
Compositionality and Category Theory
A montage of slides/transcript for sections of

the Scala eXchange 2017 closing keynote:
"Composing Programs"

keynote speaker: Rúnar Bjarnason - https://twitter.com/runarorama
video of keynote: https://skillsmatter.com/skillscasts/10746-keynote-composing-programs

get free access to the keynote (and all other videos!) simply by registering on the skillsmatter site

transcript/montage by https://twitter.com/philip_schwarz

https://skillsmatter.com/skillscasts/10746-keynote-composing-programs

Therefore, a compositional expression, or a compositional program is going to be a nested expression, it is going to be some nested structure, and
each subexpression is going to mean something, it is going to be a meaningful program on its own, and then the meaning of the whole thing is going
to be composed of the meaning of the subexpressions, and this is going to work at every level:

Compositionality is this property that we construct software from modular pieces that we can individually understand, and then if
we understand the pieces and we understand how those pieces are put together then we automatically understand the whole
system.

There is nothing outside of the understanding of the pieces and the composition of our understanding that will inform how we
understand the whole.

So the definition of compositionality that I like is this:

A concise way of saying that is:

There is a pun in here on composition. So there are two notions of composition. There is
composition in the expression space and then there is composition in the meaning
space. In the structure or interpretation spaces. Or in syntax and semantics, if you will.
And compositionality in one should mirror the compositionality in the other. They
should be structurally similar in some way.

rúnar bjarnason @runarorama

https://twitter.com/runarorama

Note that I am not talking about composability. Composability conveys a weaker notion than compositionality.

Composability conveys that something is able to be composed. Like if you twist its arm. But compositional
expressions are natively and fractally composable.

In fact I want to say that compositional expressions do nothing other than be composed. That is all they do.

rúnar bjarnason @runarorama

https://twitter.com/runarorama

So here is a program that I wrote. Not my best program. It is ok.

So what this does is count the number of words in a file. It is a perfectly fine program, except it is not
compositional.

The individual parts of this are not complete in and of themselves.

You need to read the whole program in order to understand what any of the parts are doing.

And related parts are very far apart, like opening the buffered reader and closing it are very far apart
and there is no sort of connection between the two.

I want to contrast this with a program that I wrote that does the same thing but
does so in a compositional way.

So this program is written using the FS2 library, a functional streams library for Scala.

So here the logic of the expression is much clearer, but not only that: every part of this is meaningful.

• For instance, the first line is a stream of all the lines in a file. So it has that meaning.
• And that meaning is independent of the next thing, which also has its own meaning.
• So this flatMap expression here means that for every string in the incoming stream I am going to split it on word

boundaries, on whitespace, and then I am going to emit, as a stream, the words that I see. So this expression, no
matter what came before or after, is going to take a stream of strings and turn it into a stream of words in those
strings.

• And then the map part is going to turn all of the incoming elements in any stream into ones, it is going to
replace all the elements with the number one.

• The fold expression is going to sum any stream of numbers
• And the .to is going to take any stream of strings and it is going to send it to the standard output to be printed

onto the screen, no matter what came before.

And then the composition of those meanings
is the meaning of the whole program.

Every part is a meaningful expression and
the whole thing has the same character as
the parts.

We can continue reusing this as a part of a
larger stream processing system. So this is a
honest to goodness stream.

rúnar bjarnason @runarorama

https://twitter.com/runarorama

Another thing about this is that it is very easy to verify. The logic is very clear.

But also, if the individual elements of this are correctly written and the individual parts of this are correctly
written and we have sort of chosen the right parts in the right order then the whole thing is correct.

That is the correctness of the whole is in some sense composed of the correctness of the parts.

And I fact when we are resoning about really large scale systems we have no hope of
reasoning about their correctness, whether they work, without this kind of compositional
reasoning.

rúnar bjarnason @runarorama

https://twitter.com/runarorama

So components can be reused. So because this is compositional, it is naturally modular
(It is not necessarily the other way around, that modular software is compositional).

The program that we had earlier,
we can pull it apart into
individual components so we can
give each component a name
each of which is meaningful on
its own.

So this final program here is literally a composition of the functions print, sum, ones, words and just applied to the lines value.

And ideally we want all of our programs to be this way: a single function applied to some input

This is possible because functions are
compositional: you can always compose functions
as long as the types line up.

