
Scala 3 by Example - ADTs for DDD
Algebraic Data Types for Domain Driven Design

based on Scott Wlaschin’s book
Domain Modeling Made Functional

- Part 1 -

@ScottWlaschin Martin Odersky @odersky

A Tour of Scala 3

@philip_schwarzslides by

https://www.slideshare.net/pjschwarz

https://www.slideshare.net/pjschwarz/natural-transformations

@ScottWlaschin

Composition of Types
You’ll hear the word “composition” used a lot in functional programming—it’s the foundation of functional
design. Composition just means that you can combine two things to make a bigger thing, like
using Lego blocks.

In the functional programming world, we use composition to build new functions from smaller
functions and new types from smaller types. …

In F#, new types are built from smaller types in two ways:
• By _AND_ing them together
• By _OR_ing them together

“AND” Types
Let’s start with building types using AND. For example, we might say that to make fruit salad you need
an apple and a banana and some cherries:

In F# this kind of type is called a record. Here’s how the definition of a FruitSalad record type would be
written in F#:

type FruitSalad = {
 Apple: AppleVariety
 Banana: BananaVariety
 Cherries: CherryVariety
}

The curly braces indicate that it is a record type, and the three fields are Apple, Banana, and Cherries.

In Scala we can define an AND type with a case class.

@philip_schwarz

case class FruitSalad (
 apple: AppleVariety,
 banana: BananaVariety,
 cherries: CherryVariety
)

type FruitSalad = {
 Apple: AppleVariety
 Banana: BananaVariety
 Cherries: CherryVariety
}

AND Types

“OR” Types
The other way of building new types is by using OR. For example, we might say that for a fruit snack you
need an apple or a banana or some cherries:

These kinds of “choice” types will be incredibly useful for modeling (as we will see throughout
this book). Here is the definition of a FruitSnack using a choice type:

type FruitSnack =
 | Apple of AppleVariety
 | Banana of BananaVariety
 | Cherries of CherryVariety

A choice type like this is called a discriminated union in F#. It can be read like this:

• A FruitSnack is either an AppleVariety (tagged with Apple) or a BananaVariety (tagged
with Banana) or a CherryVariety (tagged with Cherries).

The vertical bar separates each choice, and the tags (such as Apple and Banana) are needed because
sometimes the two or more choices may have the same type and so tags are needed to distinguish
them.

@ScottWlaschin

In Scala we can define an OR type with a sealed trait plus case classes or case objects.
See the next slide for an example that uses both. In this case we only need case classes.

sealed trait FruitSnack
case class Apple(variety: AppleVariety) extends FruitSnack
case class Banana(variety: BananaVariety) extends FruitSnack
case class Cherry(variety: CherryVariety) extends FruitSnack

type FruitSnack =
 | Apple of AppleVariety
 | Banana of BananaVariety
 | Cherries of CherryVariety

OR Types

Defining functional data structures

A functional data structure is (not surprisingly) operated on using only pure functions. Remember, a pure function must not
change data in place or perform other side effects. Therefore, functional data structures are by definition immutable.
…
let’s examine what’s probably the most ubiquitous functional data structure, the singly linked list. The definition here is
identical in spirit to (though simpler than) the List data type defined in Scala’s standard library.
…
Let’s look first at the definition of the data type, which begins with the keywords sealed trait.

In general, we introduce a data type with the trait keyword.

A trait is an abstract interface that may optionally contain implementations of some methods.

Here we’re declaring a trait, called List, with no methods on it.

Adding sealed in front means that all implementations of the trait must be declared in this file.1

There are two such implementations, or data constructors, of List (each introduced with the keyword case) declared next, to
represent the two possible forms a List can take.

As the figure…shows, a List can be empty, denoted by the data constructor Nil, or it can be nonempty, denoted by the data
constructor Cons (traditionally short for construct). A nonempty list consists of an initial element, head, followed by a List
(possibly empty) of remaining elements (the tail).

