
Kleisli composition, flatMap, join, map, unit
a study/memory aid

to help learn/recall their implementation/interrelation
inspired by, and based on, the work of

Rob Norris
@tpolecat @BartoszMilewski

Bartosz Milewski Runar Bjarnason

@runarorama

Paul Chiusano

@pchiusano

VERSION 2 – UPDATED FOR SCALA 3

@philip_schwarzslides by http://fpilluminated.com/

Michael Pilquist
@mpilquist

http://fpilluminated.com/

This slide deck is meant both for (1) those who are familiar with the monadic functions that are Kleisli
composition, unit, map, join and flatMap, and want to reinforce their knowledge (2) and as a memory aid,
for those who sometimes need a reminder of how these functions are implemented and how they
interrelate.

I learned about this subject mainly from Functional Programming in Scala, from Bartosz Milewski’s
YouTube videos (and his book), and from Rob Norris’s YouTube video, Functional Programming with Effects.

@philip_schwarz

Functional Programming
In Scala

Rob Norris
@tpolecat@BartoszMilewski

Bartosz Milewski

Paul Chiusano

Runar Bjarnason

@pchiusano

@runarorama

If you need an intro to, or refresher on, the monadic functions that are
Kleisli composition, unit, map, join and flatMap, then see the following

https://www.slideshare.net/pjschwarz/compositionality-and-category-theory-a-montage-of-slidestranscript-for-sections-of-rnar-bjarnasons-keynote-composing-programs

https://www.slideshare.net/pjschwarz/fish-operator-anatomy
https://www.slideshare.net/pjschwarz/kleisli-monad-as-functor-with-pair-of-natural-transformations

https://www.slideshare.net/pjschwarz/kleisli-composition

https://www.slideshare.net/pjschwarz/rob-norrisfunctionalprogrammingwitheffects

See the final slide of this
deck for some of the
inspiration/ideas I got
from Rob Norris’s video.

Michael Pilquist

@mpilquist

https://www.slideshare.net/pjschwarz/compositionality-and-category-theory-a-montage-of-slidestranscript-for-sections-of-rnar-bjarnasons-keynote-composing-programs
https://www.slideshare.net/pjschwarz/fish-operator-anatomy
https://www.slideshare.net/pjschwarz/kleisli-monad-as-functor-with-pair-of-natural-transformations
https://www.slideshare.net/pjschwarz/natural-transformations
https://www.slideshare.net/pjschwarz/rob-norrisfunctionalprogrammingwitheffects

case class Insurance(name:String)
case class Car(insurance: Option[Insurance])
case class Person(car: Option[Car])

val car: Person => Option[Car] =
person => person.car

val insurance: Car => Option[Insurance] =
car => car.insurance

val toChars: String => List[Char] = _.toList
val toAscii: Char => List[Char] = _.toInt.toString.toList

assert(toChars("AB") == List('A','B'))
assert(toAscii('A') == List('6','5'))

val carInsurance: Person => Option[Insurance] =
car >=> insurance

val nonDriver= Person(car=None)
val uninsured = Person(Some(Car(insurance=None)))
val insured = Person(Some(Car(Some(Insurance("Acme")))))

assert(carInsurance(nonDriver).isEmpty)
assert(carInsurance(uninsured).isEmpty)
assert(carInsurance(insured).contains(Insurance("Acme")))

val toCharsAscii: String => List[Char] =
toChars >=> toAscii

assert(toCharsAscii("AB") == List('6','5','6','6'))

extension [A,B](f: A => Option[B])
def >=>[C](g: B => Option[C]): A => Option[C] =

a => f(a) match
case Some(b) => g(b)
case None => None

extension [A,B](f: A => List[B])
def >=>[C](g: B => List[C]): A => List[C] =

a => f(a).foldRight(List.empty[C]):
(b, cs) => g(b) ++ cs

A simple example of hand-coding Kleisli composition (i.e. >=>, the fish operator) for Option and List
Option List

We have implemented >=> by hand. Twice. Once for Option and once for List.