And really I want to say that functional programming as such is really the study of compositional software.

Functional Programming is taking this idea of compositionality to its
logical conclusion. Taking that idea seriously and studying the
implications of it.

rúnar bjarnason @runarorama

And we can write that explicitly
as a composition like this:

https://twitter.com/runarorama

Functions are compositional in that if we have a function f that takes an A and returns a B and we have a function g that takes
a B and returns a C then we have a composite function g compose f that does both f and g and the implementation is lambda
of x, g of f of x.

So both of the paths through this diagram are the same function: f followed by g and g compose f.

And composition is associative, so it doesn’t matter if we do f followed by h compose g or if we do g
compose f followed by h. Any two of those paths through this graph are going to be the same
function. They are going to be f followed by g followed by h.
So if we have any three functions we can compose them and it doesn’t matter the order in which
we compose them. They don’t commute past each other: we can’t change the sequence of the
functions because the types have to line up.

And then for every type there is going to be an identity function on that type that does nothing, and
what it means to do nothing is precisely that when composed with another function f you are going to
get the same function you started with. So the identity function is a sort of no-op.

rúnar bjarnason @runarorama

https://twitter.com/runarorama

So whenever we have this structure, we have a thing called a category.

Whenever we have some objects, we have some arrows between those
objects, we have composition on the arrows, which is associative and has an
identity. And this is really all of category theory. Here on this slide.

I mean it is a little bit vague but essentially this is all of it. So everyone now
knows category theory.

Scala actually forms a category in a way that we saw previously. The objects in this
category are the Scala types.

The arrows between the objects are Scala functions that go from one type to another,
and then the composition of the arrows is going to be function composition. So
whenever we have an arrow from A to B and an arrow from B to C we have a composite
arrow from A to C, and this works for any arrows and any objects A, B and C.

And then there is an identity arrow which is the identity function, and then function
composition is associative because it is always implemented as lambda x, f of g of h of x,
no matter how we associate the parentheses.

rúnar bjarnason @runarorama

https://twitter.com/runarorama

Scala forms a category, and what is category theory really about?
Category theory is actually just the abstract study of composition as such. So it is asking the question ‘what kind of stuff is
compositional?’, and studying those things in the abstract. What kind of things can we say about stuff that is compositional?

Another simple example of a compositional thing is a Monoid. A Monoid is a special case of a category. So in Scala we define a
Monoid on some type M and it has two methods, or two values in it. One of them is a function that takes two Ms and returns
one M and that should be an associative operation. So it should be able to take two of these Ms and put them together,
append one to the other. And then empty should be some element of some value type M that does nothing. It is the unit for
this append. So empty appended with anything else is that same thing, on either side.

A Monoid is given by some type in Scala, some associative binary operation, an identity element for that operation. Some examples
of this are

• the integers with identity element zero,
• the integers with multiplication and 1, so 1 multiplied by anything else is that same thing
• booleans with && and true, as well as || and false
• strings with string concatenation, where the string identity element is the empty string
• functions from A to A for some type A, called endofunctions, or endomorphisms on A, endo means within, and the operation

on that is just function composition, and the identity is the identity function on A.

All of these are monoids.

rúnar bjarnason @runarorama

https://twitter.com/runarorama

Another way of defining a Monoid is to say that it is a category with one object.

So we have seen what categories are. Now an example of a category is a Monoid. A Monoid is a category with just one object.

So we can think of the Monoid as having just one object which we can imagine being the type M, but actually it doesn’t matter what is
inside of this object. It is totally opaque. The only thing we care about are the values of type M, which are going to be the arrows. Arrows
are going to go from that object to itself.

And the composition on the arrows, notice the arrows here are not functions, they are values, and the composition on these values is
going to be the append on the Monoid, and the identity is going to be the empty element of the Monoid.

And so this forms an honest to goodness category that has one object that just works to anchor all of the arrows.

And so whenever we have an element x and an element y of the
Monoid, we have a composite element y compose x, or y times x, or y
plus x, or whatever the operation is, and I have denoted the one object
as being star, because I don’t actually care what the structure of that is,
the only thing that really matters are the arrows, and the directionality
of the arrows matters precisely because I can can’t swap x and y,
whenever I am talking about y compose x, I am talking about doing x
and then y, in that order.

