
The aggregate function
from sequential and parallel folds to parallel aggregation

Java and Scala
based on

Aleksandar Prokopec
@alexprokopechttps://www.herbschildt.com/

Herb Schildt

@philip_schwarzslides by https://www.slideshare.net/pjschwarz

https://www.slideshare.net/pjschwarz/natural-transformations

Reduction Operations

Consider the min() and max() methods in the preceding example program. Both are terminal operations that return a
result based on the elements in the stream.

In the language of the stream API, they represent reduction operations because each reduces a stream to a single value—
in this case, the minimum and maximum.

The stream API refers to these as special case reductions because they perform a specific function.

In addition to min() and max(), other special case reductions are also available, such as count(), which counts the number
of elements in a stream.

However, the stream API generalizes this concept by providing the reduce() method. By using reduce(), you can return a
value from a stream based on any arbitrary criteria.

By definition, all reduction operations are terminal operations.

Stream defines three versions of reduce(). The two we will use first are shown here:

Optional<T> reduce(BinaryOperator<T> accumulator)

T reduce(T identityVal, BinaryOperator<T> accumulator)

The first form returns an object of type Optional, which contains the result. The second form returns an object of
type T (which is the element type of the stream).

In both forms, accumulator is a function that operates on two values and produces a result. In the second
form, identityVal is a value such that an accumulator operation involving identityVal and any element of the stream yields
that element, unchanged.

Herb Schildt

For example, if the operation is addition, then the identity value will be 0 because 0 + x is x.

For multiplication, the identity value will be 1, because 1 * x is x.

BinaryOperator is a functional interface declared in java.util.function that extends the BiFunction functional interface.

BiFunction defines this abstract method:

R apply(T val, U val2)

Here, R specifies the result type, T is the type of the first operand, and U is the type of second operand.

Thus, apply() applies a function to its two operands (val and val2) and returns the result.

When BinaryOperator extends BiFunction, it specifies the same type for all the type parameters.

Thus, as it relates to BinaryOperator, apply() looks like this:

T apply(T val, T val2)

Furthermore, as it relates to reduce(), val will contain the previous result and val2 will contain the next element.

In its first invocation, val will contain either the identity value or the first element, depending on which version
of reduce() is used. Herb Schildt

It is important to understand that the accumulator operation must satisfy three constraints.

It must be

• Stateless
• Non-interfering
• Associative

As explained earlier, stateless means that the operation does not rely on any state information. Thus, each element is
processed independently.

Non-interfering means that the data source is not modified by the operation.

Finally, the operation must be associative.

Here, the term associative is used in its normal, arithmetic sense, which means that, given an associative operator used in
a sequence of operations, it does not matter which pair of operands are processed first.

For example,

(10 * 2) * 7

yields the same result as

10 * (2 * 7)

Associativity is of particular importance to the use of reduction operations on parallel streams, discussed in the next
section.

Herb Schildt

The following program demonstrates the versions of reduce() just described:

import java.util.*;
import java.util.stream.*;

public class StreamDemo2 {

public static void main(String[] args) {

// Create a list of integer values
ArrayList<Integer> myList = new ArrayList<>();

myList.add(7);
myList.add(18);
myList.add(10);
myList.add(24);
myList.add(17);
myList.add(5);

// Two ways to obtain the integer product of the elements in myList by use of reduce().
Optional<Integer> productObj = myList.stream().reduce((a,b) -> a*b);
if (productObj.isPresent())
System.out.println("Product as Optional: " + productObj.get());

int product = myList.stream().reduce(1, (a,b) -> a*b);
System.out.println("Product as int: " + product);

}
}

As the output here shows, both uses of reduce() produce the same result:

Product as Optional: 2570400
Product as int: 2570400

Herb Schildt

In the program, the first version of reduce() uses the lambda expression to produce a product of two values.

In this case, because the stream contains Integer values, the Integer objects are automatically unboxed for the
multiplication and reboxed to return the result.

The two values represent the current value of the running result and the next element in the stream. The final result is
returned in an object of type Optional.

The value is obtained by calling get() on the returned object.

In the second version, the identity value is explicitly specified, which for multiplication is 1. Notice that the result is
returned as an object of the element type, which is Integer in this case.

