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We start off by looking at how Runar Bjarnason explains Unison’s effect system 
in his talk Introduction to the Unison programming language.
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Another thing we really wanted to be thoughtful about was unison’s 
effect system, because I mean, let’s be honest, monads are awkward. 

I came out and said it, monads are awkward, they come with a 
syntactic overhead as well as a cognitive overhead, like, you know, a 
lot of the time you spend your time trying to figure out how to lift this 
thing into the monad you want, in which order is my monad 
transformer stack supposed to be and things like that.

Runar Bjarnason
Cofounder, Unison Computing. 
Author of Functional Programming in Scala.
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So Unison uses what’s sometimes known as algebraic 
effects. We modeled our effect system in a language 
called Frank, which is detailed in this paper, which is 
called Do Be Do Be Do, by Sam Lindley, Conor 
McBride and Craig McLaughlin, and Frank calls these 
abilities, rather than effects, and so we do that, we 
call them abilities.

So here is a simple State ability. 

This is the ability to put and get some global state of 
type s. Abilities are introduced with the ability 
keyword and this defines two functions, put and get. 

put takes some state of type s and it returns unit with 
the State ability attached to it, and then get will give 
you that s, given that you have the State ability. 

When we see a thing like this in curly braces, it means 
this requires that ability. So put requires the State 
ability and get also requires the State ability.

So this is very similar to an Algebraic Data Type where 
you are defining the type State, this ability type, and 
these are the constructors of the type: put and get.
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So for example we can write effectful functions 
push and pop on a global stack. 

So given that the state is a stack, then we have 
the ability to manipulate some state that is a list 
of as: we can pop and push.

So note that there is no monadic plumbing here. 
These are just code blocks. 

And so to pop, we get the stack, we drop one 
element from the stack, we put that and then we 
get the head of the stack. So that’s pop. And then 
push, we just say, cons a onto the front of 
whatever we get, and put that.

The reason why the pop is quoted is that only 
computations can have effects, not values. So once you 
have computed a value, you can no longer have effects.  
So the quoting is just a nullary function that returns 
whatever this evaluates to.

There is no applicative syntax or anything like that, 
because we are actually overloading the function 
application syntax. So in unison applicative 
programming is the default. We chose that as a design 
constraint.
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The types will ensure that you can’t go wrong 
here, that you are not talking about the 
wrong thing. 

So for example whereas in Scala you might 
say a comes from x, b comes from y and then 
c comes from z, and then you want to do f of 
a, b and c.

In Unison you just say f x y z and it will figure 
that out. It will do the pulling out. It will do 
all the effects. 

So whereas in Haskell you might have to say x bind 
lambda of f of a and then bind g, in Unison you just 
say g of f of x. 

So that’s kind of nice, there is a low syntactic 
overhead to this and there is a low cognitive 
overhead to this, for the programmer.

Runar Bjarnason
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So the programmer can just use our pop and push and write a little program that pushes and pops the stack using our State ability. 

So given that we have the ability to manipulate some state of type list of Nat, we can write a stack program. 

a is the head of the stack, we pop the stack and now we have mutated the stack and then if a is five then push it back, otherwise push 3 and 8.

So this looks like a little imperative program but it is actually a purely functional program.

There are no side effects here but there is also no visible effect plumbing. 
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So then to handle the State ability, to make it actually do something, we write a handler using a handle keyword.

This here is a pure handler for the State ability and we can use that handler, at the bottom, the runStack thing uses 
that handler to run the stackProgram with some initial state which is [5,4,3,2,1].

Normally this kind of stuff would be hidden away in library code. Most programmers will not be writing their own 
handlers but if you have your own set of abilities, you’ll be able to write your handlers.
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So here the definition of state, the expression here at the bottom is like handle h of s in bang c, where the 
exclamation sign means force this computation. c is some quoted computation, you can see that it is quoted in the 
type, it is something of type {State s} a, and then I am saying, force that, actually evaluate it, but handle using the 
handler h, or h of s, where s is the initial state coming in, it is that [5,4,3,2,1] thing. 