Now let’s make >=> generic and implement it in terms of the built-in flatMap
function of the Option and List Monads.

extension [A,B,F[_]: Monad](f: A => F[B])
def >=>[C](g: B => F[C]): A => F[C] =

a => f(a).flatMap(g)

trait Monad[F[_]]:
def unit[A](a: => A): F[A]
extension [A](fa: F[A])

def flatMap[B](f: A => F[B]): F[B]

given Monad[Option] with
def unit[A](a: => A): Option[A] = Some(a)
extension [A](fa: Option[A])

def flatMap[B](f: A => Option[B]): Option[B] = fa.flatMap(f)

given Monad[List] with
def unit[A](a: => A): List[A] = List(a)
extension [A](fa: List[A])

def flatMap[B](f: A => List[B]): List[B] = fa.flatMap(f)

Before After

>=> is hand-coded and specialised for Option and List >=> is generic and defined in terms of built-in flatMap

extension [A,B](f: A => Option[B])
def >=>[C](g: B => Option[C]): A => Option[C] =

a => f(a) match
case Some(b) => g(b)
case None => None

extension [A,B](f: A => List[B])
def >=>[C](g: B => List[C]): A => List[C] =

a => f(a).foldRight(List.empty[C]):
(b, cs) => g(b) ++ cs

I first saw the definition of >=> in a
YouTube video by Bartosz Milewski.

Bartosz Milewski’s definition of the fish operator
(Kleisli composition) in his lecture on monads.

Category Theory 10.1: Monads@BartoszMilewski

Kleisli Composition (fish operator) >=> compose
Bind >>= flatMap
lifts a to m a (lifts A to F[A]) return unit/pure

See the next
slide for more

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

class Monad m where
(>=>) :: (a -> m b) -> (b -> m c) -> (a -> m c)
return :: a -> m a

class Functor f where
fmap :: (a -> b) -> f a -> f b

class Functor m => Monad m where
join :: m(m a) -> ma
return :: a -> m a

>=> Kleisli Composition (aka the fish operator)
>>= Bind

f >=> g = λa -> let mb = f a in mb >>= g
= λa -> (f a) >>= g

Kleisli Composition (fish operator) >=> compose
Bind >>= flatMap
lifts a to m a (lifts A to F[A]) return unit/pure

Now let’s hand-code ourselves the flatMap
functions of the Option and List Monads.

given Monad[Option] with
def unit[A](a: => A): Option[A] = Some(a)
extension [A](fa: Option[A])

def flatMap[B](f: A => Option[B]): Option[B] = fa.flatMap(f)

given Monad[List] with
def unit[A](a: => A): List[A] = List(a)
extension [A](fa: List[A])

def flatMap[B](f: A => List[B]): List[B] = fa.flatMap(f)

given Monad[Option] with
def unit[A](a: => A): Option[A] = Some(a)
extension [A](fa: Option[A])

def flatMap[B](f: A => Option[B]): Option[B] =
fa match

case Some(a) => f(a)
case None => None

given Monad[List] with
def unit[A](a: => A): List[A] = List(a)
extension [A](fa: List[A])

def flatMap[B](f: A => List[B]): List[B] =
fa.foldRight(List.empty[B]):

(a,bs) => f(a) ++ bs

trait Monad[F[_]]: extension [A,B,F[_]: Monad](f: A => F[B])
def unit[A](a: => A): F[A] def >=>[C](g: B => F[C]): A => F[C] =
extension [A](fa: F[A]) a => f(a).flatMap(g)

def flatMap[B](f: A => F[B]): F[B]

Before After

>=> is generic and defined in terms of built-in flatMap >=> is generic and defined in terms of hand-coded flatMap

Earlier we implemented a generic >=> in terms of the built-in flatMap
function of the Option and List Monads.

Let’s do that again but this time implementing >=> in terms of the built-in
map and join functions of the Option and List Monads.

@philip_schwarz

in Scala, join is called flatten

The next slide is just a refresher on the fact that it is possible to define a
Monad in terms of unit, map and join, instead of in terms of unit and
flatMap, or in terms of unit and the fish operator. If it is the first time that
you go through this slide deck, you may want to skip the slide.

Bartosz Milewski introduces a third definition of Monad in terms of join and return, based on Functor

So this (join and return) is an alternative definition of a monad. But in this case I have to specifically say that m is a Functor, which is actually a nice thing, that I have to explicitly specify it.
…
But remember, in this case (join and return) you really have to assume that it is a functor. In this way, join is the most basic thing. Using just join and return is really more atomic than using
either bind or the Kleisli arrow, because they additionally susbsume functoriality, whereas here, functoriality is separate, separately it is a functor and separately we define join, and
separately we define return.
…
So this definition (join and return) or the definition with the Kleisli arrow, they are not used in Haskell, although they could have been. But Haskell people decided to use this (>>= and return)
as their basic definition and then for every monad they separately define join and the Kleisli arrow. So if you have a monad you can use join and the Kleisli arrow because they are defined in
the library for you. So it’s always enough to define just bind, and then fish and join will be automatically defined for you, you don’t have to do it.