Although simple reduction operations such as multiplication are useful for examples, reductions are not limited in this
regard.

For example, assuming the preceding program, the following obtains the product of only the even values:

int evenProduct = myList.stream().reduce(1, (a,b) -> {
if (b%2 == 0) return a*b; else return a;

});

Pay special attention to the lambda expression. If b is even, then a * b is returned. Otherwise, a is returned. This works
because a holds the current result and b holds the next element, as explained earlier.

Optional<Integer> productObj = myList.stream().reduce((a,b) -> a*b);

int product = myList.stream().reduce(1, (a,b) -> a*b);

Herb Schildt

Optional<T> reduce(BinaryOperator<T> accumulator)

interface BinaryOperator<T> extends BiFunction<T, T, T>

interface BiFunction<T, U, R>

def reduceOption[B >: A](op: (B, B) => B): Option[B]

In Scala, this version of the reduce function is called reduceOption.

def reduceOption[B >: A](op: (B, B) => B): Option[B]

Reduces the elements of this collection, if any, using the specified associative binary operator.

The order in which operations are performed on elements is unspecified and may be
nondeterministic.

Type parameters: B A type parameter for the binary operator, a supertype of A.

Value parameters: op A binary operator that must be associative.

Returns: An option value containing result of applying reduce operator op
between all the elements if the collection is nonempty, and None
otherwise.

Source: IterableOnce.scala

Optional<T> reduce(BinaryOperator<T> accumulator)

Performs a reduction on the elements of this stream, using an associative accumulation
function, and returns an Optional describing the reduced value, if any. This is equivalent to:

boolean foundAny = false;
T result = null;
for (T element : this stream){
if (!foundAny) {
foundAny = true;
result = element;

} else result = accumulator.apply(result, element);
}
return foundAny ? Optional.of(result) : Optional.empty();

but is not constrained to execute sequentially. The accumulator function must be
an associative function.

This is a terminal operation.

Parameters:
accumulator - an associative, non-interfering, stateless function for combining two values

Returns:
an Optional describing the result of the reduction

Throws:
NullPointerException - if the result of the reduction is null

See Also:
reduce(Object, BinaryOperator)
min(Comparator)
max(Comparator)

Module java.base
Package java.util.stream

interface Stream<T>

Type Parameters: T - the type of the stream elements

Scala 3/scala.collection/IterableOnceOps

trait IterableOnceOps[+A, +CC[_], +C]

This implementation trait can be mixed into an IterableOnce to get the
basic methods that are shared between Iterator and Iterable.

def reduceOption[B >: A](op: (B, B) => B): Option[B] =
reduceLeftOption(op)

def reduceLeftOption[B >: A](op: (B, A) => B): Option[B] =
if (isEmpty) None else Some(reduceLeft(op))

def reduceLeft[B >: A](op: (B, A) => B): B =

Applies a binary operator to all elements of this collection, going left to right.

Note: will not terminate for infinite-sized collections. Note: might return
different results for different runs, unless the underlying collection type
is ordered or the operator is associative and commutative.

Params:
op the binary operator.

Type parameters:
B the result type of the binary operator.

Returns:
the result of inserting op between consecutive elements of this collection,
going left to right:

op(op(... op(x1, x2,,) ..., xn-1), xn)

where x1, ..., xn are the elements of this collection.

Throws: UnsupportedOperationException – if this collection is empty.
Source: IterableOnce.scala

def reduce[B >: A](op: (B, B) => B): B = reduceLeft(op)

Reduces the elements of this collection using the specified associative binary
operator.

The order in which operations are performed on elements is unspecified and
may be nondeterministic.

Params:

B A type parameter for the binary operator, a supertype of A.
op A binary operator that must be associative.

Returns:
The result of applying reduce operator op between all the elements if the
collection is nonempty.

Throws: UnsupportedOperationException – if this collection is empty.
Source: IterableOnce.scala

T reduce(T identityVal, BinaryOperator<T> accumulator)

interface BinaryOperator<T> extends BiFunction<T, T, T>

interface BiFunction<T, U, R>

def fold[A1 >: A](z: A1)(op: (A1, A1) => A1): A1

In Scala, this version of the reduce function is called fold.

