
A B

C

B

f

g
g	∘ f

idB

idB	∘ f = f

L M

N

M

u

v
v	∘ u

idM

idM	∘ u = u

C

D

h

idC

h	∘ idC = h

N

P

w

idN

w	∘ idN= w

C1 and C2 are categories and ∘	denotes their composition operations. For every category object X there is an identity arrow idX:X→X such that for
every category arrow f:A→B we have idB ∘ f = f = f ∘ idA.
There is a functor F from C1 to C2 (a category homomorphism) which maps each C1 object to a C2 object and maps each C1 arrow to a C2 arrow in
such a way that the following two functor laws are satisfied (i.e. in such a way that composition and identity are preserved):
1) F(g	∘	f) = F(g) ∘	F(f) - mapping the composition of two arrows is the same as composing the mapping of the 1st arrow and the mapping of 2nd arrow
2) F(idX) = idF(X) - the mapping of an object’s identity is the same as the identity of the object’s mapping

C1 C2 F(A) = L
F(B) = M
F(C) = N
F(D) = P

F(f) = u
F(g) = v
F(h) = wF(g	∘	f) = F(g) ∘	F(f)

F

F

F

the mapping of the composition is
the composition of the mappings

Functor Laws

A B

C

B

f

g
g	∘ f

idB
idB	∘ f = f

L M

N

M

u

v
v	∘ u

idM

idM	∘ u = u

C

D

h

idC

h	∘ idC = h

N

P

w

idN

w	∘ idN= w

C1 C2

F(idX) = idF(X)

F

F

F

F

F

F

the mapping of an object’s identity is
the identity of the object’s mapping

F(A) = L
F(B) = M
F(C) = N
F(D) = P

F(f) = u
F(h) = w
F(idB) = idM
F(idC) = idN

✽ ✽

✽

✽

“abc”

“de”
“abc” + “de”

“”“abc“ +	“”

✶ ✶

✶

✶

3

2
3	+ 2

0
3	+ 0

✽

✽

”f”

“”

“” + “f”

✶

✶

1

0

0	+ 1

C1 C2 F(✽) = ✶

F(“abc”) = length(“abc”) = 3
F(“de”) = length(“de”) = 2
F(“abc”+”de”) = length(“abc”+”de”) = 5

C1 = Monoid(String, +, ””)
• objects: just one, denoted by ✽
• arrows: strings
• composition operation: string concatenation
• identity arrows: the empty string

C2 = Monoid (Int, +, 0)
• objects: just one, denoted by ✶
• arrows: integer numbers
• composition operation: integer addition
• identity arrows: the number zero

A functor F from C1 to C2 that maps ✽ to ✶ and maps a
string to its length. The functor laws
• F(g	∘	f) = F(g) ∘	F(f)
• F(idX) = idF(X)
become
• length(s1	+ s2) = length(s1)	+	length(s2)
• length(“”) = 0	

F(s1	∘	s2) = F(s1)	∘	F(s2)
length(s1	+ s2) = length(s1)	+	length(s2)

“abcde” 5

F

F

F

the mapping of the composition is
the composition of the mappings

Example: a Functor from one Monoid to another

✽ ✽

✽

✽

“abc”

“de”
“abc” + “de”

“”“abc“+“” = “abc”

✶ ✶

✶

✶

3

2
3+2

0
3+0 = 3

✽

✽

”f”

“”

“” + “f”

✶

✶

1

0

0+1 = 1

C1 C2

F(idX) = idF(X)
length(“”) = 0	

F

F

F

F

F

F

the mapping of an object’s identity is
the identity of the object’s mapping

F(✽) = ✶

F(“”) = length(“”) = 0

A B

C

f

g
g ∘ f

idB
idB	∘ 	f

F[A] F[B]

F[C]

f↑F

g↑F

g↑F ∘ f↑F

idB↑F

f↑F ∘	 idB↑F	

C

D

h

idC

h	∘ idC

F[C]

F[D]

h↑F

idC↑F

idC↑F ∘	h↑F	

C1 C2

C1 = C2 = Scala types and functions
• objects: types
• arrows: functions
• composition operation: compose function, denoted here by ∘
• identity arrows: identity function T => T, denoted here by idT

A functor F from C1 to C2 consisting of
• a type constructor F that maps type A to F[A]
• a map function from function f:A=>B to function f↑F :F[A] => F[B]
So F(g	∘	f) = F(g) ∘	F(f) becomes map(g	∘	f) = map(g)	∘	map(f)
and F(idX) = idF(X) becomes map(idX) = idX↑	F	