And then the definition of h is just above and it proceeds by pattern matching on the constructors of the ability. 
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If the call was to a get, then we end up in that case and what we get out of that pattern is k, a continuation for the 
program, the rest of the program, and what is expected is that I pass the current state to k, that is we allow the 
program to continue with the current state, so if there is a get then I call k of s and this is a recursive definition, I keep 
trying to handle if there is any more state manipulation going on, it is actually calling the handler again, because k of s 
might also need access to the state ability. 

And then to put, we get a state that somebody wanted to put and we get the continuation of the program and we say 
well, handle that using the state and then continue by passing the unit to the continuation. 

And then in the pure case, when there is no effect, we just return the value that we ended up with.

Runar Bjarnason
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The next slide has all of the state code shown by Runar.
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When I went to run that code, I made the following changes to it:

• I updated it to reflect some minor changes to the Unison language which 
have occurred since Runar gave the talk.

• Since the pop function returns Optional a, I changed stackProgram so that 
it doesn’t expect pop to return an a.

• Since  runStack returns a stack, i.e. a list of numbers, I changed 
stackProgram to also return a stack.

• I changed a bit the pushing and popping that stackProgram does, and 
added automated tests to visualise the effect of that logic on a stack.

• Since the pop function returns a quoted computation, I prefixed invocations 
of pop with the exclamations sign, to force the execution of the 
computations.

• I prefixed usages of put and get with State.
• I added the List.head function that pop uses

See the next slide for the resulting code



state : s -> '({State s} a) -> a
state s c =
  h s cases
    { State.get -> k } ->
      handle k s with h s
    { State.put s -> k } ->
      handle k () with h s
    { a } -> a
  handle !c with h s

ability State s where
  put : s -> {State s} ()
  get : {State s} s

pop : '{State [a]} (Optional a)
pop = 'let
  stack = State.get
  State.put (drop 1 stack)
  head stack
push : a -> {State [a]} ()
push a = State.put (cons a State.get)

stackProgram : '{State [Nat]} [Nat]
stackProgram =
  'let top = !pop
       match top with
         None ->
           push 0
           push 1
           push 2
         Some 5 ->
           !pop
           push 5
         Some n ->
           !pop
           !pop
           push n
           push (n + n)
       State.get

List.head : [a] -> Optional a
List.head a = List.at 0 a
use List head

runStack : [Nat]
runStack = state [5,4,3,2,1] stackProgram

test> topIsFive = 
      check(state [5,4,3,2,1] stackProgram == [5,3,2,1])

test> topIsNotFive = 
      check(state [6,5,4,3,2,1] stackProgram == [12,6,3,2,1])

test> topIsMissing = 
      check(state [] stackProgram == [2,1,0])

> runStack
  ⧩
  [5, 3, 2, 1]



To help understand how the state function works, I made the 
following changes to it:

• make the type of the h function explicit
• rename the h function to handler
• rename  c to computation
• rename k to continuation
• break ‘each handle … with …’ line into two lines

The next slide shows the state function before and after the changes 
and the slide after that shows the whole code again after the changes 
to the state function.



state : s -> '({State s} a) -> a
state s c =
  h s cases
    { State.get -> k } ->
      handle k s with h s
    { State.put s -> k } ->
      handle k () with h s
    { a } -> a
  handle !c with h s

state : s -> '({State s} a) -> a
state s computation =
  handler : s -> Request {State s} a -> a
  handler s cases
    { State.get -> continuation } ->
      handle continuation s 
        with handler s
    { State.put s -> continuation } ->
      handle continuation () 
        with handler s
    { a } -> a
  handle !computation 
    with handler s

In https://www.unisonweb.org/docs/language-reference :we read the following: 

.base.Request is the constructor of requests for abilities. A type Request A T is the type of values received by 
ability handlers for the ability A where the current continuation requires a value of type T.

So on the right we see the state handler function taking first a state, and then a Request {State s} a, i.e. a 
request for the State ability where the continuation requires a value of type a.