T reduce(T identity, BinaryOperator<T> accumulator)

Performs a reduction on the elements of this stream, using the provided identity value and an
associative accumulation function, and returns the reduced value. This is equivalent to:

T result = identity;
for (T element : this stream)

result = accumulator.apply(result, element)
return result;

but is not constrained to execute sequentially.

The identity value must be an identity for the accumulator function. This means that for all t,
accumulator.apply(identity, t) is equal to t. The accumulator function must be an associative function.
This is a terminal operation.

Params:
identity – the identity value for the accumulating function
accumulator – an associative, non-interfering, stateless function for combining two values

Returns:
the result of the reduction

API Note:
Sum, min, max, average, and string concatenation are all special cases of reduction. Summing a stream
of numbers can be expressed as:

Integer sum = integers.reduce(0, (a, b) -> a+b);

or:

Integer sum = integers.reduce(0, Integer::sum);

While this may seem a more roundabout way to perform an aggregation compared to simply
mutating a running total in a loop, reduction operations parallelize more gracefully,
without needing additional synchronization and with greatly reduced risk of data races.

def fold[A1 >: A](z: A1)(op: (A1, A1) => A1): A1

Folds the elements of this collection using the specified associative binary operator. The default
implementation in IterableOnce is equivalent to foldLeft but may be overridden for more
efficient traversal orders.

The order in which operations are performed on elements is unspecified and may be
nondeterministic. Note: will not terminate for infinite-sized collections.

Type parameters: A1 a type parameter for the binary operator, a supertype of A.

Value parameters: op a binary operator that must be associative.

z a neutral element for the fold operation; may be added to the
result an arbitrary number of times, and must not change the result
(e.g., Nil for list concatenation, 0 for addition, or 1 for multiplication).

Returns: the result of applying the fold operator op between all the elements and z, or z if this
collection is empty.

Source: IterableOnce.scala

Module java.base
Package java.util.stream

interface Stream<T>

Type Parameters: T - the type of the stream elements

Scala 3/scala.collection/IterableOnceOps

trait IterableOnceOps[+A, +CC[_], +C]

This implementation trait can be mixed into an IterableOnce to get the
basic methods that are shared between Iterator and Iterable.

def fold[A1 >: A](z: A1)(op: (A1, A1) => A1): A1 = foldLeft(z)(op)

def foldLeft[B](z: B)(op: (B, A) => B): B

Applies a binary operator to a start value and all elements of this collection, going left to right.

Note: will not terminate for infinite-sized collections.

Note: might return different results for different runs, unless the underlying collection type is
ordered or the operator is associative and commutative.

Params:
z – the start value.
op – the binary operator.

Type parameters:
B – the result type of the binary operator.

Returns:
the result of inserting op between consecutive elements of this collection, going left to right
with the start value z on the left:

op(...op(z, x1,), x2, ..., xn,)

where x1, ..., xn, are the elements of this collection. Returns z if this collection is empty.

By the way, speaking of the above fold function, the z (neutral element – unit - zero) and associative
binary operator op form a monoid, so libraries like Cats define an alternative fold function (with alias
combineAll, to avoid clashes with the above fold function) that operates on monoids.

def fold[A](fa: F[A])(implicit A: Monoid[A]): A =
foldLeft(fa, A.empty) { (acc, a) => A.combine(acc, a) }

def fold[A1 >: A](z: A1)(op: (A1, A1) => A1): A1

trait Monoid[A] {
def combine(x: A, y: A): A
def empty: A

}
def combineAll[A: Monoid](fa: F[A]): A =

fold(fa)

import cats.Monoid
import cats.Foldable
import cats.instances.int._
import cats.instances.string._
import cats.instances.option._
import cats.instances.list._
import cats.syntax.foldable._

assert(List(1,2,3).combineAll == 6)
assert(List("a","b","c").combineAll == "abc")
assert(List(List(1,2),List(3,4),List(5,6)).combineAll == List(1,2,3,4,5,6))
assert(List(Some(2), None, Some(3), None, Some(4)).combineAll == Some(9))

@philip_schwarz

If you want to know more about monoids, here are some related decks.

Using Parallel Streams

Before exploring any more of the stream API, it will be helpful to discuss parallel streams.

