» 3

Kleisli Composition (fish operator) >=> compose
Bind >>= flatMap
lifts a tom a (lifts A to F[A]) return unit/pure

Defining a Monad in terms of Kleisli composition and Kleisli identity function

Kleisli composition + unit

»Haskell

Let’s start by reminding ourselves of a few
aspects of Monads and Kleisli composition. Philip Schwarz

@phlllp schwarz

trait Monad[F[_]] A
def compose[A,B,C](f: A => F[B], g: B => F[C]): A => F[(C]
def unit[A](a: => A): F[A]

}

Kleisli composition + return

Defining Kleisli composition in terms of flatMap (bind)

class Monad m where
(>=>) :: (@ ->mb) ->(b->mc) ->(a ->mc)
return :: a -> m a

def compose[A,B,C](f: A => F[B], g: B => F[C]): A => F[(C]
a => flatMap(f(a))(g)

Defining a Monad in terms of flatmap (bind) and unit (return)

flatMap + unit

(>=>)::(a->mb)->(b->mc)->(a->mc)
(>=>)=\a -> (f a) >>=g

trait Monad[F[_]] {
def flatMap[A,B](ma: F[A])(f: A => F[B]): F[B]
def unit[A](a: => A): F[A]

// can then implement Kleisli composition using flatMap

def compose[A,B,C](f: A => F[B], g: B => F[C]): A => F[C] =

a => flatMap(f(a))(g)

bind + return (Kleisli composition can then be implemented with bind)

class Monad m where
(>>=) ::ma->(a->mb) ->mb
return :: a -> m a

-- can then implement Kleisli composition using bind
(>=>) :: (@ ->mb) ->(b->mc) ->(a ->mc)
(>=>)=\a -> (f a) >>=g

Function Composition

def andThen[A, B, C](f: A = B, g: B = C): A = C =
a = g(f(a))

id[A]l: A = A
O

f;c\
Oy ">,
b .

\ g: B =C
&)
4

Rules (laws) for function composition

def andThen[A, B, C](f: A = B, g: B = C): A = C =
a = g(f(a))

def id[A]: A = A =
a = a

When we see an operation like this [function
composition: andThen]...it is interesting to look for
algebraic properties that operators like this have, and
we might ask, for instance, is this an associative

operation? So let’s find out. —

Rob Norris
@tpolecat

// right identity
f andThen id = f

// left identity
id andThen f = f

// associativity
(f andThen g) andThen h = f andThen (g andThen h)

So we have mappings between types, we have an
associative operator with an identity, at each type,
and we proved it is true by the definition of function
composition, and because there is really only one way
to define function composition, this actually follows
naturally from the type of function composition,
which | think is really interesting.

You{f[TH) scale.bythebay.io: Rob Norris, Functional Programming with Effects

Kleisli Category for F

pure[A]l: A = F[A]
Ae——r: A= FlB]——9B

(f\‘\
‘\ ~

/ &), Sl
S
S

Kleisli Composition

IR /

Rules (laws) for Kleisli composition

// left identity
pure = f = f

// right identity
f = pure = f

// assoclativity

Rob Norris
@tpolecat

So what we want to
do is figure out what

‘e ¢ f = (g = h) =(f = g) = h this means in terms
of flatMap.
Monad Rules (laws)
// left identity
pure(a). flatMap(f) = f(a) So we have two operations, pure and flatMap,
; ; : and laws telling us how they relate to each
// right identity other, and this isn’t something arbitrary, that’s
m.flatMap(pure) =m what | am trying to get across. These are things

// associativity
m.flatMap(g).flatMap(h)

m.flatMap(b = g(b).flatMap(h))

that come naturally from the category laws,
just by analogy with pure function composition.

Monad

// Monad typeclass
trait Monad[F[_]1] {

def pure[Al(a: A): F[A]

def flatMap[A, B](fa: F[A])(f: A = F[B]): F[B]
}

// Monad laws
pure(a).flatMap(f)
m.flatMap(pure)
m.flatMap(g).flatMap(h)

f(a)
m
m.flatMap(b = g(b).flatMap(h))

Everything you can say about monads is on this slide, but
notice that unlike the rules for function composition, which
we proved were true and are necessarily true from the
types, this is not the case for a monad, you can satisfy this
[Monad] type and break the laws, so when we define
instances we have to verify that they meet the laws, and
Cats and Scalaz both provide some machinery to make this
very easy for you to do, so if you define [monad] instances
you have to check them [the laws].

Someone should do a conference talk on that, because it is
really important and | have never seen a talk about it.

Function Composition

def andThen[A, B, C](f: A = B, g: B = C): A = C =
a = g(f(a))

def id[A]: A = A =
a = a

// right identity
f andThen id = f

// left identity
id andThen f = f

// associativity
(f andThen g) andThen h = f andThen (g andThen h)

Let's talk about Option Again

// Abbreviated Definition

sealed trait Option[+A]

case object None extends Option[Nothing]
case class Some[+A](a: A) extends Option[A]

// Monad instance
implicit val OptionMonad: Monad[Option] =
new Monad[Option] {
def pure[A](a: A) = Some(a)

def flatMap[A, B](fa: Option[A])(f: A = Option[B]) =
fa match w

case Some(a) = f(a)
case None = None

}

Rob Norris
@tpolecat

works here.

the right indentity Iaw)

Let’s talk about Option again. This is a monad instance for Option. | went ahead and wrote out how flatMap

Notice, this [flatMap] method could return None all the time and it would type check, but it would break

So this is why we check our laws when we implement typeclasses, it is very very important to do so.

Scala is not quite expressive enough to prove that stuff in the types, you have to do this with a second pass.