1 We could also say abstract class here instead of trait. The distinction between the two is not at all significant for our
 purposes right now. …

sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]

Functional Programming in Scala
(by Paul Chiusano and Runar Bjarnason)

@pchiusano @runarorama

But in Scala 3 we can also define an OR
type in a simpler way, using an enum.

type FruitSnack =
 | Apple of AppleVariety
 | Banana of BananaVariety
 | Cherries of CherryVariety

enum FruitSnack {
 case Apple(appleVariety: AppleVariety)
 case Banana(bananaVariety: BananaVariety)
 case Cherry(cherryVariety: CherryVariety)
}

OR Types

sealed trait FruitSnack
case class Apple(variety: AppleVariety) extends FruitSnack
case class Banana(variety: BananaVariety) extends FruitSnack
case class Cherry(variety: CherryVariety) extends FruitSnack

The varieties of fruit are themselves defined as OR types, which in this case is used
similarly to an enum in other languages.

type AppleVariety =
 | GoldenDelicious
 | GrannySmith
 | Fuji

type BananaVariety =
 | Cavendish
 | GrosMichel
 | Manzano

type CherryVariety =
 | Montmorency
 | Bing

This can be read as:
• An AppleVariety is either a GoldenDelicious or a GrannySmith or a Fuji, and so on.

@ScottWlaschin

Jargon Alert: “Product Types” and “Sum Types”

The types that are built using AND are called product types.

The types that are built using OR are called sum types or tagged unions or, in F#
terminology, discriminated unions. In this book I will often call them choice types,
because I think that best describes their role in domain modeling.

type AppleVariety =
 | GoldenDelicious
 | GrannySmith
 | Fuji

type BananaVariety =
 | Cavendish
 | GrosMichel
 | Manzano

type CherryVariety =
 | Montmorency
 | Bing

enum AppleVariety {
 case GoldenDelicious,
 GrannySmith,
 Fuji
}

enum BananaVariety {
 case Cavendish,
 GrosMichel,
 Manzano
}

enum CherryVariety {
 case Montmorency,
 Bing
}

It seems that in Scala 3 we can also use
enums to define these basic OR types.

OR Types

@philip_schwarz

Simple Types

We will often define a choice type with only one choice, such as this:

 type ProductCode =
 | ProductCode of string

This type is almost always simplified to this:

 type ProductCode = ProductCode of string

Why would we create such a type? Because it’s an easy way to create a
“wrapper”— a type that contains a primitive (such as a string or int) as an inner
value.

We’ll be seeing a lot of these kinds of types when we do domain modeling. In
this book I will label these single-case unions as “simple types,” as opposed to
compound types like records and discriminated unions. More discussion of them is
available in the section on Simple Types.

@ScottWlaschin

https://my.safaribooksonline.com/9781680505481/sec_modelingsimplevalues_html

Simple Types

Let’s have a go at defining simple types using Scala 3 opaque types.

type ProductCode = ProductCode of string opaque type ProductCode = String
object ProductCode {
 def apply(code: String): ProductCode = code
}

As a recap, here are the Scala 3 AND types (product types), OR types (sum types) and Simple types for FruitSnack and FruitSalad.

And on the next slide you can
see this code again but without
braces and with a very simple
example of its usage.

AND typeOR type

Simple type

Algebraic Type Systems
Now we can define what we mean by an “algebraic type system.” It’s not as
scary as it sounds—an algebraic type system is simply one where every
compound type is composed from smaller types by AND-ing or OR-ing
them together. F#, like most functional languages (but unlike OO
languages), has a built-in algebraic type system.

Using AND and OR to build new data types should feel familiar—we used the
same kind of AND and OR to document our domain. We’ll see shortly that
an algebraic type system is indeed an excellent tool for domain
modeling.

@ScottWlaschin

Remember the List functional data structure from Functional Programming in Scala (FPiS) that we
looked at a few slides ago as an example of an OR type implemented using case classes and case objects?

Let’s see how FPiS describes algebraic data types.

3.5 Trees
List is just one example of what’s called an algebraic data type (ADT). (Somewhat confusingly, ADT is sometimes used
elsewhere to stand for abstract data type.) An ADT is just a data type defined by one or more data constructors, each of
which may contain zero or more arguments. We say that the data type is the sum or union of its data constructors, and
each data constructor is the product of its arguments, hence the name algebraic data type.14

14 The naming is not coincidental. There’s a deep connection, beyond the scope of this book, between the
 “addition” and “multiplication” of types to form an ADT and addition and multiplication of numbers.