As has been pointed out previously in this book, the parallel execution of code via multicore processors can result in a
substantial increase in performance.

Because of this, parallel programming has become an important part of the modern programmer’s job. However, parallel
programming can be complex and error-prone.

One of the benefits that the stream library offers is the ability to easily—and reliably—parallel process certain operations.

Parallel processing of a stream is quite simple to request: just use a parallel stream. As mentioned earlier, one way to
obtain a parallel stream is to use the parallelStream() method defined by Collection.

Another way to obtain a parallel stream is to call the parallel() method on a sequential stream. The parallel() method is
defined by BaseStream, as shown here:

S parallel()

It returns a parallel stream based on the sequential stream that invokes it. (If it is called on a stream that is already
parallel, then the invoking stream is returned.) Understand, of course, that even with a parallel stream, parallelism will be
achieved only if the environment supports it.

Once a parallel stream has been obtained, operations on the stream can occur in parallel, assuming that parallelism is
supported by the environment. Herb Schildt

Caveats with parallel collections

Parallel collections were designed to provide a programming API similar to sequential Scala collections. Every sequential
collection has a parallel counterpart and most operations have the same signature in both sequential and parallel
collections. Still, there are some caveats when using parallel collections, and we will study them in this section.

Non-parallelizable collections

Parallel collections use splitters, represented with the Splitter[T] type, in order to provide parallel operations. A splitter is
a more advanced form of an iterator; in addition to the iterator's next and hasNext methods, splitters define
the split method, which divides the splitter S into a sequence of splitters that traverse parts of the S splitter:

def split: Seq[Splitter[T]]

This method allows separate processors to traverse separate parts of the input collection. The split method must be
implemented efficiently, as this method is invoked many times during the execution of a parallel operation. In the
vocabulary of computational complexity theory, the allowed asymptotic running time of the split method is O(log (N)),
where N is the number of elements in the splitter. Splitters can be implemented for flat data structures such as arrays and
hash tables, and tree-like data structures such as immutable hash maps and vectors. Linear data structures such as the
Scala List and Stream collections cannot efficiently implement the split method. Dividing a long linked list of nodes into
two parts requires traversing these nodes, which takes a time that is proportionate to the size of the collection. Aleksandar Prokopec

@alexprokopec

Operations on Scala collections such as Array, ArrayBuffer, mutable HashMap and HashSet, Range, Vector,
immutable HashMap and HashSet, and concurrent TrieMap can be parallelized. We call these collections parallelizable.

Calling the par method on these collections creates a parallel collection that shares the same underlying dataset as the
original collection. No elements are copied and the conversion is fast.

Other Scala collections need to be converted to their parallel counterparts upon calling par. We can refer to them as non-
parallelizable collections. Calling the par method on non-parallelizable collections entails copying their elements into a
new collection. For example, the List collection needs to be copied to a Vector collection when the par method is called, as
shown in the following code snippet:

object ParNonParallelizableCollections extends App {
val list = List.fill(1000000)("")
val vector = Vector.fill(1000000)("")
log(s"list conversion time: ${timed(list.par)} ms")
log(s"vector conversion time: ${timed(vector.par)} ms")

}

Calling par on List takes 55 milliseconds on our machine, whereas calling par on Vector takes 0.025 milliseconds.
Importantly, the conversion from a sequential collection to a parallel one is not itself parallelized, and is a possible
sequential bottleneck.

TIP

Sometimes, the cost of converting a non-parallelizable collection to a parallel one is acceptable. If the amount of work in
the parallel operation far exceeds the cost of converting the collection, then we can bite the bullet and pay the cost of the
conversion. Otherwise, it is more prudent to keep the program data in parallelizable collections and benefit from fast
conversions. When in doubt, measure!

Aleksandar Prokopec
@alexprokopec

Converting a non-parallelizable sequential collection to a parallel collection
is not a parallel operation; it executes on the caller thread.

For example, the first reduce() operation in the preceding program can be parallelized by substituting parallelStream() for
the call to stream():

Optional<Integer> productObj = myList.parallelStream().reduce((a,b) -> a*b);

The results will be the same, but the multiplications can occur in different threads.

As a general rule, any operation applied to a parallel stream must be stateless. It should also be non-interfering and
associative.

