padding around the
images, will be done by combineWithPadding (yes, we introduced it on the previous slide).

makeBoardImageGrid : List[Solution] => Grid[Image] combineWithPadding : Grid[Image] => Image

In order to create a Grid[Image], makeBoardImageGrid must create an image for each
Solution element.

To help with that, on the next slide we define a function called makeBoardImage, which
given a Solution element, returns an Image.

This is analogous to makeSolutionsImage, but operates on an individual Solution element
rather than on a list of such elements, so it operates one level below makeSolutionsImage.

type Grid[A] = List[List[A]]
type Solution = List[Int]
type Solutions = List[Solution]

val makeBoardImage: Solution => Image = makeSquareImageGrid andThen combine

To turn a Solution, which represents a chess board, into an image, we are going to
first create an Image for each square in the Solution, then arrange the images in a
Grid, and finally combine the images into a single compound image.

Creating the images, and arranging them into a grid, will be done by
makeSquareImageGrid, whereas combining the images into a single compound
image will be done by combine (yes, we implemented such a function in Part 2).

makeSquareImageGrid : Solution => Grid[Image] combine : Grid[Image] => Image

type Grid[A] = List[List[A]]
type Solution = List[Int]
type Solutions = List[Solution]

The next slide visualises the self-similarity of the problem we are
working on, and its amenability to a divide and conquer approach.

@philip_schwarz

a cell in a board a single solution for N = n

a board (solution)

all solutions for N = n

all solutions for N = n

all solutions for N = n, n+1, n+2, n+3, n+4

val makeResultsImage: List[Solutions] => Image =
makeSolutionsImageGrid andThen combineWithPadding

makeSolutionsImageGrid: List[Solutions] => Grid[Image]

combineWithPadding: Grid[Image] => Image

val makeSolutionsImage: List[Solution] => Image =
makeBoardImageGrid andThen combineWithPadding

makeBoardImageGrid: List[Solution] => Grid[Image]

val makeBoardImage: Solution => Image =
makeSquareImageGrid andThen combine

makeSquareImageGrid: Solution => Grid[Image]

combine: Grid[Image] => Image

Combine a grid of images into a composite image with padding around the images

Create an image of a grid of squares (a solution board)

Create an image of a grid of boards (the solution boards for some N)

Create an image of a grid of grids of boards (i.e. all the solution boards for N=4,5,6,7,8)

Create a grid of square images (a solution board)

Create a grid of board images (the solution boards for some N)

Create a grid of images of grids of boards (i.e. all the solution boards for N=4,5,6,7,8)

Combine a grid of images into a composite image with no padding around the images

Here are the functions that we have identified so far.

We already have implementations for the first three functions.

On the next slide, we start implementing the next three functions, which create grids of images.

type Grid[A] = List[List[A]]
type Solution = List[Int]
type Solutions = List[Solution]

makeSolutionsImageGrid: List[Solutions] => Grid[Image]

makeBoardImageGrid: List[Solution] => Grid[Image]

makeSquareImageGrid: Solution => Grid[Image]

Since all three of these functions have to create a grid, they will
have some logic in common.

Let’s put that shared logic in a function called makeImageGrid.

def makeImageGrid[A](as: List[A], makeImage: A => Image, gridWidth: Int): Grid[Image] =
as map makeImage grouped gridWidth toList

Implementing makeSolutionsImageGrid and
makeBoardImageGrid is now simply a matter of
invoking makeImageGrid.

def makeSolutionsImageGrid(queensResults: List[Solutions]): Grid[Image] =
makeImageGrid(queensResults, makeSolutionsImage, gridWidth = 1)

def makeBoardImageGrid(solutions: List[Solution]): Grid[Image] =
makeImageGrid(solutions, makeBoardImage, gridWidth = 17)

See the previous slide for implementations of
makeSolutionsImage and makeBoardImage.

We are creating a degenerate grid, one with
just 1 column. We are doing so simply because
it happens to result in an effective layout.