Tuple types in Scala
Pairs and tuples of other arities are also algebraic data types. They work just like the ADTs we’ve been writing here, but have
special syntax…

Algebraic data types can be used to define other data structures. Let’s define a simple binary tree data structure:

sealed trait Tree[+A]
case class Leaf[A](value: A) extends Tree[A]
case class Branch[A](left: Tree[A], right: Tree[A]) extends Tree[A]
…

Functional Programming in Scala
(by Paul Chiusano and Runar Bjarnason)

@pchiusano @runarorama

sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]

• The List algebraic data type is the sum of its data constructors, Nil and Cons.
• The Nil constructor has no arguments.
• The Cons constructor is the product of its arguments head: A and tail: List[A].

sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]

• The Tree algebraic data type is the sum of its data constructors, Leaf and Branch.
• The Leaf constructor has a single argument.
• The Branch constructor is the product of its arguments left: Tree[A] and right: Tree[A]

sealed trait Tree[+A]
case class Leaf[A](value: A) extends Tree[A]
case class Branch[A](left: Tree[A], right: Tree[A]) extends Tree[A]

Let’s recap (informally) what we just saw in FPiS.

SUM

SUM

PRODUCT

PRODUCT

@philip_schwarz

sealed trait FruitSnack
case class Apple(variety: AppleVariety) extends FruitSnack
case class Banana(variety: BananaVariety) extends FruitSnack
case class Cherry(variety: CherryVariety) extends FruitSnack

enum FruitSnack with
 case Apple(variety: AppleVariety)
 case Banana(variety: BananaVariety)
 case Cherry(variety: CherryVariety)

Here is how the notions of sum type and product type apply to FruitSnack

SUM

SUM

PRODUCT

PRODUCT degenerate product – single argument

degenerate product – single argument

AND typeOR type

Simple type

products (AND)
degenerate products - single argument

Revisiting a previous diagram to indicate that each constructor of an OR type can be viewed as a product of its arguments

Building a Domain Model by Composing Types
A composable type system is a great aid in doing domain-driven design because we can quickly create a
complex model simply by mixing types together in different combinations. For example, say that we want to
track payments for an e-commerce site. Let’s see how this might be sketched out in code during a design session.
…
So there you go. In about 25 lines of code, we have defined a pretty useful set of types already.
Of course, there is no behavior directly associated with these types because this is a functional model, not an
object-oriented model. To document the actions that can be taken, we instead define types that represent functions.

@ScottWlaschin
Here is my translation of Scott Wlaschin’s F# code into Scala 3.

See the next slide for a better illustration of its
usage of AND types, OR types and Simple types.

AND type

AND type

Simple type

Simple type

Simple type

OR type

OR type

OR type

degenerate products - single or no argument
products (AND)

Here is the whole code again plus a
very simple example of its usage.

@philip_schwarz

When Scott Wlaschin showed us OR types, I translated them to Scala 3 enums.

For the motivation, let’s look at how Martin Odersky introduced enums in his talk: A Tour of Scala 3.

So what is the #1 Scala 3 feature for beginners? Clearly for me #1 is enums. enums is such a nice and
simple way to define a new type with a finite number of values or constructors.

So, enum Color, case Red, Green, Blue, finished: that’s all you need.

Right now, in Scala, it wasn’t actually that simple to set up something like that. There were libraries,
there was an enumeration type in the standard library, that sort of worked, there was a package called
enumeratum that also sort of worked, but it is just much much more straightforward to have this in
the language.

A Tour of Scala 3 – by Martin Odersky

Martin Odersky @odersky

Furthermore, what you have is not just the simple things, that was the simplest example, but you can
actually add everything to it that a Java enum would do, so you can have enums that have parameters, like
this one here, you can have cases that pass parameters, so here the planets give you the mass and radius, you
can have fields, you can have methods in these enums. And in fact you can be fully Java compatible. That is
done here just by extending java.lang.Enum. So that’s essentially a sign to the compiler that is should
generate code so that this enum is for Java an honest enum that can be used like any other enums.

A Tour of Scala 3 – by Martin Odersky

Martin Odersky @odersky

OK, so this is, again, cool, now we have parity with Java, but we can actually go way further. enums can not
only have value parameters, they also can have type parameters, like this.

So you can have an enum Option with a covariant type parameter T and then two cases Some and None.

So that of course gives you what people call an Algebraic Data Type, or ADT.

Scala so far was lacking a simple way to write an ADT. What you had to do is essentially what the compiler
would translate this to.

A Tour of Scala 3 – by Martin Odersky

Martin Odersky @odersky

So the compiler would take this ADT that you have seen here and translate it into essentially this:

And so far, if you wanted something like that, you would have written essentially the same thing. So a sealed
abstract class or a sealed abstract trait, Option, with a case class as one case, and as the other case, here it
is a val, but otherwise you could also use a case object.