This ensures that the results obtained by executing operations on a parallel stream are the same as those obtained from
executing the same operations on a sequential stream.

When using parallel streams, you might find the following version of reduce() especially helpful. It gives you a way to
specify how partial results are combined:

<U> U reduce(U identityVal,
BiFunction<U, ? super T, U> accumulator,
BinaryOperator<U> combiner)

In this version, combiner defines the function that combines two values that have been produced by
the accumulator function.

Assuming the preceding program, the following statement computes the product of the elements in myList by use of a
parallel stream:

int parallelProduct = myList.parallelStream().reduce(1,
(a,b) -> a*b,
(a,b) -> a*b);

Herb Schildt

As you can see, in this example, both the accumulator and combiner perform the same function. However, there are cases
in which the actions of the accumulator must differ from those of the combiner.

For example, consider the following program. Here, myList contains a list of double values. It then uses the combiner
version of reduce() to compute the product of the square roots of each element in the list.

import java.util.*;
import java.util.stream.*;

public class StreamDemo3 {

public static void main(String[] args) {

// This is now a list of double values
ArrayList<Double> myList = new ArrayList<>();

myList.add(7.0);
myList.add(18.0);
myList.add(10.0);
myList.add(24.0);
myList.add(17.0);
myList.add(5.0);

double productOfSqrRoots = myList.parallelStream().reduce(1.0,
(a,b) -> a * Math.sqrt(b),
(a,b) -> a*b);

System.out.println("Product of square roots: " + productOfSqrRoots);
}

}

Herb Schildt

Notice that the accumulator function multiplies the square roots of two elements, but the combiner multiplies the partial
results.

Thus, the two functions differ. Moreover, for this computation to work correctly, they must differ. For example, if you tried
to obtain the product of the square roots of the elements by using the following statement, an error would result:

// this won’t work
double productOfSqrRoots2 = myList.parallelStream().reduce(1.0,

(a,b) -> a * Math.sqrt(b));

In this version of reduce(), the accumulator and the combiner function are one and the same.

This results in an error because when two partial results are combined, their square roots are multiplied together rather
than the partial results, themselves.

As a point of interest, if the stream in the preceding call to reduce() had been changed to a sequential stream, then the
operation would yield the correct answer because there would have been no need to combine two partial results. The
problem occurs when a parallel stream is used.

You can switch a parallel stream to sequential by calling the sequential() method, which is specified by BaseStream. It is
shown here:

S sequential()

In general, a stream can be switched between parallel and sequential on an as-needed basis. Herb Schildt

There is one other aspect of a stream to keep in mind when using parallel execution: the order of the elements. Streams can
be either ordered or unordered. In general, if the data source is ordered, then the stream will also be ordered.

However, when using a parallel stream, a performance boost can sometimes be obtained by allowing a stream to be
unordered.

When a parallel stream is unordered, each partition of the stream can be operated on independently, without having to
coordinate with the others. In cases in which the order of the operations does not matter, it is possible to specify unordered
behavior by calling the unordered() method, shown here:

S unordered()

One other point: the forEach() method may not preserve the ordering of a parallel stream. If you want to perform an
operation on each element in a parallel stream while preserving the order, consider using forEachOrdered(). It is used just
like forEach().

Herb Schildt

<U> U reduce(U identityVal,
BiFunction<U, ? super T, U> accumulator,
BinaryOperator<U> combiner)

interface BinaryOperator<T> extends BiFunction<T, T, T>

interface BiFunction<T, U, R>

def aggregate[S](z: => S)
(seqop: (S, T) => S,
combop: (S, S) => S): S

In Scala, this version of the reduce function is called aggregate.

def aggregate[B](z: => B)(seqop: (B, A) => B, combop: (B, B) => B): B

Deprecated - aggregate is not relevant for sequential collections. Use `foldLeft(z)(seqop)` instead.

Source: IterableOnce.scala

<U> U reduce(U identity,
BiFunction<U,? super T,U> accumulator,
BinaryOperator<U> combiner)

Performs a reduction on the elements of this stream, using the provided identity,
accumulation and combining functions. This is equivalent to:

U result = identity;
for (T element : this stream)

result = accumulator.apply(result, element)
return result;

but is not constrained to execute sequentially.