F[B]B

f↑F is function f lifted into context F
F[A] is type A lifted into context F
idX↑	F	is idX lifted into context F

F

F

F

F(g	∘	f) = F(g)	∘	F(f)
map(g	∘	f) = map(g)	∘	map(f)

F(A) = F[A]
F(B) = F[B]
F(C) = F[C]

F(f:A=>B) = map(f) = f↑F:F[A]=>F[B]
F(g:B=>C) = map(g) = g↑F:F[B]=>F[C]
F(g∘f:A=>C) = map(g∘f) = g ↑F∘f↑F:F[A]=>F[C]

the mapping of the composition is
the composition of the mappings

Example: a Functor from the category of ‘Scala types and functions’ to itself

A B

C

f

g
g ∘ f

idB
idB	∘ f = f

F[A] F[B]

F[C]

f↑F

g↑F

g↑F ∘ f↑F

idB↑F

idB↑F ∘ f↑F = f↑F

C

D

h

idC

h	∘ idC

F[C]

F[D]

h↑F

idC↑F

h↑F∘idC↑F = h↑F	

C1 C2 F[B]B

F

F

F

F(idX) = idF(X)
map(idX) = idX↑F	

the mapping of an arrow’s identity is
the identity of the arrow’s mapping

F

F

F

F(A) = F[A]
F(B) = F[B]
F(C) = F[N]
F(D) = F[P]

F(f) = f↑F

F(h) = h↑F
F(idB) = idB↑F
F(idC) = idC↑F

String Char

Int

f

g
g ∘ f

idChar
idChar	∘ 	f

Option[String] Option[Char]
f↑F

g↑F

g↑F ∘ f↑F

idB↑F

f↑F ∘	 idChar↑F	

Int

Float

h

idInt

h	∘ idInt

h↑F

idInt ↑F

idInt↑F ∘	h↑F	

C1 C2 Option[Char]Char F

F

F

F(g	∘	f) = F(g)	∘	F(f)
map(g	∘	f) = map(g)	∘	map(f)

F(String) = Option[String]
F(Char) = Option[Char]
F(Int) = Option[Int]

F(f:String=>Char) = map(f) = f↑F: Option[String] => Option[Char]
F(g:Char=>Int) = map(g) = g↑F: Option[Char] => Option[Int]
F(g∘f:A=>C) = map(g∘f) = g∘f↑F: Option[String] => Option[Int]

the mapping of the composition is
the composition of the mappings

Option[Int] Option[Int]

Option[Float]

val f: String => Char = x => x.head
val g: Char => Int = x => x.toInt

f("abc")
// Char = a
g('a')
// Int = 97
(g compose f)("abc")
// Int = 97

Some("abc") map (g compose f)
// Option[Int] = Some(97)
Some("abc") map f map g
// Option[Int] = Some(97)

None map (g compose f)
// Option[Int] = None
None map f map g
// Option [Int] = None

Making the Scala example more concrete with an actual type constructor: Option

String Char

Int

f

g
g ∘ f

idChar
idChar	∘ f = f

f↑F

g↑F

g↑F ∘ f↑F

idChar↑F

idChar↑F ∘ f↑F = f↑F

Float

h

idInt

h	∘ idInt

h↑F

idInt↑F

h↑F∘idInt↑F = h↑F	

C1 C2Char
F

F
F

F(idX) = idF(X)
map(idX) = idX↑F	

the mapping of an arrow’s identity is
the identity of the arrow’s mapping

F

F

F

F(String) = Option[String]
F(Char) = Option[Char]
F(Int) = Option[Int]

Int

Option[String] Option[Char]

Option[Int]

Option[Float]

Option[Char]

Option[Int]

val f: String => Char = x => x.head
val charId: Char => Char = x => x
val liftedCharId: Option[Char] => Option[Char] = x => x

F(f) = f↑F
F(h) = h↑F
F(idInt) = idInt↑F
F(idChar) = idChar↑F

Some("abc") map f map charId
// Option[Char] = Some(a)
liftedCharId(Some("abc") map f)
// Option[Char] = Some(a)