Again, it just happens that creating a grid with 17
columns results in a better layout of solution boards than
is otherwise the case.

type Grid[A] = List[List[A]]
type Solution = List[Int]
type Solutions = List[Solution]

While Implementing makeSolutionsImageGrid and makeBoardImageGrid was simply a
matter of invoking makeImageGrid, implementing makeSquareImageGrid is more involved.

def makeSquareImageGrid(columnIndices:Solution): Grid[Image] =
val n = columnIndices.length
val (emptySquare, fullSquare) = makeSquareImages(n)
val occupiedCells: List[Boolean] =
columnIndices.reverse flatMap { col => List.fill(n)(false).updated(col-1,true) }

val makeSquareImage: Boolean => Image = if (_) fullSquare else emptySquare
makeImageGrid(occupiedCells, makeSquareImage, gridWidth = n)

def makeSquareImages(n: Int): (Image,Image) =
val emptySquareColour = n match
case 4 => Color.limeGreen
case 5 => Color.lime
case 6 => Color.springGreen
case 7 => Color.paleGreen
case 8 => Color.greenYellow
case other => Color.white

val square: Image = Image.square(10).strokeColor(Color.black)
val emptySquare: Image = square.fillColor(emptySquareColour)
val fullSquare: Image = square.fillColor(Color.orangeRed)
(emptySquare, fullSquare)

To help distinguish the solution boards for different values of N (4,5,6,7,8), we are giving
their empty squares of a different shade of green.

val makeResultsImage: List[Solutions] => Image =
makeSolutionsImageGrid andThen combineWithPadding

combineWithPadding: Grid[Image] => Image

val makeSolutionsImage: List[Solution] => Image =
makeBoardImageGrid andThen combineWithPadding

val makeBoardImage: Solution => Image =
makeSquareImageGrid andThen combine

combine: Grid[Image] => Image

Looking back at the implementations of our three functions
for creating images, now that we have implemented the
functions that create image grids, it is time to implement
combine and combineWithPadding.

On the next slide we start implementing combineWithPadding.

@philip_schwarz

import cats.Monoid
val beside = Monoid.instance[Image](Image.empty, _ beside _)
val above = Monoid.instance[Image](Image.empty, _ above _)

def combine(imageGrid: List[List[Image]]): Image =
import cats.implicits._
imageGrid.foldMap(_ combineAll beside)(above)

Remember the implementation of the
combine function that we used, in Part 2, to
take a grid of images and produce a
compound image that is their composition?

We need to implement combineWithPadding, a function that differs from combine in that instead of just combining the images
contained in its image grid parameter, it also needs to insert a padding image between neighbouring images as it does that.

combineWithPadding: Grid[Image] => Image

The combine function first folds the images in a row (combineAll is just an alias for fold) using the beside monoid, and then
folds the resulting row images using the above monoid. The combineWithPadding function needs to fold images in the same
way, but in addition, it also needs to insert a padding image between each pair of such images.

This is clearly a job for the intercalate function provided by Cats’ Foldable type class!

def combineWithPadding(images: Grid[Image]): Image =
combineWithPadding(images, paddingImage)

def combineWithPadding(images: Grid[Image], paddingImage: Image): Image =
import cats.implicits._
images.map(row => row.intercalate(paddingImage)(beside))

.intercalate(paddingImage)(above)

val paddingImage = Image.square(10).strokeColor(Color.white).fillColor(Color.white)

Let’s go ahead and implement combineWithPadding using the
intercalate function provided by Cats’ Foldable type class!

The padding consists of a white square with a width of 10 pixels.

def combine(images: Grid[Image]): Image =
combineWithPadding(images, paddingImage = Image.empty)

def combineWithPadding(images: Grid[Image], paddingImage: Image): Image =
import cats.Foldable
Foldable[List].intercalate (
images.map(row => Foldable[List].intercalate(row, paddingImage)(beside)),
paddingImage

)(above)

In case you find it useful, here is how the second combineWithPadding
function looks like if we use Foldable[List]explicitly.

def combine(imageGrid: List[List[Image]]): Image =
import cats.implicits._
imageGrid.foldMap(_ combineAll beside)(above)

Here again, for reference, is how we
implemented combine in Part 2.