The identity value must be an identity for the combiner function. This means that for
all u, combiner(identity, u) is equal to u. Additionally, the combiner function must be
compatible with the accumulator function; for all u and t, the following must hold:

combiner.apply(u, accumulator.apply(identity, t)) == accumulator.apply(u, t)

This is a terminal operation.

API Note: Many reductions using this form can be represented more simply by an explicit
combination of map and reduce operations. The accumulator function acts as a fused mapper
and accumulator, which can sometimes be more efficient than separate mapping and
reduction, such as when knowing the previously reduced value allows you to avoid some
computation.

Type Parameters:
U - The type of the result

Parameters:
Identity the identity value for the combiner function
accumulator an associative, non-interfering, stateless function for incorporating an

additional element into a result
combiner an associative, non-interfering, stateless function for combining two values,

which must be compatible with the accumulator function

Returns:
the result of the reduction

Module java.base - Package java.util.stream
interface Stream<T>
Type Parameters: T the type of the stream elements

def aggregate[S](z: => S)(seqop: (S, T) => S, combop: (S, S) => S): S

Aggregates the results of applying an operator to subsequent elements.

This is a more general form of fold and reduce. It has similar semantics, but does not require the
result to be a supertype of the element type. It traverses the elements in different partitions
sequentially, using seqop to update the result, and then applies combop to results from different
partitions. The implementation of this operation may operate on an arbitrary number of collection
partitions, so combop may be invoked arbitrary number of times.

For example, one might want to process some elements and then produce a Set. In this case, seqop
would process an element and append it to the set, while combop would concatenate two sets from
different partitions together. The initial value z would be an empty set.

pc.aggregate(Set[Int]())(_ += process(_), _ ++ _)

Another example is calculating geometric mean from a collection of doubles (one would typically
require big doubles for this).

Type parameters: S the type of accumulated results

Value parameters: z the initial value for the accumulated result of the partition - this will
typically be the neutral element for the seqop operator (e.g. Nil for list
concatenation or 0 for summation) and may be evaluated more than
once

seqop an operator used to accumulate results within a partition
combop an associative operator used to combine results from

different partitions

Source: ParIterableLike.scala

https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/stream/package-summary.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/stream/package-summary.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/stream/package-summary.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/stream/package-summary.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/stream/package-summary.html
https://docs.oracle.com/en/java/javase/19/docs/api/java.base/java/util/stream/package-summary.html

Non-parallelizable operations

While most parallel collection operations achieve superior performance by executing on several processors, some
operations are inherently sequential, and their semantics do not allow them to execute in parallel. Consider
the foldLeft method from the Scala collections API:

def foldLeft[S](z: S)(f: (S, T) => S): S

This method visits elements of the collection going from left to right and adds them to the accumulator of type S. The
accumulator is initially equal to the zero value z, and is updated with the function f that uses the accumulator and a
collection element of type T to produce a new accumulator. For example, given a list of integers List(1, 2, 3), we can
compute the sum of its integers with the following expression:

List(1, 2, 3).foldLeft(0)((acc, x) => acc + x)

This foldLeft method starts by assigning 0 to acc. It then takes the first element in the list 1 and calls the function f to
evaluate 0 + 1. The acc accumulator then becomes 1. This process continues until the entire list of elements is visited, and
the foldLeft method eventually returns the result 6. In this example, the S type of the accumulator is set to the Int type. In
general, the accumulator can have any type. When converting a list of elements to a string, the zero value is an empty string
and the function f concatenates a string and a number.

The crucial property of the foldLeft operation is that it traverses the elements of the list by going from left to right. This is
reflected in the type of the function f; it accepts an accumulator of type S and a list value of type T. The function f cannot
take two values of the accumulator type S and merge them into a new accumulator of type S. As a consequence,
computing the accumulator cannot be implemented in parallel; the foldLeft method cannot merge two accumulators from
two different processors.