What is a Monad?

ICP

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

A monad M is a parametric type M[T] with two operations, flatMap and
unit, that have to satisfy some laws.

trait M[T] {
def flatMap[UJ(f: T => M[U]): M[U]

Monads

Principles of Reactive Programming def unit[TI(x: T): M[T]

Martin Odersky
In the literature, flatMap is more commonly called bind.

yA
Monad Laws To qualify as a monad, a type has to satisfy three Examples of Monads
laws that connect flatmap and unit.

)) » List is @ monad with unit(x) = List(x)
To qualify as a monad, a type has to satisfy three laws: _ , .
» Set is monad with unit(x) = Set(x)

Associativity: » Option is a monad with unit(x) = Some(x)
» Generator is @a monad with unit(x) = single(x)
m flatMap f flatMap g == m flatMap (x => f(x) flatMap g)
flatMap is an operation on each of these types, whereas unit in Scala is
Left unit different for each monad.
// left identity
unit(x) flatMap f == f(x) pure(a).flatMap(f) = f(a)
. : // right identit
Right unit : d -
m.flatMap(pure) =m Rob Norris
m flatMap unit == m // associativity @tpolecat
m.flatMap(g).flatMap(h) = m.flatMap(b = g(b).flatMap(h))

Verifying that the Option Monad satisfies the Monad Laws

Checking Monad Laws
Let's check the monad laws for Option.
Here's flatMap for Option:

abstract class Option[+T] {

def flatMap[U](f: T => Option[U]): Option[U] = this match {
case Some(x) => f(x)
case None => None

Checking the Left Unit Law

Need to show: Some(x) flatMap f == f(x)

Some(x) flatMap f

Some(x) match {
case Some(x) => f(x)
case None => None

= f(x)

Checking the Right Unit Law

Need to show: opt flatMap Some == opt

opt flatMap Some

opt match {
case Some(x) => Some(x)
case None => None

== opt

Checking the Associative Law

Need to show: opt flatMap f flatMap g == opt flatMap (x => f(x)
flatMap g)

opt flatMap f flatMap g

== opt match { case Some(x) => f(x)fcase None => Nong,}

|match { case Some(y) => g(y) case None => N6;E‘3~i)

== opt match {

case Some(x) =>

f(x) match { case Some(y) /=> g(y) case None => None }
case None =>

None match { case Some(y) => g(y) case None => None }

@odersky

opt match {
case Some(x)
f(x) match
case None =>

opt match {
case Some(x)
case None =>

opt flatMap (x

Checking the Associative Law (2)

=>
{ case Some(y) => g(y) case None => None }
None

=> f(x) flatMap g
None

=> f(x) flatMap g)

Try

Another type: Try Creating a Try

In the later parts of this course we will need a type named Try.

Try resembles Option, but instead of Some/None there is a Success case
with a value and a Failure case that contains an exception:

abstract class Try[+T]
case class Success[T](x: T) extends Try[T]
case class Failure(ex: Exception) extends Try[Nothing]

Try is used to pass results of computations that can fail with an exception
between threads and computers.

You can wrap up an arbitrary computation in a Try.

Try(expr) // gives Success(someValue) or Failure(someException)

Here's an implementation of Try:

object Try { NonFatal is a fairly technical thing,
def apply[T](expr: = T): Try[T] - essentially, an exception is fatal if it
does not make sense to export this
try Success(expr) beyond a single thread, there are a
catch { couple of exceptions that are, but
the vast majority of them, both
case NonFatal(ex) => Failure(ex) runtime exceptions and normal

} exceptions are NonFatal

It looks like Try might be a Monad with unit = Try

Composing Try

Just like with Option, Try-valued computations can be composed in for
expresssions.

for {
X <- computeX
y <- computeY
} vield f(x, y)

If computeX and computeY succeed with results Success(x) and Success(y), @odersky
this will return Success(f(x, y)).

If either computation fails with an exception ex, this will return
Failure(ex).

Definition of flatMap and map on Try

abstract class Try[T] {
def flatMap[U](f: T => Try[U]): Try[U] = this match {
case Success(x) => try f(x) catch { case NonFatal(ex) => Failure(ex) }
case fail: Failure => fail

}

def map[U](f: T => U): Try[U] = this match
case Success(x) => Try(f(x))
case fail: Failure => fail

1}

So, for a Try value t,

tmap f == t flatMap (x => Try(f(x)))

Is Try a Monad?

Is Try a Monad? \

Exercise
In fact it turns out that the left unit law fails.

It looks like Try might be a monad, with unit = Try. Try in a sense trades one monad law for another

law which in this context is more useful.

Is it?
0 Yii Bodersk Qcall that other law the bullet-proof principle. /
odersky
0 No, the associative law fails
- . 1 E i

0 No, the left unit law fails Solution Herese

0 NO, the rlght Unit law fails It looks like Try might be a monad, with unit = Try.
Is it?

0 No, two or more monad laws fail. It turns out the left unit law fails. .
0 No, the associative law fails

Try(expr) flatMap f != f(expr) S
Monad Laws 0 No, two or more monad laws fail.

Indeed the left-hand side will never raise a non-fatal exception whereas the
right-hand side will raise any exception thrown by expr or f.

To qualify as a monad, a type has to satisfy three laws:
Associativity:

Hence, Try trades one monad law for another law which is more useful in

m flatMap f flatMap g == m flatMap (x => f(x) flatMap g)
this context:
Left unit
unit(x) flatMap f == f(x) An expression composed from ‘Try', ‘map’, ‘flatMap’ will never
. . throw a non-fatal exception.
Right unit
m flatMap unit == m

Call this the “bullet-proof” principle.