#1

#2

#3

Category Theory 10.1: Monads @BartoszMilewski

https://twitter.com/BartoszMilewski

given Monad[Option] with
def unit[A](a: => A): Option[A] = Some(a)
extension [A](fa: Option[A])

def map[B](f: A => B): Option[B] = fa.map(f)
extension [A](ffa: Option[Option[A]])

def join: Option[A] = ffa.flatten

given Monad[List] with
def unit[A](a: => A): List[A] = List(a)
extension [A](fa: List[A])

def map[B](f: A => B): List[B] = fa.map(f)
extension [A](ffa: List[List[A]])

def join: List[A] = ffa.flatten

Before After

>=> is generic and defined in terms of built-in flatMap >=> is generic and defined in terms of built-in map and join

given Monad[Option] with
def unit[A](a: => A): Option[A] = Some(a)
extension [A](fa: Option[A])

def flatMap[B](f: A => Option[B]): Option[B] = fa.flatMap(f)

given Monad[List] with
def unit[A](a: => A): List[A] = List(a)
extension [A](fa: List[A])

def flatMap[B](f: A => List[B]): List[B] = fa.flatMap(f)

trait Functor[F[_]]:
extension [A](fa: F[A])

def map[B](f: A => B): F[B]

trait Monad[F[_]] extends Functor[F]:
def unit[A](a: => A): F[A]
extension [A](ffa: F[F[A]])

def join: F[A]

extension [A,B,F[_]: Monad](f: A => F[B])
def >=>[C](g: B => F[C]): A => F[C] =

a => f(a).map(g).join

trait Monad[F[_]]:
def unit[A](a: => A): F[A]
extension [A](fa: F[A])

def flatMap[B](f: A => F[B]): F[B]

extension [A,B,F[_]: Monad](f: A => F[B])
def >=>[C](g: B => F[C]): A => F[C] =

a => f(a).flatMap(g)

Now let’s hand-code ourselves the map and
join functions of the Option and List Monads.

given Monad[Option] with
def unit[A](a: => A): Option[A] = Some(a)
extension [A](fa: Option[A])

def map[B](f: A => B): Option[B] = fa.map(f)
extension [A](ffa: Option[Option[A]])

def join: Option[A] = ffa.flatten

given Monad[List] with
def unit[A](a: => A): List[A] = List(a)
extension [A](fa: List[A])

def map[B](f: A => B): List[B] = fa.map(f)
extension [A](ffa: List[List[A]])

def join: List[A] = ffa.flatten

given Monad[Option] with
def unit[A](a: => A): Option[A] = Some(a)
extension [A](fa: Option[A])

def map[B](f: A => B): Option[B] = fa match
case Some(a) => Some(f(a))
case None => None

extension [A](ffa: Option[Option[A]])
def join: Option[A] = ffa match

case Some(a) => a
case None => None

given Monad[List] with
def unit[A](a: => A): List[A] = List(a)
extension [A](fa: List[A])

def map[B](f: A => B): List[B] =
fa.foldRight(List.empty[B])((a,bs) => f(a)::bs)

extension [A](ffa: List[List[A]])
def join: List[A] =

ffa.foldRight(List.empty[A])((a,as) => a ++ as)

trait Functor[F[_]]:
extension [A](fa: F[A])

def map[B](f: A => B): F[B]

trait Monad[F[_]] extends Functor[F]:
def unit[A](a: => A): F[A]
extension [A](ffa: F[F[A]])

def join: F[A]

extension [A,B,F[_]: Monad](f: A => F[B])
def >=>[C](g: B => F[C]): A => F[C] =

a => f(a).map(g).join

Before After

>=> is generic and defined in terms of built-in map and join >=> is generic and defined in terms of hand-coded map and join

I would like to thank Rob Norris for his great talk (see next slide), from
which I learned a lot about Kleisli composition and in which I first saw
the use of a syntax class to add the fish operator to a type class.

scale.bythebay.io
Rob Norris

Functional Programming with Effects

Rob Norris @tpolecat

the fish operator (Kleisli composition),
can be implemented using flatMap.

And this Fishy typeclass that we have derived from nothing,
using math, is Monad. So this scary thing, it just comes
naturally and I haven’t seen people talk about getting to it
from this direction. And so I hope that was helpful.

We can implement compose, the fish operator using
flatMap, so the fish operator is something we can
derive later really, the operation we need is flatMap.

We can define a syntax class
that adds these methods so that
anything that is an F[A], if there
is a Fishy instance, gets these
operations by syntax.