Aleksandar Prokopec
@alexprokopec

We can confirm this by running the following program:

object ParNonParallelizableOperations extends App {
import scala.collection._
import scala.concurrent.ExecutionContext.Implicits.global
import ParHtmlSpecSearch.getHtmlSpec

getHtmlSpec() foreach { case specDoc =>
def allMatches(d: GenSeq[String]) = warmedTimed() {
val results =
d.foldLeft("")((acc, line) => // Note: must use "aggregate" instead of "foldLeft"!
if (line.matches(".*TEXTAREA.*")) s"$acc\n$line" else acc)

}

val seqtime = allMatches(specDoc)
log(s"Sequential time - $seqtime ms")

val partime = allMatches(specDoc.par)
log(s"Parallel time - $partime ms")

}
}

In the preceding program, we use the getHtmlSpec method introduced earlier to obtain the lines of the HTML specification.

We install a callback using the foreach call to process the HTML specification once it arrives; the allMatches method calls
the foldLeft operation to accumulate the lines of the specification that contain the TEXTAREA string.

Running the program reveals that both the sequential and parallel foldLeft operations take 5.6 milliseconds.

Although the key code on this slide is just the bit highlighted in yellow, to help you
understand the rest of the code (if you are interested), the next slide covers functions
getHtmlSpec() and warmedTimed(), which were introduced elsewhere in the book.

Aleksandar Prokopec
@alexprokopec

Symbol GenSeq is deprecated. Gen* collection types have been removed – 2.13.0

object ParHtmlSpecSearch extends App {

import scala.concurrent._
import ExecutionContext.Implicits.global
import scala.collection._
import scala.io.Source

def getHtmlSpec() = Future {
val specSrc: Source = Source.fromURL(

"http://www.w3.org/MarkUp/html-spec/html-spec.txt")
try specSrc.getLines.toArray finally specSrc.close()

}

getHtmlSpec() foreach { case specDoc =>
log(s"Download complete!")

def search(d: GenSeq[String]) = warmedTimed() {
d.indexWhere(line => line.matches(".*TEXTAREA.*"))

}

val seqtime = search(specDoc)
log(s"Sequential time $seqtime ms")

val partime = search(specDoc.par)
log(s"Parallel time $partime ms")

}

}

def warmedTimed[T](n: Int = 200)(body: =>T): Double = {
for (_ <- 0 until n) body
timed(body)

}

@volatile var dummy: Any = _
def timed[T](body: =>T): Double = {

val start = System.nanoTime
dummy = body
val end = System.nanoTime
((end - start) / 1000) / 1000.0

}

Symbol GenSeq is deprecated. Gen* collection types have been removed – 2.13.0

...programs running on the JVM are usually slow immediately after they start,
and eventually reach their optimal performance. Once this happens, we say that
the JVM reached its steady state. When evaluating the performance on the JVM,
we are usually interested in the steady state; most programs run long enough to
achieve it.

To witness this effect, assume that you want to find out what the TEXTAREA tag
means in HTML. You write the program that downloads the HTML specification
and searches for the first occurrence of the TEXTAREA string.

…implement the getHtmlSpec method, which starts an asynchronous
computation to download the HTML specification and returns a future value with
the lines of the HTML specification. You then install a callback; once the HTML
specification is available, you can call the indexWhere method on the lines to find
the line that matches the regular expression .*TEXTAREA.*

This method runs the block of code n times before measuring its
running time. We set the default value for the n variable to 200;
although there is no way to be sure that the JVM will reach a
steady state after executing the block of code 200 times, this is a
reasonable default.

To specify how the accumulators produced by different processors should be merged together, we need to use
the aggregate method.

The aggregate method is similar to the foldLeft operation, but it does not specify that the elements are traversed from left
to right. Instead, it only specifies that subsets of elements are visited going from left to right; each of these subsets can
produce a separate accumulator. The aggregate method takes an additional function of type (S, S) => S, which is used to
merge multiple accumulators.

d.aggregate("")
((acc, line) => if (line.matches(".*TEXTAREA.*")) s"$acc\n$line" else acc,
(acc1, acc2) => acc1 + acc2)

Running the example again shows the difference between the sequential and parallel versions of the program; the
parallel aggregate method takes 1.4 milliseconds to complete on our machine.

When doing these kinds of reduction operation in parallel, we can alternatively use the reduce or fold methods, which do
not guarantee going from left to right. The aggregate method is more expressive, as it allows the accumulator type to be
different from the type of the elements in the collection.