@philip_schwarz
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state : s -> '({State s} a) -> a
state s computation =
  handler : s -> Request {State s} a -> a
  handler s cases
    { State.get -> continuation } ->
      handle continuation s 
        with handler s
    { State.put s -> continuation } ->
      handle continuation () 
        with handler s
    { a } -> a
  handle !computation 
    with handler s

ability State s where
  put : s -> {State s} ()
  get : {State s} s

stackProgram : '{State [Nat]} [Nat]
stackProgram =
  'let top = !pop
       match top with
         None ->
           push 0
           push 1
           push 2
         Some 5 ->
           !pop
           push 5
         Some n ->
           !pop
           !pop
           push n
           push (n + n)
       State.get

> runStack
  ⧩
  [5, 3, 2, 1]

List.head : [a] -> Optional a
List.head a = List.at 0 a
use List head

test> topIsFive = 
      check(state [5,4,3,2,1] stackProgram == [5,3,2,1])

test> topIsNotFive = 
      check(state [6,5,4,3,2,1] stackProgram == [12,6,3,2,1])

test> topIsMissing = 
      check(state [] stackProgram == [2,1,0])

runStack : [Nat]
runStack = state [5,4,3,2,1] stackProgram

pop : '{State [a]} (Optional a)
pop = 'let
  stack = State.get
  State.put (drop 1 stack)
  head stack
push : a -> {State [a]} ()
push a = State.put (cons a State.get)



Now back to Runar’s talk for one more 
fact about functional effects in Unison.



And yes, you can still use monads, if you want. 

You don’t have to use this ability stuff. 

You can still use monads and it will work just fine.

Runar Bjarnason
@runarorama



Earlier on Runar showed us a comparison between a Scala monadic for comprehension and a Unison plain 
function invocation that instead relied on an ability. He also showed us a comparison between a Haskell 
expression using the bind function (flatMap in Scala) and a Unison plain function invocation that again relied 
on an ability.

In the rest of this slide deck, we are going to do two things:
• Firstly, we are going to look at an example of how functional effects look like in Unison when we use 

monadic effects rather than algebraic effects. i.e we are going to use a monad rather than an ability. We 
are going to do that by starting with a very small Scala program that uses a monad and then translating the 
program into the Unison equivalent. 

• Secondly, we want to see another Unison example of implementing a functional effect using an ability, so 
we are going to take the above Unison program and convert it so that it uses an ability rather than a 
monad.

In the process we’ll be making the following comparisons:

The state functional effect is not the easiest to understand, so to aid our understanding, the program we’ll be 
looking at is simply going to do validation using the functional effect of optionality.

-- Scala program that
 -- uses the Option monad  
  for {
    a <- x 
    b <- y
    c <- z
  } yield f(a b c)

  -- Unison program that 
  -- uses the Abort ability    
  ??? 

-- Scala program that
  -- uses the Option monad
  x flatMap { a =>
    y flatMap { b =>
    z map { c =>
        f(a,b,c)
      }
    }
  }

  -- Unison program that 
  -- uses the Optional monad
  ??? 

@philip_schwarz



The Scala program that we’ll be translating 
into Unison. Is on the next slide.
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 sealed trait Option[+A] {

   def map[B](f: A => B): Option[B] =
     this flatMap { a => Some(f(a)) }

   def flatMap[B](f: A => Option[B]): Option[B] =
     this match {
       case Some(a) => f(a)
       case None    => None
     }

 }
 case object None extends Option[Nothing]
 case class Some[+A](get: A) extends Option[A]

 def validateName(name: String): Option[String] =
   if (name.size > 1 && name.size < 15)
     Some(name)
   else None

 def validateSurname(surname: String): Option[String] =
   if (surname.size > 1 && surname.size < 20)
     Some(surname)
   else None

 def validateAge(age: Int): Option[Int] =
   if (age > 0 && age < 112)
     Some(age)
   else None

 case class Person(name: String, surname: String, age: Int)

 def createPerson(name: String, surname: String, age: Int): Option[Person] =
   for {
     aName    <- validateName(name)
     aSurname <- validateSurname(surname)
     anAge    <- validateAge(age)
   } yield Person(aName, aSurname, anAge)

 val people: String = 
   potentialPeople
     .foldLeft("")(((text,person) => text + "\n" + toText(person)))

 assert( people == "\nPerson(Fred,Smith,35)\nNone\nNone\nNone" )

 println(people) 
 è 
 Person(Fred,Smith,35)
 None
 None
 None

 val potentialPeople = List( 
   createPerson("Fred", "Smith", 35),
   createPerson(   "x", "Smith", 35),
   createPerson("Fred",      "", 35),
   createPerson("Fred", "Smith",  0)
 )