Some("abc") map f map charId
// Option[Char] = Some(a)
Some("abc") map (charId compose f)
// Option[Char] = Some(a)

liftedCharId(Some("abc") map f)
// Option[Char] = Some(a)
Some("abc") map (charId compose f)
// Option[Char] = Some(a)

trait Functor[F[_]] {
 def map[A,B](f: A => B):F[A] => F[B]
}

The scala Functor abstraction typically looks like this:

Examples of the functor laws in action are easier to follow if instead of using the customary signature of map, we rearrange
it by first swapping its two parameters and then uncurrying the second parameter:

trait Functor[F[_]] {
 def map[A,B](fa: F[A])(f: A => B):F[B]
}

trait Functor[F[_]] {
 def map[A,B](f: A => B)(fa: F[A]):F[B]
}

customary signature

after swapping parameters

after uncurrying the second parameter

swapping of fa and f parameters

uncurrying of fa parameter

Scala Functor abstraction – ‘map method implementation’ and ‘functor laws in action’ for Option

trait Functor[F[_]] {
 def map[A,B](fa: F[A])(f: A => B):F[B]
}

trait Functor[F[_]] {
 def map[A,B](f: A => B):F[A] => F[B]
}

val optionF = new Functor[Option]{
 def map[A,B](f: A => B):Option[A] => Option[B] = {
 case Some(a) => Some(f(a))
 case None => None
 }
}

val increment:Int=>Int = x => x + 1
val twice:Int=>Int = x => 2 * x
val arrow1 = increment
val arrow2 = twice

val arrowMapping:Option[Int]=>Option[Int] = optionF.map(arrow)
val identityMapping:Option[Int]=>Option[Int] = optionF.map(arrowOutputIdentity)
// mapping the identity of an arrow’s output type is the same as mapping
// the arrow and taking the identity of the result’s output type: they have
// the same effect when composed with the mapping of the arrow
assert((identityMapping compose arrowMapping)(Some(3)) == (arrowMappingOutputIdentity compose arrowMapping)(Some(3)))
// mapping an arrow and the identity of its output type and composing them is the same
// as mapping the composition of the arrow with the identity of its output type
assert((identityMapping compose arrowMapping)(Some(3)) == optionF.map(arrowOutputIdentity compose arrow)(Some(3)))
// mapping an arrow and composing it with the identity of the result’s output type is the same
// as mapping the composition of the arrow with the identity of its output type
assert((arrowMappingOutputIdentity compose arrowMapping)(Some(3)) == optionF.map(arrowOutputIdentity compose arrow)(Some(3)))

val increment:Int=>Int = x => x + 1
val arrow = increment
val arrowOutputIdentity:Int=>Int = x => x
val arrowMappingOutputIdentity:Option[Int]=>Option[Int]=x=>x

val mappingOfArrowComposition = optionF.map(arrow1 compose arrow2)
val compositionOfArrowMappings = optionF.map(arrow1) compose optionF.map(arrow2)
// mapping the composition of two arrows is the same as mapping the arrows and composing them
assert(mappingOfArrowComposition(Some(3)) == compositionOfArrowMappings(Some(3)))
assert(mappingOfArrowComposition(None) == compositionOfArrowMappings(None))

the mapping of the composition is
the composition of the mappings

the mapping of an object’s identity is
the identity of the object’s mapping

F(g	∘	f) = F(g)	∘	F(f)
map(g	∘	f) = map(g)	∘	map(f)

F(idX) = idF(X)
map(idX) = idX↑F	

Example of Functor abstraction and Functor laws in action, using the more
convenient map signature.

The signature is more convenient in that it allows us to compose the
mappings by literally performing their (function) composition.

val appliedArrowMapping = optionF.map(Some(3))(arrow)
// mapping the identity of an arrow’s output type is the same as mapping
// the arrow and taking the identity of the result’s output type: they have
// the same effect when composed with the mapping of the arrow
assert(optionF.map(appliedArrowMapping)(arrowOutputIdentity) == arrowMappingOutputIdentity(appliedArrowMapping))
// mapping an arrow and the identity of its output type and composing them is the same
// as mapping the composition of the arrow with the identity of its output type
assert(optionF.map(appliedArrowMapping)(arrowOutputIdentity) == optionF.map(Some(3))(arrowOutputIdentity compose arrow))
// mapping an arrow and composing it with the identity of the result’s output type is the same
// as mapping the composition of the arrow with the identity of its output type
assert(arrowMappingOutputIdentity(appliedArrowMapping) == optionF.map(Some(3))(arrowOutputIdentity compose arrow))