TIP

Other inherently sequential operations include foldRight, reduceLeft, reduceRight, reduceLeftOption, reduceRightOption,
scanLeft, scanRight, and methods that produce non-parallelizable collections such as the toList method.

def aggregate[S](z: => S)(seqop: (S, T) => S, combop: (S, S) => S): S

Use the aggregate method to execute parallel reduction operations.

Aleksandar Prokopec
@alexprokopec

Commutative and associative operators

Parallel collection operations such as reduce, fold, aggregate, and scan take binary operators as part of their input. A binary
operator is a function op that takes two arguments, a and b. We can say that the binary operator op is commutative if
changing the order of its arguments returns the same result, that is, op(a, b) == op(b, a). For example, adding two numbers
together is a commutative operation. Concatenating two strings is not a commutative operation; we get different strings
depending on the concatenation order.

Binary operators for the parallel reduce, fold, aggregate, and scan operations never need to be commutative. Parallel
collection operations always respect the relative order of the elements when applying binary operators, provided that the
underlying collections have any ordering. Elements in sequence collections, such as ArrayBuffer collections, are always
ordered. Other collection types can order their elements but are not required to do so.

In the following example, we can concatenate the strings inside an ArrayBuffer collection into one long string by using the
sequential reduceLeft operation and the parallel reduce operation. We then convert the ArrayBuffer collection into a set,
which does not have an ordering:

object ParNonCommutativeOperator extends App {
import scala.collection._

val doc = mutable.ArrayBuffer.tabulate(20)(i => s"Page $i, ")
def test(doc: GenIterable[String]) {
val seqtext = doc.seq.reduceLeft(_ + _)
val partext = doc.par.reduce(_ + _)
log(s"Sequential result - $seqtext\n")
log(s"Parallel result - $partext\n")

}
test(doc)
test(doc.toSet)

}

Gen* collection types have been removed – 2.13.0

Aleksandar Prokopec
@alexprokopec

We can see that the string is concatenated correctly when the parallel reduce operation is invoked on a parallel array, but
the order of the pages is mangled both for the reduceLeft and reduce operations when invoked on a set; the default Scala
set implementation does not order the elements.

NOTE

An op binary operator is associative if applying op consecutively to a sequence of values a, b, and c gives the same result
regardless of the order in which the operator is applied, that is, op(a, op(b, c)) == op(op(a, b), c). Adding two numbers
together or computing the larger of the two numbers is an associative operation. Subtraction is not associative, as 1 - (2 -
3) is different from (1 - 2) - 3.

Parallel collection operations usually require associative binary operators. While using subtraction with
the reduceLeft operation means that all the numbers in the collection should be subtracted from the first number, using
subtraction in the reduce, fold, or scan methods gives nondeterministic and incorrect results, as illustrated by the following
code snippet:

object ParNonAssociativeOperator extends App {
import scala.collection._
def test(doc: GenIterable[Int]) {
val seqtext = doc.seq.reduceLeft(_ - _)
val partext = doc.par.reduce(_ - _)
log(s"Sequential result - $seqtext\n")
log(s"Parallel result - $partext\n")

}
test(0 until 30)

}

While the reduceLeft operation consistently returns -435, the reduce operation returns meaningless results at random.

TIP

Binary operators used in parallel operations do not need to be commutative.

Make sure that binary operators used in parallel operations are associative.

Aleksandar Prokopec
@alexprokopec

Parallel operations such as aggregate require the multiple binary operators, sop and cop:

def aggregate[S](z: => S)(sop: (S, T) => S, cop: (S, S) => S): S

The sop operator is of the same type as the operator required by the reduceLeft operation. It takes an accumulator and the
collection element. The sop operator is used to fold elements within a subset assigned to a specific processor.

The cop operator is used to merge the subsets together and is of the same type as the operators for reduce and fold.

The aggregate operation requires that cop is associative and that z is the zero element for the accumulator, that is, cop(z, a)
== a. Additionally, the sop and cop operators must give the same result irrespective of the order in which element subsets
are assigned to processors, that is, cop(sop(z, a), sop(z, b)) == cop(z, sop(sop(z, a), b)).

Aleksandar Prokopec
@alexprokopec

That’s all.

I hope you found it useful.

@philip_schwarz