 def toText(option: Option[Person]): String =
   option match {
     case Some(person) => person.toString
     case None => "None"
   }



 def validateName(name: String): Option[String] =
   if (name.size > 1 && name.size < 15)
     Some(name)
   else None

 def validateSurname(surname: String): Option[String] =
   if (surname.size > 1 && surname.size < 20)
     Some(surname)
   else None

 def validateAge(age: Int): Option[Int] =
   if (age > 0 && age < 112)
     Some(age)
   else None

 validateName : Text -> Optional Text
 validateName name =
   if (size name > 1) && (size name < 15)
   then Some name
   else None

 validateSurname : Text -> Optional Text
 validateSurname surname =
   if (size surname > 1) && (size surname < 20)
   then Some surname
   else None

 validateAge : Nat -> Optional Nat
 validateAge age =
   if (age > 0) && (age < 112)
   then Some age
   else None

Let’s begin by translating the validation functions. The 
Unison equivalent of Scala’ s Option is the Optional type.



as a minor aside, if we were using the Scala built-in Option 
type then we would have the option of rewriting code like this

  if (age > 0 && age < 112)
    Some(age)
  else None

as follows

  Option.when(age > 0 && age < 112)(age)

or alternatively as follows

  Option.unless(age <= 0 || age > 112)(age)



 sealed trait Option[+A] {

   def map[B](f: A => B): Option[B] =
     this flatMap { a => Some(f(a)) }

   def flatMap[B](f: A => Option[B]): Option[B] =
     this match {
       case Some(a) => f(a)
       case None    => None
     }

 }

 case object None extends Option[Nothing]
 case class Some[+A](get: A) extends Option[A]

 type base.Optional a = None | Some a

 base.Optional.map : (a -> b) -> Optional a -> Optional b
 base.Optional.map f = cases
   None   -> None
   Some a -> Some (f a)

 base.Optional.flatMap : (a -> Optional b) -> Optional a -> Optional b
 base.Optional.flatMap f = cases
   None   -> None
   Some a -> f a

 use .base.Optional map flatMap

Now that we have the validation functions in place, let’s look at the translation of the functional effect of optionality.

On the left hand side we have a handrolled Scala Option with map defined in terms of flatMap, and on the right hand 
side we have the Unison predefined Optional type and its predefined map and flatMap functions.



 type Person = { name: Text, surname: Text, age: Nat }

 use .base.Optional map flatMap

 createPerson : Text -> Text -> Nat -> Optional Person
 createPerson name surname age =
   flatMap (aName ->
     flatMap (aSurname ->
       map (anAge ->
         Person.Person aName aSurname anAge
       )(validateAge age)
     )(validateSurname surname)
   )(validateName name)

 case class Person(name: String, surname: String, age: Int)

 def createPerson(name : String, surname: String, age: Int): Option[Person] =
   for {
     aName    <- validateName(name)
     aSurname <- validateSurname(surname)
     anAge    <- validateAge(age)
   } yield Person(aName, aSurname, anAge)

Now that we have the map and flatMap functions in place, let’s look at the translation of the 
Scala for comprehension into Unison.

We are implementing the functional effect of optionality using a monad, so while in Scala we 
can use the syntactic sugar of a for comprehension, in Unison there is no equivalent of the 
for comprehension (AFAIK) and so we are having to use an explicit chain of flatMap and map.



 type Person = { name: Text, surname: Text, age: Nat }

 use .base.Optional map flatMap

 createPerson : Text -> Text -> Nat -> Optional Person
 createPerson name surname age =
   flatMap (aName ->
     flatMap (aSurname ->
       map (anAge ->
         Person.Person aName aSurname anAge
       )(validateAge age)
     )(validateSurname surname)
   )(validateName name)

 case class Person(name: String, surname: String, age: Int)

 def createPerson(name : String, surname: String, age: Int): Option[Person] =
   validateName(name) flatMap { aName =>
     validateSurname(surname) flatMap { aSurname =>
       validateAge(age) map { anAge =>
         Person(aName, aSurname, anAge)
       }
     }
   }