And then every Monoid is
going to have an identity
arrow, which is going to be
the identity element in the
Monoid. For example, in the
integer multiplication it is
going to be the number one.

And then composition in a Monoid is
associative, as it is in any other category,
that is if we have the expression z + y + x, it
doesn’t matter if we consider it to be y + x
and then adding z on the front or whether
we say z + y and then adding x on the back.

rúnar bjarnason @runarorama

https://twitter.com/runarorama

This is an example of using compositional reasoning. We are reasoning that the concatenation of the word counts of the
strings should be the same as the word count of the concatenated strings. And we want to also preserve that if we count
the words in a string and then append the word count of the empty string, that should do nothing.

So this is an example of a Monoid homomorphism. It is a function, from one Monoid to
another, that preserves the structure.

Homomorphism, from Greek, homo means same, and morphe means form. So it
preserves the structure, or the form of the Monoid.

The concatenation of the word counts is the word count of the concatenation.

Another example of a Monoid homomorphism is taking the length of a string. So if I concatenate the length of s1 and s2
that should be the same as the length of the combined string, s1 plus s2. And then the length of the empty string should
be zero.
So the length of the composition is the composition of the lengths. That’s another example of Monoid homomorphism.

If I have a homomorphism going both ways then I have a thing called a Monoid isomorphism.
So here, not (x or y) is the same as (not x) and (not y). So the inverse of the combination is the combination of the inverses.

There are two different Monoids on the booleans and there is a homomorphism going one way and there is a homomorphism going the other way,
and so they form an isomorphism, so they have the same structure in a sense.

rúnar bjarnason @runarorama

https://twitter.com/runarorama

All of the Monoids, taken together, form a category, where the objects are the Monoids and the arrows are the
Monoid homomorphisms and there is composition on those, which is just function composition, but it has this
interesting property that if one map preserves a Monoid structure and then the next map also preserves a
Monoid structure then the composite map preserves that structure as well.

And really I want to say that category theory is actually about studying homomorphisms.
That is the plot of category theory. It is about studying composition and compositional things but the things that we want to say about them is
how do we compare those structures. How is structure preserved across mappings. How do we reason compositionally about stuff.

And since Monoids are categories, we can
actually generalize this and say there is not
just a category of Monoids, there is a whole
category of categories, where the objects are
categories and the arrows are category
homomorphisms. And this is the real plot of
category theory.

So what kind of things are category
homomorphisms? They are Functors. So it
is going to go from one category to another,
and it is going to preserve the structure of
the category.

A Functor from a category C to a category D is
going to take every object in category C and it
is going to give you an object in D. And it is
going to take every arrow in C to an arrow in
D that corresponds with it, in such a way that
composition and identity are preserved, that
is, this is a homomorphism, it needs to be
that.

rúnar bjarnason @runarorama

https://twitter.com/runarorama

So in Scala we can talk about Functors, and when we talk about them in Scala we are actually talking about Functors from the
Scala category, with types and functions, to itself. And these are called endofunctors. Again, endo means within. And so this
Functor is going to take a type T and it is going to turn it into a type F[T]. So it is type construction that needs an additional
type. And then on the arrows, on the functions, it is going to take any arrow h that goes from A to B, and it is going to turn it
into an arrow that goes from F[A] to F[B].

For instance, if F is List, then Functor is going to take a function on the elements of the list and turn it into a function that
applies that function to all of the elements of the list.

And that has to be a homomorphism. So the Functor laws are the homomorphism law and we
say that mapping a composite function should be the same as composing the maps.

So map of f compose g should be map f compose map g. That’s the Functor law. And also that
the map of the identity should be identity. It should preserve the structure of the category
across this mapping. And that is true for all Functors.

Just to give an example of a Functor implemented in Scala, I have Option here, so this is going to preserve the sort
of Option-ness, or the None-ness of, if we have a None, in our incoming Option[A], that’s going to be preserved, and
if we have Some in our Option A, that is also going to be preserved. It is just going to apply the function f to whatever
a was inside of there.

rúnar bjarnason @runarorama

https://twitter.com/runarorama

And there are lots of different kinds of
Functors like this, but I want to also
point out that with functions, I am
really talking about pure functions.