the mapping of an arrow’s identity is
the identity of the arrow’s mapping

F(idX) = idF(X)
map(idX) = idX↑F	

var mappingOfArrowComposition = optionF.map(Some(3))(arrow1 compose arrow2)
var compositionOfArrowMappings = optionF.map(optionF.map(Some(3))(arrow2))(arrow1)
// mapping the composition of two arrows is the same as mapping the arrows and composing them
assert(mappingOfArrowComposition == compositionOfArrowMappings)
mappingOfArrowComposition = optionF.map(None)(arrow1 compose arrow2)
compositionOfArrowMappings = optionF.map(optionF.map(None)(arrow2))(arrow1)
assert(mappingOfArrowComposition == compositionOfArrowMappings)

the mapping of the composition is
the composition of the mappings

F(g	∘	f) = F(g)	∘	F(f)
map(g	∘	f) = map(g)	∘	map(f)

trait Functor[F[_]] {
def map[A,B](fa: F[A])(f: A => B):F[B]

}

val optionF = new Functor[Option] {
def map[A,B](fa:Option[A])(f: A => B): Option[B] =

fa match {
case Some(a) => Some(f(a))
case None => None

}
}

val increment:Int=>Int = x => x + 1
val arrow = increment
val arrowOutputIdentity:Int=>Int = x => x
val arrowMappingOutputIdentity:Option[Int]=>Option[Int] = x=>x

Example of Functor abstraction and Functor laws in action, using the
customary map signature.

The signature is less convenient in that rather than allowing us to compose
the mappings by literally performing their (function) composition, it requires
us to do so by chaining map invocations and calling functions.

val increment:Int=>Int = x => x + 1
val twice:Int=>Int = x => 2 * x
val arrow1 = increment
val arrow2 = twice

by Paul Chiusano and
Runar Bjarnason

https://twitter.com/runarorama

https://twitter.com/pchiusano

11.1.1 Functor laws
Whenever we create an abstraction like Functor, we should consider not only what abstract methods it should have,
but which laws we expect to hold for the implementations. The laws you stipulate for an abstraction are entirely up to
you, and of course Scala won’t enforce any of these laws.
…
For Functor, we’ll stipulate the familiar law we first introduced in chapter 7 for our Par data type:

map(x)(a => a) == x

In other words, mapping over a structure x with the identity function should itself be an identity. This law is quite
natural, and we noticed later in part 2 that this law was satisfied by the map functions of other types besides Par. This
law (and its corollaries given by parametricity) capture the requirement that map(x) “preserves the structure” of
x. Implementations satisfying this law are restricted from doing strange things like throwing exceptions, removing
the first element of a List, converting a Some to None, and so on. Only the elements of the structure are
modified by map; the shape or structure itself is left intact. Note that this law holds for List, Option, Par, Gen,
and most other data types that define map!

The Functor Laws mean that a Functor’s map is structure preserving

“Only the elements of the structure are modified by map; the shape or structure itself is left intact.”

by Paul Chiusano and
Runar Bjarnason

https://twitter.com/runarorama

https://twitter.com/pchiusano

map(y)(id) == y

…To get some insight into what this new law is saying, let’s think about what map can’t do. It can’t, say, throw an
exception and crash the computation before applying the function to the result (can you see why this violates the law?). All
it can do is apply the function f to the result of y, which of course leaves y unaffected when that function is id.11

Even more interestingly, given map(y)(id) == y
…
it must be true that map(unit(x))(f) == unit(f(x)) . Since we get this second law or theorem for free, simply
because of the parametricity of map , it’s sometimes called a free theorem.12

EXERCISE 7.7
Hard: Given map(y)(id) == y, it’s a free theorem that map(map(y)(g))(f) == map(y)(f compose g). (This is
sometimes called map fusion, and it can be used as an optimization—rather than spawning a separate parallel
computation to compute the second mapping, we can fold it into the first mapping.)13 Can you prove it? You may want
to read the paper “Theorems for Free!” (http://mng.bz/Z9f1) to better understand the “trick” of free theorems.
…
11 We say that map is required to be structure-preserving in that it doesn’t alter the structure of the parallel
computation, only the value “inside” the computation.
12 The idea of free theorems was introduced by Philip Wadler in the classic paper “Theorems for Free!”
(http://mng.bz/Z9f1).

A Functor’s composition law is derivable from its identity law as a free theorem