And that of course is completely workable, but it is kind of tedious. When Scala started, one of the main
motivations, was to avoid pointless boilerplate. So that’s why case classes were invented, and a lot of other
innovations that just made code more pleasant to write and more compact than Java code, the standard at
the time.

A Tour of Scala 3 – by Martin Odersky

Martin Odersky @odersky

sealed trait Option[+A]
case class Some[+A](get: A) extends Option[A]
case object None extends Option[Nothing]

In FP in Scala we can see an example of the alternative that
Martin Odersky just mentioned, in which the second case of the
Option ADT is a case object rather than a val.

Functional Programming in Scala
(by Paul Chiusano and Runar Bjarnason)

@pchiusano @runarorama

Martin Odersky @odersky

And one has to recognise that during all these years, the software world has shifted also a little bit and it is now
much more functional than before, so an ADT would have been something very foreign at the time, 2003 – 2004,
when Scala came out, but now it is pretty common.

People write them and write more and more of them because also, with essentially more static typing, you want
to write more and more types, and more and more case hierarchies, and ADTs are just a lovely, simple way to do
that.

So in the spirit of reducing boilerplate, it was about time to have something that makes this case simple and
straightforward to express.

But that’s not even the end of it. We can do more. We can also do Generalized ADTs (GADTs). They are different
from normal ADTs in that the cases can inherit the base class at different types…

Martin Odersky @odersky

A Tour of Scala 3 – by Martin Odersky

Hmmm, I have a nagging doubt that some of the OR types I have implemented using the Scala 3 enum may not be bona fide ADTs.

I have used enums for two ‘kinds’ of OR types:

In the case of AppleVariety, I think I might have got too carried away with the word enum when Scott Wlaschin said the
following:

The varieties of fruit are themselves defined as OR types, which in this case is used similarly to an enum in other
languages.

Maybe a plain enum is not technically considered an ADT. Maybe I should have defined AppleVariety as follows:

 enum AppleVariety with
 case GoldenDelicious
 case GrannySmith
 case Fuji

enum AppleVariety with
 case GoldenDelicious,
 GrannySmith,
 Fuji

enum FruitSnack with
 case Apple(variety: AppleVariety)
 case Banana(variety: BananaVariety)
 case Cherry(variety: CherryVariety)

@philip_schwarz

I say that because when explaining enum, Martin Odersky only started mentioning ADTs when he discussed the Option enum. There
was no mention of ADTs in his first enum example, the Color enum.

Also, in the following dotty github issue he seems to emphasize a clear distinction between enumerations, as found in other languages,
and ADTs/GADTs

Add enum construct - 13 Feb 2017 https://github.com/lampepfl/dotty/issues/1970

This is a proposal to add an enum construct to Scala's syntax.

The construct is intended to serve at the same time as a native implementation of enumerations as
found in other languages and as a more concise notation for ADTs and GADTs.
…

Martin Odersky @odersky

https://github.com/lampepfl/dotty/issues/1970

 So I asked the following on the dotty gitter channel:

 and it turns out that the two definitions of AppleVariety are equivalent, because in the current dotty documentation pages we
 find the following desugaring rule:

 So one definition is syntactic sugar for the other. Good to know!

From https://bartoszmilewski.com/2015/01/13/simple-algebraic-data-types/

Sum types are pretty common in Haskell, but their C++ equivalents, unions or variants, are much less common. There are several
reasons for that.

First of all, the simplest sum types are just enumerations and are implemented using enum in C++.

The equivalent of the Haskell sum type:

 data Color = Red | Green | Blue

is the C++:

 enum { Red, Green, Blue };

An even simpler sum type:

 data Bool = True | False

is the primitive bool in C++.

From https://en.wikipedia.org/wiki/Algebraic_data_type

Enumerated types are a special case of sum types in which the constructors take no arguments, as exactly one value is defined
for each constructor.

What we just saw is consistent with the following

@BartoszMilewski
Bartosz Milewski

https://bartoszmilewski.com/2015/01/13/simple-algebraic-data-types/
https://en.wikipedia.org/wiki/Algebraic_data_type
https://en.wikipedia.org/wiki/Enumerated_type

That’s all for part 1.

When Scott Wlaschin showed us Simple types, I translated them to Scala 3 opaque types. Why?
We’ll look at that in part 2.

Another thing we’ll do in part 2 is take a look at what Scott has to say about working with Simple
values and constraining Simple values.

That’s not all we’ll be covering in Part 2 – there will be more.

@philip_schwarz