Because composition breaks down if we have
side effects. It no longer works. And so what we
want to do is we want to track the effects in the
return type of the function. Rather than having
side effects, like returning nulls or throwing
exceptions, or something, we are going to track
them in the return type of the function.

So here the effect is that the function f might
not return a B, it might return just a None.

rúnar bjarnason @runarorama

https://twitter.com/runarorama

But we run into a problem when we have functions of this form, that
we can no longer use regular function composition. Like we can’t say
f andThen g, if we have both f and g that return Option, because the
types are no longer compatible.

But we can solve that just by writing a little more code.
So we can say f andThen this function that flatMaps g
over the result of f. So we can actually write a
composition on these types of functions, that is not
ordinary function composition, it is composition on
function and some additional structure.

rúnar bjarnason @runarorama

But we can actually write that as an operator, and in both Scalaz and Cats it is represented
as this sort of fish operator >=>.
So if we have f that goes from A to Option[B] and g that goes from B to Option[C] we have
a composite function f fish g, that goes from A to Option[C].
And now this is starting to look like real composition.

And in fact, once we have this, we have a category. And this thing is called a Kleisli category, named after a mathematician called Heinrich
Kleisli.
• The objects in this category are the ordinary Scala types, but in this category now, an arrow from A to B is not a function from A to B, it is a

function from A to Option[B], when we are talking about the Kleisli category for Option.
• And then composition is not going to be ordinary function composition, it is going to be this special fish operator, it is going to be our Kleisli

composition. So f compose g compose h is going to be implemented as lambda x, h of x and then flatMap g and then flatMap f, so it is going
to be like a for comprehension, essentially.

• And the identity arrow for these Kleisli arrows is not going to be the identity function, because we need to return an Option, but what we
are going to do is return the do nothing Option, i.e. the Some. The effect of Option is the None, the effect of the Option type is to not
return a value, but in the identity here we are actually not going to have the effect, we are going to return some x.

https://twitter.com/runarorama

So in general we have a Kleisli category like
this, exactly when the Functor M is a Monad.

So in a Kleisli category in general the objects normally are some types, Scala types, and then an arrow, instead of being from A to B
goes from A to M[B] for some Functor M. And then composition is going to be Kleisli composition, which is going to be
implemented by flatMap. And our identity is going to be, usually called unit or pure.
And when we have this kind of thing, we have a Monad.

And we can think about a Monad in Scala, in a Scala category, we can think of it as being a Functor from a
Kleisli category into the regular Scala category.
So you can see that it takes every type A to another type M[A], but then it takes every arrow in the Kleisli
category, that goes from A to M[B] (so that’s a Kleisli arrow), it takes that to the regular Scala category, to
an arrow of type M[A] => M[B].
And the Monad laws follow from the fact that this is a Functor, that this is a category homomorphism.
So this is saying that flatMap of f compose g is going to be the same as flatMap f composed with flatMap
g. And then flatMapping of the unit, which is the identity arrow in the Kleisli category, that’s going to be the
identity arrow in the Scala category.
So we can reason about Monads using homomorphisms as well.

rúnar bjarnason @runarorama

https://twitter.com/runarorama

So Monads essentially allow us to recover composition when we are talking about effectful functions
And there are lots of these, lots of Monads.

So here with lists the effect might be the function returns zero or
many Bs instead of just one.

And then if we have a Monoid on some C then we can return an
extra C, or some log on the side, and then the composition is
going to take care of the concatenation of those Cs for us.

We might want to have the effect that the function requests an
additional value of type R that it is going to use to produce its B.
This is called the Reader Monad.

Another effect we might want to do is have some kind of state,
and so in this type, this is an arrow from A to B in the Kleisli
category for state, but the effect that we have is that we are going
to keep some state of type S across this as well, that we may use
to construct the B as well.

And then we can do arbitrary effects, using things like IO, or Task,
or Future, if you want to do things like asynchronous requests,
where the effect is that the function is going to request some IO
to happen, it is not actually going to do it, but it is going to
request of whoever receives that IO thing, that it needs to be
done.

And so in general a Monad like this
describes some effect of a function
and the upshot of this is that we can
compose effects

rúnar bjarnason @runarorama

https://twitter.com/runarorama