Here is the same comparison as on the previous slide but 
with the Scala code explicitly using map and flatMap.
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 val people: String = 
   potentialPeople
     .foldLeft("")(((text,person) => text + "\n" + toText(person)))

 assert( 
  people == "\nPerson(Fred,Smith,35)\nNone\nNone\nNone" 
 )

 people : Text
 people = foldl
            (text person -> text ++ "\n" ++ (toText person))
            ""
            potentialPeople

 peopleTest = check (
   people == "\nPerson(Fred,Smith,35)\nNone\nNone\nNone"
 )

 val potentialPeople: List[Option[Person]] = 
   List( createPerson("Fred", "Smith", 35),
         createPerson(   "x", "Smith", 35),
         createPerson("Fred",      "", 35),
         createPerson("Fred", "Smith",  0)  )

 def toText(option: Option[Person]): String =
   option match {
     case Some(person) => person.toString
     case None => "None"
   }

 potentialPeople: [Optional Person]
 potentialPeople =
   [ (createPerson "Fred" "Smith" 35),
     (createPerson    "x" "Smith" 35),
     (createPerson "Fred"      "" 35),
     (createPerson "Fred" "Smith"  0) ]

 toText : Optional Person -> Text 
 toText = cases
   Some person -> Person.toText person
   None        -> "None”

 Person.toText : Person -> Text 
 Person.toText person =
   match person with Person.Person name surname age 
     -> "Person(" ++ name ++ "," 
                  ++ surname ++ "," 
                  ++ Text.toText(age) ++ ")"

Here we translate the rest of the program.



See the next slide for the Unison 
translation of the whole Scala program.
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type Person = { 
   name: Text, surname: Text, age: Nat 
 }

 use .base.Optional map flatMap

 createPerson : Text -> Text -> Nat -> Optional Person
 createPerson name surname age =
   flatMap (aName ->
     flatMap (aSurname ->
       map (anAge ->
         Person.Person aName aSurname anAge
       )(validateAge age)
     )(validateSurname surname)
   )(validateName name)

people : Text
 people = foldl
            (text person -> text ++ "\n" ++ (toText person))
            ""
            potentialPeople

 peopleTest = check (people == "\nPerson(Fred,Smith,35)\nNone\nNone\nNone")

type base.Optional a = None | Some a

 base.Optional.map : (a -> b) -> Optional a -> Optional b
 base.Optional.map f = cases
   None   -> None
   Some a -> Some (f a)

 base.Optional.flatMap : (a -> Optional b) -> Optional a -> Optional b
 base.Optional.flatMap f = cases
   None   -> None
   Some a -> f a

validateName : Text -> Optional Text
 validateName name =
   if (size name > 1) && (size name < 15)
   then Some name
   else None

 validateSurname : Text -> Optional Text
 validateSurname surname =
   if (size surname > 1) && (size surname < 20)
   then Some surname
   else None

 validateAge : Nat -> Optional Nat
 validateAge age =
   if (age > 0) && (age < 112)
   then Some age
   else None

toText : Optional Person -> Text 
 toText = cases
   Some person -> Person.toText person
   None        -> "None”

 Person.toText : Person -> Text 
 Person.toText person =
   match person with 
     Person.Person name surname age 
     -> "Person(" ++ 
          name ++ "," ++ 
          surname ++ "," ++ 
          Text.toText(age) ++ ")"

 potentialPeople: [Optional Person]
 potentialPeople =
   [(createPerson "Fred" "Smith" 35),
    (createPerson    "x" "Smith" 35),
    (createPerson "Fred"      "" 35),
    (createPerson "Fred" "Smith"  0)]



On the next slide we look at some simple 
automated tests for the Unison program.



 test>                                peopleTest = check (people == "\nPerson(Fred,Smith,35)\nNone\nNone\nNone")

 test>                         validPersonAsText = check (Person.toText (Person.Person "Fred" "Smith" 35) == "Person(Fred,Smith,35)")

 test>                               validPerson = check (createPerson "Fred" "Smith" 35 == Some (Person.Person "Fred" "Smith" 35))

 test>              noValidPersonWithInvalidName = check (createPerson "F" "Smith" 35 == None)

 test>           noValidPersonWithInvalidSurname = check (createPerson "Fred" "" 35 == None)

 test>               noValidPersonWithInvalidAge = check (createPerson "Fred" "Smith" 200 == None)

 test> noValidPersonWithInvalidNameSurnameAndAge = check (createPerson "" "S" 200 == None)

 test>                                 validName = check (validateName "Fred" == Some "Fred")

 test>                              validSurname = check (validateSurname "Smith" == Some "Smith")

 test>                                  validAge = check (validateAge 35 == Some 35)

 test>                             noInvalidName = check (validateName "" == None)

 test>                          noInvalidSurname = check (validateSurname "X" == None)

 test>                              noInvalidAge = check (validateAge 200 == None)



As we have seen, the Unison program currently  implements the 
functional effect of optionality using the Optional monad.

