
class Monad m where
(>=>) :: (a -> m b) -> (b -> m c) -> (a -> m c)
return :: a -> m a

trait Monad[F[_]] {
def compose[A,B,C](f: A => F[B], g: B => F[C]): A => F[C]

 def unit[A](a: => A): F[A]
}

Kleisli composition + unit Kleisli composition + return

Kleisli Composition (fish operator) >=> compose
Bind >>= flatMap
lifts a to m a (lifts A to F[A]) return unit/pure

(>=>)::(a->mb)->(b->mc)->(a->mc)
(>=>) = \a -> (f a) >>= g

def compose[A,B,C](f: A => F[B], g: B => F[C]): A => F[C]
a => flatMap(f(a))(g)

class Monad m where
 (>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

 -- can then implement Kleisli composition using bind
 (>=>) :: (a -> m b) -> (b -> m c) -> (a -> m c)
 (>=>) = \a -> (f a) >>= g

trait Monad[F[_]] {
def flatMap[A,B](ma: F[A])(f: A => F[B]): F[B]

 def unit[A](a: => A): F[A]

 // can then implement Kleisli composition using flatMap
 def compose[A,B,C](f: A => F[B], g: B => F[C]): A => F[C] =
 a => flatMap(f(a))(g)
}

flatMap + unit bind + return (Kleisli composition can then be implemented with bind)

Defining a Monad in terms of Kleisli composition and Kleisli identity function

Defining Kleisli composition in terms of flatMap (bind)

Defining a Monad in terms of flatmap (bind) and unit (return)

Let’s start by reminding ourselves of a few
aspects of Monads and Kleisli composition. Philip Schwarz

@philip_schwarz

When we see an operation like this [function
composition: andThen]…it is interesting to look for
algebraic properties that operators like this have, and
we might ask, for instance, is this an associative
operation? So let’s find out.

Rob Norris
 @tpolecat

So we have mappings between types, we have an
associative operator with an identity, at each type,
and we proved it is true by the definition of function
composition, and because there is really only one way
to define function composition, this actually follows
naturally from the type of function composition,
which I think is really interesting.

Rules (laws) for function composition

scale.bythebay.io: Rob Norris, Functional Programming with Effects

So what we want to
do is figure out what
this means in terms
of flatMap.

Rules (laws) for Kleisli composition

So we have two operations, pure and flatMap,
and laws telling us how they relate to each
other, and this isn’t something arbitrary, that’s
what I am trying to get across. These are things
that come naturally from the category laws,
just by analogy with pure function composition.

Rob Norris
 @tpolecat

Monad Rules (laws)

Everything you can say about monads is on this slide, but
notice that unlike the rules for function composition, which
we proved were true and are necessarily true from the
types, this is not the case for a monad, you can satisfy this
[Monad] type and break the laws, so when we define
instances we have to verify that they meet the laws, and
Cats and Scalaz both provide some machinery to make this
very easy for you to do, so if you define [monad] instances
you have to check them [the laws].

Someone should do a conference talk on that, because it is
really important and I have never seen a talk about it.

Let’s talk about Option again. This is a monad instance for Option. I went ahead and wrote out how flatMap
works here.

Notice, this [flatMap] method could return None all the time and it would type check, but it would break
the right indentity law.

So this is why we check our laws when we implement typeclasses, it is very very important to do so.

Scala is not quite expressive enough to prove that stuff in the types, you have to do this with a second pass.

Rob Norris
 @tpolecat

To qualify as a monad, a type has to satisfy three
laws that connect flatmap and unit.

Rob Norris
 @tpolecat

Verifying that the Option Monad satisfies the Monad Laws

@odersky

@odersky

Try

NonFatal is a fairly technical thing,
essentially, an exception is fatal if it
does not make sense to export this
beyond a single thread, there are a
couple of exceptions that are, but
the vast majority of them, both
runtime exceptions and normal
exceptions are NonFatal

It looks like Try might be a Monad with unit = Try

@odersky

Is Try a Monad?
Is Try a Monad?

In fact it turns out that the left unit law fails.

Try in a sense trades one monad law for another
law which in this context is more useful.

I call that other law the bullet-proof principle.