What about the combine function, which
doesn’t do any padding? Why is it that a couple
of slides ago we said that we need to implement
it? We have already implemented it in Part 2
(see above).

While we can certainly just use the above
combine function, it is interesting to see how
much simpler the implementation becomes if we
leverage the combineWithPadding function that
we have just introduced.

No padding, is just padding
with an empty image. A bit silly
maybe, but attractively simple.

The next slide shows all of the code needed to display the N-Queens solutions for N=4,5,6,7,8.

While the queens function is included on the slide, this is purely to remind us of how the
solutions are produced, and so its three subordinate functions are not shown.

@philip_schwarz

def combine(images: Grid[Image]): Image =
combineWithPadding(images, paddingImage = Image.empty)

def combineWithPadding(images: Grid[Image]): Image =
combineWithPadding(images, paddingImage)

def combineWithPadding(images: Grid[Image], paddingImage: Image): Image =
import cats.implicits._
images.map(row => row.intercalate(paddingImage)(beside))

.intercalate(paddingImage)(above)

import cats.Monoid
val beside = Monoid.instance[Image](Image.empty, _ beside _)
val above = Monoid.instance[Image](Image.empty, _ above _)

val paddingImage = Image.square(10)
.strokeColor(Color.white)
.fillColor(Color.white)

val makeResultsImage: List[Solutions] => Image =
makeSolutionsImageGrid andThen combineWithPadding

val makeSolutionsImage: List[Solution] => Image =
makeBoardImageGrid andThen combineWithPadding

val makeBoardImage: Solution => Image =
makeSquareImageGrid andThen combine

def makeSquareImageGrid(columnIndices:Solution): Grid[Image] =
val n = columnIndices.length
val (emptySquare, fullSquare) = makeSquareImages(n)
val occupiedCells: List[Boolean] = columnIndices.reverse flatMap { col =>

List.fill(n)(false).updated(col-1,true) }
val makeSquareImage: Boolean => Image = if (_) fullSquare else emptySquare
makeImageGrid(occupiedCells, makeSquareImage, gridWidth = n)

def makeSquareImages(n: Int): (Image,Image) =
val emptySquareColour = n match

case 4 => Color.limeGreen
case 5 => Color.lime
case 6 => Color.springGreen
case 7 => Color.paleGreen
case 8 => Color.greenYellow
case other => Color.white

val square: Image = Image.square(10).strokeColor(Color.black)
val emptySquare: Image = square.fillColor(emptySquareColour)
val fullSquare: Image = square.fillColor(Color.orangeRed)
(emptySquare, fullSquare)

def makeImageGrid[A](as: List[A], makeImage: A => Image, gridWidth: Int): Grid[Image] =
as map makeImage grouped gridWidth toList

def makeSolutionsImageGrid(queensResults: List[Solutions]): Grid[Image] =
makeImageGrid(queensResults, makeSolutionsImage, gridWidth = 1)

def makeBoardImageGrid(solutions: List[Solution]): Grid[Image] =
makeImageGrid(solutions, makeBoardImage, gridWidth = 17)

type Grid[A] = List[List[A]]
type Solution = List[Int]
type Solutions = List[Solution]

@main def main =
val ns = List(4,5,6,7,8)
ns map queens pipe makeResultsImage pipe display(ns)

def display(ns: List[Int])(image: Image): Unit =
val frameTitle = "N-Queens Problem - Solutions for N = ${ns.mkString(",")}"
val frameWidth = 1800
val frameHeight = 1000
val frameBackgroundColour = Color.white
val frame = Frame.size(frameWidth,frameHeight)

.title(frameTitle)

.background(frameBackgroundColour)
image.draw(frame)

def queens(n: Int): List[List[Int]] =
def placeQueens(k: Int): List[List[Int]] =
if k == 0 then List(List())
else
for

queens <- placeQueens(k - 1)
queen <- 1 to n
if safe(queen, queens)

yield queen :: queens
placeQueens(n)

While the code on the previous slide works, I think the combineWithPadding function is doing too much. It is unnecessarily conflating two
responsibilities: inserting padding between images, and combining the images.