What we are going to do next is improve that program, make it 
easier to understand, by changing it so that it implements the effect 
of optionality using an ability (algebraic effect) called Abort.



Abort.toOptional : '{g, Abort} a -> {g} Optional a
Abort.toOptional computation =
  handler : Request {Abort} a -> Optional a
  handler = cases
    { a }          -> Some a
    { abort -> _ } -> None
  handle !computation 
    with handler

state : s -> '({State s} a) -> a
state s computation =
  handler : s -> Request {State s} a -> a
  handler s cases
    { State.get -> continuation } ->
      handle continuation s 
        with handler s
    { State.put s -> continuation } ->
      handle continuation () 
        with handler s
    { a } -> a
  handle !computation 
    with handler s

ability State s where
  put : s -> {State s} ()
  get : {State s} s

ability Abort where
  abort : {Abort} a

Let’s begin by looking at the Abort ability. Although it is a predefined ability, on this slide I have refactored the original a bit so that we can 
better compare it with the State ability that we saw earlier in Runar’s code.

In later slides I am going to revert to the predefined version of the ability, which being split into two functions, offers different advantages.

The Abort ability is much simpler than the State ability, that’s why I think it could be a good first example of using abilities.

To help understand how the handler of the Abort ability works, in 
the next slide we look at some relevant documentation from a 
similar Abort ability in the Unison language reference.
By the way, it looks like that g in the the signature of the toOptional 
function somehow caters for potentially multiple abilities being in 
play at the same time, but we’ll just ignore that aspect because it is 
out of scope for our purposes.



ability Abort where
  aborting : ()

-- Returns `a` immediately if the 
-- program `e` calls `abort`
abortHandler : a -> Request Abort a -> a
abortHandler a = cases
   { Abort.aborting -> _ } -> a
   { x } -> x

p : Nat
p = handle
      x = 4
      Abort.aborting
      x + 2
    with abortHandler 0

A handler can choose to call the continuation or not, or to call it 
multiple times. For example, a handler can ignore the continuation in 
order to handle an ability that aborts the execution of the program.

The program p evaluates to 0. If we remove the Abort.aborting call, it 
evaluates to 6.

Note that although the ability constructor is given the 
signature aborting : (), its actual type is {Abort} ().

The pattern { Abort.aborting -> _ } matches when 
the Abort.aborting call in p occurs. This pattern ignores its 
continuation since it will not invoke it (which is how it aborts the 
program). The continuation at this point is the expression _ -> x + 2.

The pattern { x } matches the case where the computation is pure 
(makes no further requests for the Abort ability and the continuation is 
empty). A pattern match on a Request is not complete unless this case 
is handled.

from https://www.unisonweb.org/docs/language-reference

As I said on the previous slide, while the above Abort ability is similar to the one we are going 
to use, it is not identical. e.g. this handler returns an a rather than an Optional a. The reason 
why we are looking at this example is because the patterns in the handler are identical and 
the above explanations are also useful for the Abort ability that we are going to use.

https://www.unisonweb.org/docs/language-reference


type base.Optional a = None | Some a

 base.Optional.map : (a -> b) -> Optional a -> Optional b
 base.Optional.map f = cases
   None   -> None
   Some a -> Some (f a)

 base.Optional.flatMap : (a -> Optional b) -> Optional a -> Optional b
 base.Optional.flatMap f = cases
   None   -> None
   Some a -> f a

type base.Optional a = None | Some a

 ability Abort where
   abort : {Abort} a

 Abort.toOptional.handler : Request {Abort} a -> Optional a
 Abort.toOptional.handler = cases
   { a }          -> Some a
   { abort -> _ } -> None

 Abort.toOptional : '{g, Abort} a -> {g} Optional a
 Abort.toOptional a =
   handle !a with toOptional.handler

So here on the left are the map and flatMap functions that the program 
currently uses to implement the functional effect of optionality and on the right 
is the predefined Abort ability that the program is now going to use instead.