Let’s delete the combine and combineWithPadding functions on the left, and reinstate the earlier combine function, on the right.

def combine(images: Grid[Image]): Image =
combineWithPadding(images, paddingImage = Image.empty)

def combineWithPadding(images: Grid[Image]): Image =
combineWithPadding(images, paddingImage)

def combineWithPadding(images: Grid[Image], paddingImage: Image): Image =
import cats.implicits._
images.map(row => row.intercalate(paddingImage)(beside))

.intercalate(paddingImage)(above)

def combine(imageGrid: List[List[Image]]): Image =
imageGrid.foldMap(_ combineAll beside)(above)

val makeResultsImage: List[Solutions] => Image =
makeSolutionsImageGrid andThen combineWithPadding

val makeSolutionsImage: List[Solution] => Image =
makeBoardImageGrid andThen combineWithPadding

val makeResultsImage: List[Solutions] => Image =
makeSolutionsImageGrid andThen combine

val makeSolutionsImage: List[Solution] => Image =
makeBoardImageGrid andThen combine

We must now stop makeResultsImage and makeSolutionsImage
from using the combineWithPadding function that we have deleted.

Now that padding no longer gets introduced when images are
combined, when is it going to be introduced? See the next slide.

import scala.collection.decorators._
def insertPadding(images: Grid[Image]): Grid[Image] =
images map (_ intersperse paddingImage) intersperse List(paddingImage)

Let’s define a function called insertPadding, that takes a grid of images, and inserts a padding image between each pair of neighbouring
images. We can implement the function using the intersperse function provided by https://github.com/scala/scala-collection-contrib.

Except that when I try to use the intersperse function with Scala 3, I get a compilation error, so I
have opened an issue: https://github.com/scala/scala-collection-contrib/pull/146.

https://github.com/scala/scala-collection-contrib
https://github.com/scala/scala-collection-contrib/pull/146

def insertPadding(images: Grid[Image]): Grid[Image] =
import scalaz._, Scalaz._
images map (_ intersperse paddingImage) intersperse List(paddingImage)

Luckily, the very same intersperse
function is also available in Scalaz.

def makePaddedImageGrid[A](as: List[A], makeImage: A => Image, gridWidth: Int): Grid[Image] =
makeImageGrid(as, makeImage, gridWidth) pipe insertPadding

def makeImageGrid[A](as: List[A], makeImage: A => Image, gridWidth: Int): Grid[Image] =
as map makeImage grouped gridWidth toList

def makeSolutionsImageGrid(queensResults: List[Solutions]): Grid[Image] =
makeImageGrid(queensResults, makeSolutionsImage, gridWidth = 1)

def makeBoardImageGrid(solutions: List[Solution]): Grid[Image] =
makeImageGrid(solutions, makeBoardImage, gridWidth = 17)

Now, remember makeImageGrid, the function
that we use to turn a list into a grid of images?

Now that we have defined insertPadding, we can use it to define a variant of makeImageGrid which, in
addition to creating a grid of images, inserts padding between those images.

Armed with the above function, we can now remedy the fact that we have eliminated the
combineWithPadding function. The padding that was previously inserted by using combineWithPadding,
will now be inserted by invoking makePaddedImageGrid rather than makeImageGrid. We need to make
the switch in the following two functions:

The next slide applies the additions/changes described on this slide, to
the code needed to display the N-Queens solutions for N=4,5,6,7,8.

List(1, 2, 3) intersperse 0 assert_=== List(1,0,2,0,3)
List(1, 2) intersperse 0 assert_=== List(1,0,2)
List(1) intersperse 0 assert_=== List(1)
nil[Int] intersperse 0 assert_=== nil[Int]

def combine(imageGrid: List[List[Image]]): Image =
imageGrid.foldMap(_ combineAll beside)(above)

import cats.Monoid
val beside = Monoid.instance[Image](Image.empty, _ beside _)
val above = Monoid.instance[Image](Image.empty, _ above _)

val paddingImage = Image.square(10)
.strokeColor(Color.white)
.fillColor(Color.white)

val makeResultsImage: List[Solutions] => Image =
makeSolutionsImageGrid andThen combineWithPadding

val makeSolutionsImage: List[Solution] => Image =
makeBoardImageGrid andThen combineWithPadding

val makeBoardImage: Solution => Image =
makeSquareImageGrid andThen combine

def makeSquareImageGrid(columnIndices:Solution): Grid[Image] =
val n = columnIndices.length
val (emptySquare, fullSquare) = makeSquareImages(n)
val occupiedCells: List[Boolean] = columnIndices.reverse flatMap { col =>