@philip_schwarz



 validateName : Text -> Optional Text
 validateName name =
   if (size name > 1) && (size name < 15)
   then Some name
   else None

 validateSurname : Text -> Optional Text
 validateSurname surname =
   if (size surname > 1) && (size surname < 20)
   then Some surname
   else None

 validateAge : Nat -> Optional Nat
 validateAge age =
   if (age > 0) && (age < 112)
   then Some age
   else None

 validateName : Text -> { Abort } Text
 validateName name =
   if (size name > 1) && (size name < 15)
   then name
   else abort

 validateSurname : Text -> { Abort } Text
 validateSurname surname =
   if (size surname > 1) && (size surname < 20)
   then surname
   else abort

 validateAge : Nat -> { Abort } Nat
 validateAge age =
   if (age > 0) && (age < 112)
   then age
   else abort

Here we refactor the validation functions and on the next slide 
we refactor the majority of the rest of the program, leaving 
the most interesting bit of refactoring for the slide after that.



 people : Text
 people = 
  foldl (text person -> text ++ "\n" ++ (toText person))
        ""
        potentialPeople

 peopleTest = check (
   people == "\nPerson(Fred,Smith,35)\nNone\nNone\nNone”
 )

 people : Text
 people =
   foldl (text person -> text ++ "\n" ++ toText (toOptional person))
         ""
         potentialPeople

 peopleTest = check (
   people == "\nPerson(Fred,Smith,35)\nNone\nNone\nNone”
 )

potentialPeople : ['{Abort} Person]
potentialPeople =
  [ '(createPerson "Fred" "Smith" 35),
    '(createPerson    "x" "Smith" 35),
    '(createPerson "Fred"      "" 35),
    '(createPerson "Fred" "Smith"  0) ]

 potentialPeople: [Optional Person]
 potentialPeople =
   [ (createPerson "Fred" "Smith" 35),
     (createPerson    "x" "Smith" 35),
     (createPerson "Fred"      "" 35),
     (createPerson "Fred" "Smith"  0) ]

 toText : Optional Person -> Text 
 toText = cases
   Some person -> Person.toText person
   None        -> "None”

 Person.toText : Person -> {} Text 
 Person.toText person =
   match person with Person.Person name surname age 
     -> "Person(" ++ name ++ "," 
                  ++ surname ++ "," 
                  ++ Text.toText(age) ++ ")"

 toText : Optional Person -> Text 
 toText = cases
   Some person -> Person.toText person
   None        -> "None”

 Person.toText : Person -> {} Text 
 Person.toText person =
   match person with Person.Person name surname age 
     -> "Person(" ++ name ++ "," 
                  ++ surname ++ "," 
                  ++ Text.toText(age) ++ ")"



 type Person = { name: Text, surname: Text, age: Nat }

 createPerson : Text -> Text -> Nat -> Optional Person
 createPerson name surname age =
   flatMap (aName ->
     flatMap (aSurname ->
       map (anAge ->
         Person.Person aName aSurname anAge
       )(validateAge age)
     )(validateSurname surname)
   )(validateName name)

 type Person = { name: Text, surname: Text, age: Nat }

 createPerson : Text -> Text -> Nat -> { Abort } Person
 createPerson name surname age =
   Person.Person
     (validateName name)
     (validateSurname surname)
     (validateAge age)

And now the most interesting bit of the refactoring.

See how much simpler the createPerson function becomes when the functional effect of 
optionality is implemented not using a monad but using an ability and its handler.



This new version of the createPerson function, which uses an ability (and its associated handler) is not 
only an improvement over the version that uses a monad but also over the Scala version that itself 
improves on explicit monadic code by using a for comprehension.

  -- Scala
  for {
    aName    <- validateName(name)
    aSurname <- validateSurname(surname)
    anAge    <- validateAge(age)
  } yield Person(aName, aSurname, anAge)

  -- Unison
  Person.Person
    (validateName name)
    (validateSurname surname)
    (validateAge age)

In Unison you just say f x y z and it 
will figure that out. It will do the 
pulling out. It will do all the effects. 