List.fill(n)(false).updated(col-1,true) }
val makeSquareImage: Boolean => Image = if (_) fullSquare else emptySquare
makeImageGrid(occupiedCells, makeSquareImage, gridWidth = n)

def makeSquareImages(n: Int): (Image,Image) =
val emptySquareColour = n match

case 4 => Color.limeGreen
case 5 => Color.lime
case 6 => Color.springGreen
case 7 => Color.paleGreen
case 8 => Color.greenYellow
case other => Color.white

val square: Image = Image.square(10).strokeColor(Color.black)
val emptySquare: Image = square.fillColor(emptySquareColour)
val fullSquare: Image = square.fillColor(Color.orangeRed)
(emptySquare, fullSquare)

def makeImageGrid[A](as: List[A], makeImage: A => Image, gridWidth: Int): Grid[Image] =
as map makeImage grouped gridWidth toList

def makeSolutionsImageGrid(queensResults: List[Solutions]): Grid[Image] =
makePaddedImageGrid(queensResults, makeSolutionsImage, gridWidth = 1)

def makeBoardImageGrid(solutions: List[Solution]): Grid[Image] =
makePaddedImageGrid(solutions, makeBoardImage, gridWidth = 17)

type Grid[A] = List[List[A]]
type Solution = List[Int]
type Solutions = List[Solution]

@main def main =
val ns = List(4,5,6,7,8)
ns map queens pipe makeResultsImage pipe display(ns)

def display(ns: List[Int])(image: Image): Unit =
val frameTitle = "N-Queens Problem - Solutions for N = ${ns.mkString(",")}"
val frameWidth = 1800
val frameHeight = 1000
val frameBackgroundColour = Color.white
val frame = Frame.size(frameWidth,frameHeight)

.title(frameTitle)

.background(frameBackgroundColour)
image.draw(frame)

def queens(n: Int): List[List[Int]] =
def placeQueens(k: Int): List[List[Int]] =
if k == 0 then List(List())
else
for

queens <- placeQueens(k - 1)
queen <- 1 to n
if safe(queen, queens)

yield queen :: queens
placeQueens(n)

def makePaddedImageGrid[A](as:List[A],makeImage:A => Image,gridWidth:Int):Grid[Image] =
makeImageGrid(as, makeImage, gridWidth) pipe insertPadding

def insertPadding(images: Grid[Image]): Grid[Image] =
import scalaz._, Scalaz._
images map (_ intersperse paddingImage) intersperse List(paddingImage)

We are now finally ready to run the program!

See the next slide for the results.

See the slide after that for the same results, but
annotated with a few comprehension aids.

@philip_schwarz

92 boards

N = 5

N = 6

N = 4

N = 7

N = 8

40 boards

4 boards

10 boards

2 boards

Remember in Part 2, when we changed the Scala program‘s logic for displaying a
board, so that instead of exploiting Doodle’s ability to automatically position
images relative to each other, by combining them with the beside and above
functions, the logic had to first explicitly position the images by itself, and then
combine the images using the on function?

We did that so that we could then translate the logic from Scala with Doodle to
Haskell with Gloss.

Imagine doing the equivalent in order to display the N-Queens solutions for
N=4,5,6,7,8!

While it could turn out to be relatively challenging, I don’t think that if we did do
it, we would feel a great sense of accomplishment.

While we might come across opportunities to use interesting functional
programming techniques, I can imagine us being assailed by a growing sense
that we are working on a fool’s errand.

Let’s do something more interesting/constructive instead. In Part 4 we are going
to first look at Haskell’s intersperse and intercalate functions, and then see an
alternative way of solving the N-Queens problem, using the foldM function.

I hope you enjoyed that.

See you in Part 4.

@philip_schwarz