Runar Bjarnason
@runarorama



See the next slide for all the code of the 
refactored Unison program. See the subsequent 
slide for associated automated tests.

@philip_schwarz



type Person = { name: Text, surname: Text, age: Nat }

 createPerson : Text -> Text -> Nat -> { Abort } Person
 createPerson name surname age =
   Person.Person
     (validateName name)
     (validateSurname surname)
     (validateAge age)

validateName : Text -> { Abort } Text
 validateName name =
   if (size name > 1) && (size name < 15)
   then name
   else abort

 validateSurname : Text -> { Abort } Text
 validateSurname surname =
   if (size surname > 1) && (size surname < 20)
   then surname
   else abort

 validateAge : Nat -> { Abort } Nat
 validateAge age =
   if (age > 0) && (age < 112)
   then age
   else abort

people : Text
 people = 
  foldl (text person -> text ++ "\n" ++ toText (toOptional person))

        ""
        potentialPeople

 peopleTest = check (people == "\nPerson(Fred,Smith,35)\nNone\nNone\nNone”)

toText : Optional Person -> Text 
 toText = cases
   Some person -> Person.toText person
   None        -> "None”

 Person.toText : Person -> {} Text 
 Person.toText person =
   match person with Person.Person name surname age 
     -> "Person(" ++ name ++ "," 
                  ++ surname ++ "," 
                  ++ Text.toText(age) ++ ")"

potentialPeople: ['{Abort} Person]
 potentialPeople =
   [ '(createPerson "Fred" "Smith" 35),
     '(createPerson    "x" "Smith" 35),
     '(createPerson "Fred"      "" 35),
     '(createPerson "Fred" "Smith"  0) ]

type base.Optional a = None | Some a

ability Abort where
  abort : {Abort} a

Abort.toOptional.handler : Request {Abort} a -> Optional a
Abort.toOptional.handler = cases
  { a }          -> Some a
  { abort -> _ } -> None

Abort.toOptional : '{g, Abort} a -> {g} Optional a
Abort.toOptional a =
  handle !a with toOptional.handler



test>                                 peopleTest = check (people == "\nPerson(Fred,Smith,35)\nNone\nNone\nNone")

test>                          validPersonAsText = check (Person.toText (Person.Person "Fred" "Smith" 35) == "Person(Fred,Smith,35)")

test>                          createValidPerson = check ((toOptional '(createPerson "Fred" "Smith" 35)) == Some((Person.Person "Fred" "Smith" 35)))

test>                        abortAsOptionIsNone = check (toOptional 'abort == None)

test>              abortExpressionAsOptionIsNone = check (toOptional '(if false then "abc" else abort) == None)

test>           nonAbortExpressionAsOptionIsSome = check (toOptional '(if true then "abc" else abort) == Some "abc")

test>             notCreatePersonWithInvalidName = check (toOptional('(createPerson "F" "Smith" 35)) == toOptional('abort))

test>          notCreatePersonWithInvalidSurname = check (toOptional('(createPerson "Fred" "" 35)) == toOptional('abort))

test>              notCreatePersonWithInvalidAge = check (toOptional('(createPerson "Fred" "Smith" 200)) == toOptional('abort))

test>        personWithInvalidNameAsOptionIsNone = check (toOptional '(createPerson "F" "Smith" 35) == None)

test>     personWithInvalidSurnameAsOptionIsNone = check (toOptional '(createPerson "Fred" "" 35) == None)

test>         personWithInvalidAgeAsOptionIsNone = check (toOptional '(createPerson "Fred" "Smith" 200) == None)

test>   personWithAllInvalidFieldsAsOptionIsNone = check (toOptional '(createPerson "" "S" 200) == None)

test>                  invalidNameAsOptionIsNone = check (toOptional '(validateName "") == None)

test>               invalidSurnameAsOptionIsNone = check (toOptional '(validateSurname "X") == None)

test>                   invalidAgeAsOptionIsNone = check (toOptional '(validateAge 200) == None)

test>                    validNameAsOptionIsSome = check (toOptional '(validateName "Fred") == Some "Fred")

test>                 validSurnameAsOptionIsSome = check (toOptional '(validateSurname "Smith") == Some "Smith")

test>                     validAgeAsOptionIsSome = check (toOptional '(validateAge 35) == Some 35)




